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ABSTRACT 
A slriking difference between the interactions that students have with 
human tutors and those they have with computer-based instruction 
systems is that human tutors frequently refer to their own previous 
explanations. Based on a study of human-human instructional inter- 
actions, we are categorizing the uses of previous discourse and are 
developing a computational model of this behavior. In this paper, I 
describe the slrategies we have implemented for identifying relevant 
prior explanations, and the mechanisms that enable our text planner 
to exploit the information stored in its discourse history in order to 
omit information that has previously been communicated, to point 
out similarities and differences between entities and situations, and 
to mark re-explanations in circumstances where they are deemed 
appropriate. 

1. Introduction 
To reap the benefits of  natural language interaction, user inter- 
faces must be endowed with the properties that make human 
natural language interaction so effective. One such prop- 
exty is that human speakers freely exploit all aspects of  the 
mutually known context, including the previous discourse. 
Computer-generated utterances that do not draw on the previ- 
ous discourse seem awkward, unnatural, or even incoherent. 
The effect of the discourse history is especially important in 
instructional applications because explanation is essentially 
incremental and interactive. To provide missing informa- 
tion in a way that facilitates understanding and learning, the 
system must have the capability to relate new information 
effectively to recently conveyed material, and to avoid re- 
peating old material that would distract the student from what 
is new. Strategies for using the discourse history in generating 
utterances are therefore crucial for building computer systems 
intended to engage in instructional dialogues with their users. 

The goal of our work is to produce a computational model 
of the effects of  discourse context on explanations in instruc- 
tional dialogues, and to implement this model in an intelli- 
gent explanation facility. Based on a study of  human-human 
instructional dialogues, we are developing a taxonomy that 
classifies the types of contextual effects that occur in our data 

according to the explanatory functions they serve [1]. Thus 
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far, we have focused on four categories from our taxonomy 

• explicit reference to a previous explanation (or portion 
thereof) in order to point out similarities (differences) 
between the material currently being explained and ma- 
terial presented in earfier explanation(s), 

• omission of previously explained material to avoid dis- 
tracting student from what is new, 

• explicit marking of repeated material to distinguish it 
from new material (e.g., "As I said before , . . .  ") 

• elaboration of previous material in the form of  general- 
izations, more detail, or justifications. 1 

Building on previous work [2, 3] we have implemented an ex- 
planation facifity that maintains a discourse history and uses 
it in planning subsequent explanations. We are using this ex- 
planation facility as part of two intelligent systems. The first 
is a patient education system intended to provide patients with 
information about their disease, possible therapies, and med- 
ications [4, 5]. The second is an intelligent coached practice 
environment for training avionics technicians to troubleshoot 
complex electronic equipment [6]. 

In order to generate texts that exploit previous discourse, a 
system must have the following capabilities: 

1. It must understand its own previous explanations. 

2. It must be able to findprior explanations (or parts thereof) 
that are relevant to generating the current explanation, in 
an e.~cient manner. 

3. It must have strategies for exploiting the relevant prior 
texts in pedagogically useful ways when generating the 
current explanation. 

In this paper, I describe how we have realized these three 
requirements in the two instructional systems. 

2.  B a c k g r o u n d  

To achieve the first requirement, our explanation system uses 
an extended version of the text planner developed by Moore 

1This category breaks up into number of subcategories in our taxonomy. 
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and Paris [2]. Briefly, the text planner works in the follow- 
ing way. When the user provides input to the system, the 
query analyzer interprets the question and forms a commu- 
nicative goal representing the system's intended effect on the 
hearer's mental state, e.g., "achieve the state where the hearer 
believes that action A is suboptimal" or "achieve the state 
where the hearer knows about the side effects of drug X." 
A linear planner synthesizes responses to achieve these goals 
using a library of explanation operators that map communica- 
five goa~s to linguistic resources (speech acts and rhetorical 
strategies) for achieving them. In general, there may be many 
operators available to achieve a given goal, and the planner 
has a set of selection heuristics for choosing among them. 
Planning is complete when all goals have been refined into 
speech acts, such as reFORM and RECOMMEND. 

In this system, a text plan represents the effect that each part 
of the text is intended to have on the hearer's mental state, 
the linguistic strategies that were used to achieve these effects, 
and how the complete text achieves the overall communicative 
goal. When a text plan is complete, the system presents the 
explanation to the user, retaining the plan that produced it in 
a discourse history. 

