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A B S T R A C T  

In this paper we exhibit a novel approach to the problems 
of topic and speaker identification that makes use of a large 
vocabulary continuous speech recognizer. We present a theo- 
retical framework which formulates the two tasks as comple- 
mentary problems, and describe the symmetric way in which 
we have implemented their solution. Results of trials of the 
message identification systems using the Switchboard corpus 
of telephone conversations are reported. 

1. I N T R O D U C T I O N  

The task of topic identification is to select from a set 
of possibilities the topic that is most likely to represent 
the subject matter covered by a sample of speech. Simi- 
larly, speaker identification requires selecting from a list 
of possibilities the speaker most likely to have produced 
the speech. In this paper, we present a novel approach 
to the problems of topic and speaker identification which 
uses a large vocabulary continuous speech recognizer as 
a preprocessor of the speech messages. 

The motivation for developing improved message identi- 
fication systems derives in part from the increasing re- 
liance on audio databases such as arise from voice mail, 
for example, and the consequent need to extract informa- 
tion from them. Technology that is capable of searching 
such a database of recorded speech and classifying mate- 
rial by subject matter or by speaker would have substan- 
tial value, much as text-based information retrieval tech- 
nology has for textual corpora. Several approaches to the 
problems of topic and speaker identification have already 
appeared in the literature. For example, an approach to 
topic identification using wordspotting is described in [1] 
and approaches to the speaker identification problem are 
reported in [2] and [3]. 

Dragon Systems' approach to the message identification 
tasks depends crucially on the existence of a large vo- 
cabulary continuous speech recognition system. We view 
the tasks of topic and speaker identification as comple- 
mentary problems: for topic identification, the speaker is 
irrelevant and only the subject matter is of interest; for 
speaker identification, the reverse is true. For efficiency 
of computation, in either case we first use a speaker- 

independent topic-independent recognizer to transcribe 
the speech messages. The resulting output is then scored 
using topic-sensitive or speaker-sensitive models. 

This approach to the problem of message identification 
is based on the belief that the contextual information 
used in a full-scale recognition is invaluable in extract- 
ing reliable data from difficult speech channels. For ex- 
ample, unlike standard approaches to topic identifica- 
tion through spotting a small collection of topic-specific 
words, the approach via continuous speech recognition 
should more reliably detect keywords because of the 
acoustic and language model context available to the 
recognizer. Moreover, with large vocabulary recognition, 
the list of keywords is no longer limited to a small set 
of highly topic-specific (but generally infrequent) words, 
and instead can grow to include much (or even all) of the 
recognition vocabulary. The use of contextual informa- 
tion makes the message systems sufficiently robust that 
they are able to operate even with vocabulary sizes and 
noise environments that would make speech recognition 
extremely difficult for other applications. 

To test our message identification systems, we have 
been using the "Switchboard" corpus of recorded tele- 
phone messages [4] collected by Texas Instruments and 
now available through the Linguistic Data Consortium. 
This collection of roughly 2500 messages includes con- 
versations involving several hundred speakers. People 
who volunteered to participate in this program were 
prompted with a subject to discuss (chosen from a set 
that they had previously specified as acceptable) and 
were expected to talk for at least five minutes. We re- 
port results of topic identification tests involving mes- 
sages on ten different topics using four and a half min- 
utes of speech and speaker identification tests involving 
24 speakers with test intervals containing as little as 10 
seconds of speech. 

In the next section, we describe the theoretical frame- 
work on which our message identification systems are 
based and discuss the dual nature of the two problems. 
We then describe how this theory is implemented in the 
current message processing systems. Preliminary tests of 
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the systems using the Switchboard corpus are reported 
in Section 4. We close with a discussion of the test re- 
sults and plans for further research. 

2. T H E O R E T I C A L  F R A M E W O R K  
Our approach to the topic and speaker identification 
tasks is based on modelling speech as a stochastic pro- 
cess. For each of the two problems, we assume that  a 
given stream of speech is generated by one of several 
possible stochastic sources, one corresponding to each of 
the possible topics or to each of the possible speakers 
in question. We are required to judge from the acous- 
tic data which topic (or speaker) is the most probable 
source. 

Standard statistical theory provides us with the optimal 
solution to such a classification problem. We denote the 
string of acoustic observations by A and introduce the 
random variable T to designate which stochastic model 
has produced the speech, where T may take on the values 
from 1 to n for the n possible sources. If we let Pi denote 
the prior probability of stochastic source i and assume 
that  all classification errors have the same cost, then we 
should choose the source T = i for which 

= argmax Pi P(A[ T = i). 
i 

We assume, for the purposes of this work, that  all prior 
probabilities are equal, so that  the classification problem 
reduces simply to choosing the source i for which the 
conditional probability of the acoustics given the source 
is maximized. 