In previous work, I showed how a system could support a 
limited range of dialogue capabilities using the information 
recorded in its discourse history [3]. In particular, I devised 
interpretation and recovery heuristics that examine the text 
plan that produced the immediately preceding explanation 
in order to interpret and respond to the follow-up questions 
"Why?" and "Huh?'. In ~,~d_ition, the system is able to 
avoid producing the same answer to a question asked a second 
time by searching the discourse history to determine if  the 
commtmicative goal corresponding to the question was ever 
posted before. If  so, the system notes which strategy was 
used in the previous case and employs recovery heuristics to 
choose an alternative swategy. 

The work reported in this paper is aimed at augmenting the 
ways in which the information recorded in the discourse his- 
tory affects each new explanation as it is planned. In general, 
previous dialogue should potentially influence the answer to 
every subsequent question, not just expficit follow-up ques- 
tions, such as "Why?" and "Huh?", or questions that are 
literally asked twice. Supporting this capability requires rec- 
o~nlzing when prior explanations are relevant and how they 
should affect the current response. 

3. E x a m p l e s  

Examples of the types of contextual effects we are interested 
in appear in Figures 1 and 2. The dialogue in Figure I is 
taken from our corpus of human-human written instructional 
dialogues in the SHERLOCK domain. SHERLOCK is an in- 
telligent training system that teaches avionics technicians to 

troubleshoot complex electronic equipment. It is built within 
the "learning by doing" paradiEm; in which students solve 
problems with minimal tutor interaction and then review their 
troubleshooting behavior in a post-problem reflective follow- 
up session (SFU) where the tutor replays each student action 
and provides a critique (here the tutor marks each action as 
"good" (<+>) or as "could be improved" (<->)). To collect 
protocols for study, the system was used to replay each step 
during RFU, but the human tutor provided the assessment and 
answered any questions the student posed. 

In Figure 1, the student performs three actions that are assessed 
negatively for reasons that are related. Testing pin 28 is bad 
for one of the same reasons as testing pin 38, and testing pin 
36 is bad for precisely the same reason as testing pin 28. In 
the figure, italics are used to highlight what we categorize as 
contextual effects on the explanations given. For example, 
when explaining why testing pin 28 is bad (turn 6), the tutor 
refers back to one of the reasons given in the explanation in 
turn 3, and reiterates the fact that the main data inputs are 
highly suspect (signalled by "As explained before"). In turn 
6, the tutor offers an elaboration that introduces the notions of 
main and secondary d~m control signals and justifies why the 
main data signal should be tested first. Later, when explaining 
why testing pin 36 is bad in turn 9, the tutor refers back 
to the explanation he gave for testing pin 28 and states a 
generalization explaining why all three of these actions are 
considered suboptimal. The tutor expects the student to be 
able to make use of the explanations given in turn 6 (and 
therefore turn 3) by indicating that it is relevant to the current 
situation ("for the same reasons given..." serves this purpose). 
Accordingly, the tutor does not repeat the detailed explanation 
of why the main control data signals should be tested first. 
By generating the explanation in turn 9 in such a way that it 
'meshes' with the previous two, not only does the tutor correct 
student's error, but he forces the student to consider how the 
three situations are similar. Pointing out this s'tmilarity may 
facilitate the student in forming the domain generalization and 
recognizing how the three instances fit this generalization. 

Figure 2 shows an actual dialogue with our patient education 
system, and is based upon phenomena we observed in nat- 
urally occurring interviews with physicians. The responses 
shown in this example are automatically generated, and typify 
the type of interaction a patient can have with our system. Pa- 
tients construct questions via a direct manip~lation interface 
that allows users to combine menu election and highlighting 
portions of previous explanations on the screen. This inter- 
face extends our previous work [7]. Note that although the 
user asks exactly the same type of question in turns 1 and 
3, the system's answers are quite different. This is because 
the answer in turn 4 (R4) is affected by the context creotpd in 
turns 1-3. For e~ample, the first sentence of R4 points out that 
Elavil is used for the same type of therapy as Inderal. Further 
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<->You tested pin 38 of the A1A3AI5. 

Why is testing pin 38 not considered a good step? 

For two reasons. First, because you did not completely test the inputs needed to set relay B24 (you tested the 
low input but not the high input). These two inputs are critical for the TO test step and are highly suspect when 
a relay appears to be reset. Secondly, the data input at pin 38 has no effect on the path that is being created 
between pins 57 & 58 and the output at 11 & 12. Relay B26 could be set or reset- it just doesn't matter. 

: Short discussion about how to determine whether a relay interferes with the signalpath. 

<-> You tested pin 28 of the A1A3A15. 

Why is testing pin 28 not a good step? 

As explained before, the main data inputs to relay B24 are highly suspect at this time. You have tested the low 
input to B24 but not the high one. Since it b more likely that there may be a problem with the main data signals 
to relay B24 than with the secondary do.to signals to relays B25-B30, the main data signal should be tested flrst. 
Testing pin 28 is not a bad step, it is just more likely (on the average) that the main data signals are causing the 
problem. 

: One exchange and one action later. 

<->You tested pin 36 of the A1A3A15. 

Don't I need to test pin 36? 

You might have to, but for the same reasons given when you tested pin 28, it b generally more e.~icient to test 
the main control data sisnals flrst, and then test the secondary control data sisnals i f  necessary. 

Figure 1: Human-Human Advisory Interaction Displaying Contextual Effects 

[1] 

[2] 

[3] 

[4] 
[5] 
[6] 

ff] 

[8] 
[9] 

note that in R4 ,the system does not explain what prophylac- 
tic treatment means because it has done so previously in R2, 
i.e, the system omits information that has been presented in a 
previous explanation. Finally, in the penultimate sentence of 
R4, Elavil's contraindications and side effects are contrasted 
with those of Inderal. 

4 .  F i n d i n g  R e l e v a n t  P r i o r  E x p l a n a t i o n s  

In order to produce the types ofbehavior exemplified above, a 
system must be able to determine which prior explanation(s) 
should be referred to when constructing an explanation. Al- 
though it is convenient for expository purposes to think of 
the tasks of finding relevant prior explanations and exploiting 
them in the construction of  the current explanation as con- 
ceptuaUy distinct, they may be interleaved in the actual text 
generation process, as discussed in the next section. 

In our systems, the discourse history is a simple stack. Ex- 
planation plans are large, complex structures and they will 
accumulate rapidly as the dialogue progresses. Exhaustively 
searching the discourse history for relevant prior explanations 
is computationally prohibitive. Therefore, we require index- 
ing strategies that allow the system to find possibly relevant 
prior explanations in an efficient manner. We have found 
that two factors influence the identification of relevant prior 
explanations: 

• what was conveyed in prior explanations, i.e., the re- 
lationship of the domain content to be conveyed to the 

domain contem presented in prior explanation(s) 

• why a previous explanation was given, i.e., the relation- 
ship between the communicative goal(s) of the current 
and prior explanation(s) 

Therefore, to facilitate the search for relevant prior expla- 
nations, we index each segment of an explanation by the 
communicative goal(s) the text is intended to achieve, and 
the domain entities and situations that are discussed in that 
segment} 

Let us consider how these indices can be used to facilitate the 
identification of a relevant prior explanation for generating the 
tutor's response in turn 6 of Figure 1. When the student asks 
why testing pin 28 is not a good step (turn 5), the system forms 
the communicative goal: (BEL H (~v~OPTIMAL-STEP 
(MEAS-TEST (PIN28 OF AiA3AI5) ) ) ). One of Mra~- 
gies for answering this question looks to see if there is a 
previous student action, ?A, that is similar to the test of pin 
28 and that was involved in a previous explanation segment 
satisfying the goal (BEL H (S~TBOPTIH~J.,-STEP ?A) ). Us- 
ing an algorithm described below, the system determines that 
in this case, the action of testing pin 38 is similar to the 
test of pin 28 and there is an explanation (turn 3) satisfy- 
ing the communicative goal (BEL H (SUBOPTIMAL-STEP 

2Following COrosz and $idner [8], in our model intentions are the basic 
determiner of segmentation, and therefore each communicative goal indicates 
a segment boundary. 
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Describe Inderal. 