In principle, to compute each of the probabilities 
P(A I T = i) we would have to sum over all possible 
transcriptions W of the speech: 

P(A I T = i) = Z P(A, W[ T = i). 
W 

In practice, such a collection of computations is unwieldy 
and so we make several simplifying approximations to 
limit the computational burden. First, we estimate the 
above sum only by its single largest term, i.e. we ap- 
proximate the probability P(A I T = i) by the joint 
probabiltiy of A and the single most probable word se- 
quence W = W~a x. Of course, generating such an op- 
timal word sequence is exactly what speech recognition 
is designed to do. Thus, for the problem of topic iden- 
tification, we could imagine running n different speech 
recognizers, each modelling a different topic, and then 
compare the resulting probabilities P(A, W~a x I T = i) 
corresponding to each of the n optimal transcriptions 
W ~  x. Similarly, for speaker identification, we would run 
n different speaker-dependent recognizers, each trained 

on one of the possible speakers, and compare the result- 
ing scores. 

This approach, though simpler, still requires us to make 
many complete recognition passes across the speech sam- 
ple. We further reduce the computational burden by in- 
stead producing only a single transcription of the speech 
to be classified, by using a recognizer whose models are 
both topic-independent and speaker-independent. Once 
this single transcription W = Wm~ is obtained, we need 
only compute the probabilities P(A, Wmax [ T = i) cor- 
responding to each of the stochastic sources T = i. 

Rewriting P(A, Wmax I T = i) as 

P(A I Wmax, T = i) * P(Wmax I T = i), 

we see that  the problem of computing the desired 
probability factors into two components. The first, 
P(A [ W, T), we can think of as the contribution of 
the acoustic model, which assigns probabilities to acous- 
tic observations generated from a given string of words. 
The second factor, P(W [ T),  encodes the contribu- 
tion of the language model, which assigns probabilities 
to word strings without reference to the acoustics. 

Now for the problem of topic identification, we wish to 
determine which of several possible topics is most likely 
the subject of a given sample of speech. Nothing is 
known about the speaker. We therefore assume that  the 
same speaker-independent acoustic model holds for all 
topics; i.e. for the topic identification task, we assume 
that P(A I W, T) does not depend on T. But we need 
n different language models P(W I T = i), i = 1 , . . . ,  n. 
From the above factorization, it is then clear that  in com- 
paring scores from the different sources, only this latter 
term matters. 

Symmetrically, for the speaker identification problem, we 
must choose which of several possible speakers is most 
likely to have produced a given sample of speech. While 
in practice, different speakers may well talk about dif- 
ferent subjects and in different styles, we assume for 
the speaker identification task that  the language model 
P(W [ T) is independent of T. But n different acoustic 
models P(A [ W, T = i) are required. Thus only the 
first factor matters  for speaker identification. 

As a result, once the speaker-independent topic- 
independent recognizer has generated a transcript of the 
speech message, the task of the topic classifier is simply 
to score the transcription using each of n different lan- 
guage models. Similarly, for speaker identification the 
task reduces to computing the likelihood of the acoustic 
data given the transcription, using each of n different 
acoustic models. 
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3. T H E  M E S S A G E  I D E N T I F I C A T I O N  
S Y S T E M  

We now examine how this theory is implemented in each 
of the major components of Dragon's message identi- 
fication system: the continuous speech recognizer, the 
speaker classifier, and the topic classifier. 

3.1. The Speech Recognizer 

In order to carry out topic and speaker identification as 
described above, it is necessary to have a large vocab- 
ulary continuous speech recognizer that can operate in 
either speaker-independent or speaker-dependent mode. 
Dragon's speech recognizer has been described exten- 
sively elsewhere ([5], [6]). Briefly, the recognizer is a 
time-synchronous hidden Markov model (HMM) based 
system. It makes use of a set of 32 signal-processing 
parameters: 1 overall amplitude term, 7 spectral param- 
eters, 12 mel-cepstral parameters, and 12 mel-cepstral 
differences. Each word pronunciation is represented as a 
sequence of phoneme models called PICs (phonemes-in- 
context) designed to capture coarticulatory effects due 
to the preceding and succeeding phonemes. Because it 
is impractical to model all the triphones that could in 
principle arise, we model only the most common ones 
and back off to more generic forms when a recognition 
hypothesis calls for a PIG which has not been built. The 
PIGs themselves are modelled as linear ttMMs with one 
or more nodes, each node being specified by an output 
distribution and a double exponential duration distribu- 
tion. We are currently modelling the output distribu- 
tions of the states as tied mixtures of double exponen- 
tial distributions. The recognizer employs a rapid match 
module which returns a short list of words that might 
begin in a given frame whenever the recognizer hypoth- 
esizes that a word might be ending. During recognition, 
a digram language model with unigram backoff is used. 