Inderal is a drug that is used for prophylactic Ireatment of migraine. Drugs for prophylactic treatment are 
intended to reduce or prevent further migraine attacks. These are drugs that you must take every day, whether 
or not you have a migraine. In general, prophylactic ~eatment is suitable for patients with frequent migraines. 
Inderal may not be suitable for you if you have diabetes, problems with your heart, or a severe pulmonary 
disease such as asthma. Some side effects of Inderal are lowered blood pressure, fatigue, and depression. 
Describe Elavil. 

Like lnderal, Elavil is used for prophylactic treatment of migraine. ~ Elavil may not be suitable for you if you 
have irregular heartbeat or if you experience dizziness when you stand up. Elavil is beuer than lnderalfor 
patients who experience depression, because Elavil is actually an anti-depressant. However, Elavil has other 
possible side effects including dry mouth, difficulty urinating, and weight gain. 

Figure 2: Actual Dialogue with Patient Education System 

[1] 

[2] 

[3] 
[4] 

(HEAS-TEST (PIN38 OF A1A3A15) ) ) ). The explanation 
strategy points out the similarity between the prior and current 
explanation, generating the text "As explained be fo re , . . . "  in 
turn 6. 

Other strategies cover cases in which an identical commu- 
nicative goal was attempted before, or the action itself or a 
similar action was discussed but in service of a different com- 
municative goal. These strategies use the t w o  types of indices 
to quickly determine if there are prior explanations that satisfy 
the constraints on their applicability. I provide examples ffi'om 
the patient education domain in the Section. 

Determining Relationships between Domain Entities 

In the patient education system, domain knowledge is repre- 
sented in LOOM [9], a term-subsumpfion language. Therefore, 
domain entities and relationships between them are well de- 
fined and determined simply by queries written in LOOM'S 
query language. 

In the Sherlock system, much of  the knowledge used in trou- 
bleshooting and assessing student's actions is represented pro- 
cedurally, and therefore other techniques for computing rela- 
tionships between domain entities are needed. In rdro inter- 
actions, the most commoniy asked question is to justify the 
tutor's assessment of  a step (32% of  all questions asked during 
RF~), and 27 % of  the answers to such questions involve refer- 
ences to previously assessed actions. Therefore, an efficient 
algorithm for computing similarity of  student actions was con- 
sidered essential for producing the types of context-sensitive 
explanations that are required in this domain. To compute sim- 
ilarity between actions, the system uses a technique sd~pted 
from Ashley's work in case-based legal reasoning [10]. This 
algorithm; developed by James Rosenblum, makes use of a 
set of facets that SHERLOCK employs to evaluate each stu- 
dent action. These facets were derived from a cognitive task 
analysis aimed at identifying the factors that expert avionics 
tutors use in assessing student's troubleshooting actions [11]. 

Associated with each facet is an indication of  whether that 
facet contributes to a good (+), bad ( - ) ,  or neuWal (n) eval- 
uation in the current problem-solving context. The system's 
representation of a student action includes the list of  facets 
characterizing the action. 

Treating each student action as a "case", the algorithm builds a 
similarity DA G representing apartial ordering of actions based 
on the similarity of each action to a given action. The system 
can compute overall similarity, or similarity with respect to 
a certain class of facets (% - ,  or n). For example, when 
answering a question about why the current action received 
a negative assessment, the similarity DAG is built so that it 
indicates similarity of previous actions to the current action 
with respect to the - facets. The root of the DAG represents 
the current action and the facets that apply to it. Each node in 
the graph represents a set of  actions that share the same set of  
facets. The more facets that a node has in common with the 
current action (the root node), the closer it will be to the root 
node. 

Initial results using this algorithm are quite promising. The 
algorithm is both efficient (complexity O(n 2) where n is the 
number of student actions) and accurate. In a corpus of  8 
student-tutor protocols involving 154 student actions and 30 
requests to justify the tutor's assessment of  the student's ac- 
tion, the human tutor produced 8 responses that explicitly 
pointed out similarity(ies) to action(s) whose assessment had 
previously been explained. These 8 responses involved 11 
similar actions in total. In all 8 situations the algorithm cor- 
rectly selected as most similar the same actions used in the 
tutor's explanations. In 3 cases the algorithm suggested a sim- 
ilarity not used by the tutor. However, when presented with 
these similarities, our expert tutor judged them as correct and 
stated that explanations that explicitly pointed out these sim- 
ilarities would have been pedagogically useful. In all other 
cases in which the human tutor did not make reference to 
a previous explanation as part of  an answer, our algorithm 
reported that no prior action was similar. 
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NAME: Opl 
~ . . C T :  (KNOW-ABOUT H ?d)) 
CONSTRAINTS: (AND (ISA 7d DRUG) 