We have recently begun transforming our basic set of 
32 signal-processing parameters using the IMELDA trans- 
form [7], a transformation constructed via linear discrim- 
inant analysis to select directions in parameter space 
that are most useful in distinguishing between desig- 
nated classes while reducing variation within classes. For 
the speaker-independent recognizer, we sought directions 
which maximize average variation between phonemes 
while being relatively insensitive to differences within the 
phoneme class, such as might arise from different speak- 
ers, telephone channels, etc. Since the IMELDA trans- 
form generates a new set of parameters ordered with re- 
spect to their value in discriminating classes, directions 
with little discriminating power between phonemes can 
be dropped. We use only the top 16 IMELDA parameters 
for speaker-independent recognition. A different IMELDA 

transform, in many ways dual to this one, was employed 
by the speaker classifier, as described below. 

For speaker-independent recognition, we also normalize 
the average speech spectra across conversations via blind 
deconvolution prior to performing the IM~LDA trans- 
form, in order to further reduce channel differences. A 
fixed number of frames are removed from the beginning 
and end of each speech segment before computing the av- 
erage to minimize the effect of silence on the long-term 
speech spectrum. 

Finally, we are now building separate male and female 
acoustic models and using the result of whichever model 
scores better. While in principle, one would have to 
perform a complete recognition pass with both sets of 
models and choose the better scoring, we have found that 
one can fairly reliably determine the model which better 
fits the data after recognizing only a few utterances. The 
remainder of the speech can then be recognized using 
only the better model. 

3.2. The Speaker Classifier 
Given the transcript generated by the speaker- 
independent recognizer, the job of the speaker classifier 
is to score the speech data using speaker-specific sets of 
acoustic models, assuming that the transcript provides 
the correct text; i.e. it must calculate the probabilities 
P(A [ W, T = i) discussed above. Dragon's continuous 
speech recognizer is capable of running in such a "scor- 
ing" mode. This step is much faster than performing a 
full recognition, since the recognizer only has to hypoth- 
esize different ways of mapping the speech data to the 
required text - a frame-by-frame phonetic labelling we 
refer to as a "segmentation" of the script - and need not 
entertain hypotheses on alternate word sequences. 

In principle, the value of P(A [ W, 7") should be com- 
puted as the sum over all possible segmentations of the 
acoustic data, but, as usual, we approximate this proba- 
bility using only the largest term in the sum, correspond- 
ing to the maximum likelihood segmentation. While 
one could imagine letting each of the speaker-dependent 
models choose the segmentation that is best for them, in 
our current version of the speaker classifier we have cho- 
sen to compute this "best" segmentation once and for all 
using the same speaker-independent recognizer responsi- 
ble for generating the initial transcription. This ensures 
that the comparison of different speakers is relative to 
the same alignment of the speech and may yield an ac- 
tual advantage in performance, given the imprecision of 
our probability models. 

Thus, the job of the speaker classifier reduces to scor- 
ing the speech data given both a fixed transcription 
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and a specified mapping of individual speech frames to 
PICs. 'Ib perform this scoring, we use a "matched set" 
of tied mixture acoustic models - a collection of speaker- 
dependent models each trained on speech from one of the 
target speakers but constructed with exactly the same 
collection of PICs to keep the scoring directly compara- 
ble. Running in "scoring" mode, we then produce a set 
of scores corresponding to the negative log likelihood of 
generating the acoustics given the segmentation for each 
of the speaker-dependent acoustic models. The speech 
sample is assigned to the lowest scoring model. 