(USE 7d ?t)) 
NUCLEUS: (BEL H (USE ?d ?t)) 
SATmJIrES: 

(((BEL H (SOMEREF (contraindication ?d))) *required*) 
((BEL H (SOMEREF (other-use ?d))) *optional*) 
((BEL H (SOMEREF (side-effect ?d))) *required*) 
((BEL H (SOMEREF (warning ?d))) *optional*)) 

NAME: Op3 
EFFECT: (BEL H (Tr 7argl 7arg2)) 
CONSTRAINTS: (IN-DH (BEL H (?r ?x ?arg2))) 
NUCLEUS: (BEL H (SAME-AS (Tr ?x ?arg2) 

(Tr ?argl ?arg2))) 
SATIn JIrES:  nil 

NAME: Op6 
EFFECT: (BEL H 7p) 
CONSTRAINTS: nil 
N U ~ S :  (INTORM H ?p) 
SAT~ J.rIEs: nfl 

Figure 3: Sample Plan Operators from Patient Education System 

5. E x p l o i t i n g  P r i o r  E x p l a n a t i o n s  

with the capability to identify relevant prior discourse, our 
systems are able to exploit this information when planning 
explanations using three mechanisms: plan operators that 
implement context-sensitive strategies, domain-independent 
planning heuristics (e.g., prefer operators that refer to previous 
explanations), and plan modification rules that alter a plan 
based on information from the discourse history (e.g., if an 
optional communicative goal has already been achieved, don't 
plan text to achieve it). 

We now consider how the patient education system can pro- 
duce the behavior illustrated in the sample dialogue in Fig- 
ure 2. When the user asks the system to 'Describe In- 
deral' (turn 1), the system posts the goal (WOW-ABOUT H 
INDERAL). The planner searches its operator library to find 
an operator capable of achieving this goal, and finds Opl 
shown in Figure 3. This operator encodes a strategy for de- 
scribing a drug derived from our analysis of transcripts of 
doctor-patient interactions and interviews with physicians. 

To determine whether this operator can be used in the current 
situation, the planner checks its constraints. If a constraint 
predicate includes only bound variables, then the planner ver- 
ifies the constraint against the knowledge base. For example, 
the first constraint in Opl ( ISA ? d  DRUG) checks  the domain  

knowledge to verify that INDERAL is of type DRUG. Alterna- 
tively, if a constraint predicate contains variables that are not 
yet bound, the planner searches the system's knowledge bases 
for acceptable bindings for such variables. For example, to 
check the constraint (USE ?d ?t)  where ?d  is bound to 
INDERAL, but ? 1: is not bound, the planner searches the med- 
ical knowledge base and finds that the variable ? 1= can be 
bound to PROPHYLACTIC-MIGRAINE-TREATMENT. There- 
fore, all the constraints on Opl are verified, and the operator is 
chosen. To expand the operator, the planner posts the subgoal 
appearing in the nucleus 3 field of the operator, (BEL H (USE 
INDERAL PROPHYLACTIC-MIGRAINE-TREATMENT)), and 

3The terms nuc/eus and sate///te come from Rhetorical Structure Theory 
(RST). For more details about RST, see [12]. 

then the subgoals appearing in the satellite. Expanding the 
satellites of Opl posts up to four additional subgoals. 

The planner must then find operators for achieving each of 
the subgoals. To achieve the first subgoal, (REL H (USE 
INDERAL PROPHYLACTIC-MIGRAINE-TREATMENT) ), the  

planner uses Op6 which encodes the simple strategy: to make 
the hearer believe any proposition ?p, simply inform her of 
?p. Speech acts, e.g., INFORM and m~comww.~rv, are the prim- 
itives of our text planning system. When a subgual has been 
refined to a speech act, the system constructs a functional 
description (FD) for the speech act. When text planning is 
complete, these FDs are passed to the FUF sentence generator 
[13] which produces the actual English text. 