In constructing speaker scoring models, we derived a 
new "speaker sensitive" IMELDA transformation, de- 
signed to enhance differences between speakers. The 
transform was computed using only voiced speech seg- 
ments of the test speakers (and, correspondingly, only 
voiced speech was used in the scoring). As is common 
in using the IMELDA strategy, we dropped parameters 
with the least discriminating power, reducing our orig- 
inal 32 signal-processing parameters to a new set of 24 
IMELDA parameters. These were the parameters used to 
build the speaker scoring models. It is worth remark- 
ing that, because these parameters were constructed to 
emphasize differences between speakers rather than be- 
tween phonemes, it was particularly important that the 
phoneme-level segmentation used in the scoring be set 
by the original recognition models. 

3 .3 .  T h e  T o p i c  C l a s s i f i e r  

Once the speaker-independent recognizer has generated 
a transcription of the speech, the topic classifier need 
only score the transcript using language models trained 
on each of the possible topics. The current topic scor- 
ing algorithm uses a simple (unigram) multinomial prob- 
ability model based on a collection of topic-dependent 
"keywords". Thus digrams are not used for topic scor- 
ing although they are used during recognition. For each 
topic, the probability of occurrence of each keyword is 
estimated from training material on that topic. Non- 
keyword members of the vocabulary are assigned to a 
catch-all "other" category whose probability is also esti- 
mated. Transcripts are then scored by adding in a nega- 
tive log probability for every recognized word, and run- 
ning totals are kept for each of the topics. The speech 
sample is assigned to the topic with the lowest cumula- 
tive score. 

We have experimented with two different methods of 
keyword selection. The first method is based on com- 
puting the chi-squared statistic for homogeneity based 
on the number of times a given word occurs in the train- 
ing data for each of the target topics. This method as- 
sumes that the number of occurrences of the word within 

a topic follows a binomial distribution, i.e. that there is 
a "natural frequency" for each word within each topic 
class. The words of the vocabulary can then be ranked 
according to the P-value resulting from this chi-squared 
test. Presumably, the smaller the P-value, the more use- 
ful the word should be for topic identification. Key- 
word lists of different lengths are obtained by selecting 
all words whose P-value falls below a given threshold. 

Unfortunately, this method does not do a good job of ex- 
cluding function words and other high frequency words, 
such as "uh" or "oh", which are of limited use for topic 
classification. Consequently, this method requires the 
use of a human-generated "stop list" to filter out these 
unwanted entries. The problem lies chiefly in the falsity 
of the binomial assumption: one expects a great deal of 
variability in the frequency of words, even among mes- 
sages on the same topic, and natural variations in the 
occurrence rates of these very high frequency words can 
result in exceptionally small P-values. 

The second method is designed to address this problem 
by explicitly modelling the variability in word frequency 
among conversations in the same topic instead of only 
variations between topics. It also uses a chi-squared test 
to sort the words in the vocabulary by P-value. But 
now for each word we construct a two-way table sorting 
training messages from each topic into classes based on 
whether the word in question occurs at a low, a moder- 
ate, or a high rate. (If the word occurs in only a small mi- 
nority of messages, it becomes necessary to collapse the 
three categories to two.) Then we compute the P-value 
relative to the null hypothesis that the distribution of 
occurrence rates is the same for each of the topic classes. 
Hence this method explicitly models the variability in 
occurrence rates among documents in a nonparametric 
way. This method does seem successful at automatically 
excluding most function words when stringent P-value 
thresholds are set, and as the threshold is relaxed and the 
keyword lists allowed to grow, function words are slowly 
introduced at levels more appropriate to their utility in 
topic identification. Hence, this method eliminates the 
need for human editing of the keyword lists. 

4. T E S T I N G  O N  S W I T C H B O A R D  

D A T A  

To gauge the performance of our message classification 
system, we turned to the Switchboard corpus of recorded 
telephone conversations. The recognition task is partic- 
ularly challenging for Switchboard messages, since they 
involve spontaneous conversational speech across noisy 
phone lines. This made the Switchboard corpus a par- 
ticularly goodplatform for testing the message identifi- 
cation systems, allowing us to assess the ability of the 
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continuous speech recognizer to extract information use- 
ful to the message classifiers even when the recognition 
itself was bound to be highly errorful. 

To create our "Switchboard" recognizer, male and fe- 
male speaker-independent acoustic models were trained 
using a total of about 9 hours of Switchboard messages 
(approximately 140 message halves) from 8 male and 8 
female speakers not involved in the test sets. We found 
that it was necessary to hand edit the training messages 
in order to remove such extraneous noises as cross-talk, 
bursts of static, and laughter. We also corrected bad 
transcriptions and broke up long utterances into shorter, 
more manageable pieces. 