In the process of building an FD, new text planning goals may 
be posted as side effects. This occurs because it is only when 
building FDs that the planner considers how concepts will be 
realized in text. To provide informative and understandable 
explanations, the system uses the plan modification heuristic: 
"Post optional suhgoals to explain unfamiliar terms intro- 
duced in explanation". During the process of building FDs, 
this heuristic causes the system to check its user model to see 
if each term that will be mentioned in the text is known to the 
user. In wansforming (INFORM H (USE INDERAL PRO- 

PHYLACTIC-MIGRAINE-TREATMENT) ), the interface notes 
that the user does not already know the concept PROPHYI~C- 
TIC-MIGRAINE-TREATMENT, therefore it posts a subgoal to 
describe this term, as shown in the system's utterance in turn 
2 of the sample dialogue. 

The rest of the explanation in turn 2 results from expanding the 
remaining satellite subgoals in a similar manner. The user then 
asks the system to describe Elavil (turn 3). Opl is again cho- 
sen, however, this time the planner finds two appficable oper- 
ators for achieving the subgoal (INFORM H (USE ELAVIL 
PROPHYLACTIC-MIGRAINE-TREATMENT) ), namely Op3 
and Op6. Note that the constraint of Op3 (IN-DH (BEL 
H (?r ?x ?arg2))) (where ?r is bound to USE and 

?arg2 to PROPHYLACTIC-MIGRAINE-TREATMENT) is sat- 
isfied by binding ?x to INDERAL because the system 
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achieved the goal (BEL H (USE INDERAL PROPHYI.aAC- 

TIC-MIGRAINE-TREATHFENT) ) ) in its previous explanation. 
The system can determine this efficiently using the indices 
described in the previous section. 

The system has a selection heuristic that guides it to prefer 
operators that refer to previous explanations, and thus Op3 
is chosen to achieve the current goal. Refining this operator 
leads the system to generate the text "Like Inderal, Elavil 
is used for ...". Another context-sensitive operator applies 
when the system expands the subgoal (gEL H (OTHZR-USE 
F~n~VIL DEPRZSSZON) }, and leads to the text "Elavil is bet- 
ter than Inderal ... ". In addition, note that the system did 
not explain the term PROPHYI.aACTIC-HIGRAINE-TREAT- 
MF~rr when describing Elavil. This is because when the 
system attempts to determine whether this term is known 
to the user, it finds that the term was explained in the 
previous text (i.e., the goal (KNOW-ABOUT H PROPHYI.~C- 
TIC-MIGRAINE-TREATMENT) appears in a previous text 
plan), and therefore it does not re-explain this term. 

Thus we see that, by checking for the existence of certain com- 
municative goals in the discourse history, context-sensitive 
plan operators, plan selection heuristics, and plan modifi- 
cation rules enable the system to generate context-sensitive 
responses. 

6. Related Work 

Computational linguists have investigated how the context 
provided by the previous discourse should affect the gener- 
ation of referring expressions, including pronominalization 
decisions (e.g., [14, 15]). Others have studied how a more 
extensive discourse history could affect other aspects of  the 
response. Swattout's XPLAIN system can suggest simple 
analogies with previous explanations and omit portions of 
a causal chain that have been presented in an earlier expla- 
nation. However, this is the only type of contextual effect 
implemented in XPLAIN, and it was done so using an ad hoc 
technique to provide this one effect. We are attempting to 
provide a more general approach. 

McKeown carried out a preliminary analysis of  how previous 
discourse might affect a system's response to users' requests 
to describe an object or compare two objects [16]. She found 
that by simply maintaining a list of  the questions that had been 
asked, it was possible to avoid certain types of  rrepetition. She 
further found that if  the system were to keep track of the exact 
information that was provided previously, it could create a text 
that contrasts or parallels an earlier one. While McKeown's 
analysis was fairly detailed, no discourse history was main- 
rained in the implementation, and none of the suggestions for 
how responses could be altered, if  such a history existed, were 
actually implemented or tested. We are devising a way for 
explanation strategies to make use of  the information stored 
in a discourse history, and axe implementing these strategies. 

Finally, our work bears some resemblance to work in plan 
adaptation [17]. Systems using plan adaptation often use c e z  
techniques to index a library of previously synthesized plans. 
However, plan ~d,_ptation is concerned with indexing plans so 
that they can be retrieved and mused, perhaps with modifica- 
tion, in later situations. Our emphasis is not on reusing plans, 
hut rather on exploiting prior plans as one of many knowledge 
sources affecting explanation generation. 
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