Models for about 4800 PICs were constructed. We chose 
to construct only one-node models for the Switchboard 
task, both to reduce the number of parameters to be 
estimated given the limited training data and to mini- 
mize the penalty for reducing or skipping phonemes in 
the often rapid speech of many Switchboard speakers. A 
vocabulary of 8431 words (all words occurring at least 4 
times in the training data) and a digram language model 
were derived from a set of 935 transcribed Switchboard 
messages involving roughly 1.4 million words of text and 
covering nearly 60 different topics. Roughly a third of 
the language model training messages were on one of the 
10 topics used for the topic identification task. 

For the speaker identification trials, we used a set of 24 
test speakers, 12 male and 12 female. Speaker-dependent 
scoring models were constructed for each of the 24 
speakers using the same PIC set as for the speaker- 
independent recognizer. PIC models were trained using 
5 to 10 hand-edited message halves (about 16 minutes 
of speech) from each speaker. 

The speaker identification test material involved 97 mes- 
sage halves and included from 1 to 6 messages for each 
test speaker. We tested on speech segments from these 
messages that contained 10, 30, and 60 seconds of speech. 
The results of the speaker identification tests were sur- 
prisingly constant across the three duration lengths. 
Even for segments containing as little as 10 seconds of 
speech, 86 of the 97 message halves, or 88.7%, were cor- 
rectly classified. When averaged equally across speakers, 
this gave 90.3% accuracy. The results from the three trial 
runs are summarized in Table 1. It is worth remarking 
that  even the few errors that  were made tended to be 
concentrated in a few difficult speakers; for 17 of the 24 
speakers, the performance was always perfect, and for 
only 2 speakers was more than one message ever mis- 
classified. 

Given the insensitivity of these results to speech dura- 

tion, we decided to further limit the amount of speech 
available to the speaker classifier. The test segments 
used in the speaker test were actually concatenations of 
smaller speech intervals, ranging in length from as little 
as 1.5 to as much as 50.2 seconds. We rescored using 
these individual fragments as the test pieces. 1 Results 
remained excellent. For example, when testing only the 
pieces of length under 3 seconds, 42 of the 46 pieces, 
or 91.3%, were correctly classified (90.9% when speakers 
were equally weighted). These pieces represented only 19 
of the 24 speakers, but did include our most problematic 
speakers. For segments of length less than 5 seconds, 177 
of the 201 pieces (88.1%, or 89.4% when the 24 speakers 
were equally weighted) were correctly classified. 

speech 
interval 

(seconds) 

weighted weighted 
by message by speaker 

(%) (%) 
10 88.7 90.3 
30 88.7 90.6 
60 87.6 89.9 

Table 1: Speaker identification accuracy for 97-message 
Switchboard test. 

For the topic identification task, we used a test set of 120 
messages, 12 conversations on each of 10 different topics. 
Topics included such subjects as "air pollution", "pets", 
and "public education", and involved several topics (for 
example, "gun control" and "crime") with significant 
common ground. For topic identification, we planned 
to use the entire speech message, but for uniformity all 
messages were truncated after 5 minutes and the first 30 
seconds of each was removed because of concern that this 
initial segment might be artificially rich in keywords. 

Keywords were selected from the same training messages 
used for constructing the recognizer's language model. 
This collection yielded just over 30 messages on each of 
the ten topics, for a total of about 50,000 words of train- 
ing text per topic. Because this is relatively little for es- 
timating reliable word frequencies, word counts for each 
topic were heavily smoothed using counts from all other 
topics. We found that  it was best to use a 5-to-1 smooth- 
ing ratio; i.e. data specific to the topic were counted five 
times as heavily as data from the other nine topics. 

Keyword lists of lengths ranging from about 200 words 
to nearly 5000 were generated using the second method 
of keyword selection. We also tried using the entire 8431- 

1The initial speaker-independent recognition and segmentat ion 
were not,  however, re-run so tha t  such decisions as gender deter- 
minat lon were inherited from the larger test. 
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word recognition vocabulary as the "keyword" list. The 
results of the initial runs, given in the second column of 
Table 2, were disappointing: performance fell between 
70% and 75% in all cases. 

#keywords original (%) recalibrated (%) 

203 70.0 71.7 
1127 71.7 

72.5 2655 
85.0 
87.5 

4658 74:2 87.5 
8431 72.5 88.3 

Table 2: Topic identification accuracy for 120-message 
Switchboard test. 

It is worth noting that ,  as it was designed to, the new 
keyword selection routine succeeded in automatically ex- 
cluding virtually all function words from the 203-word 
list. For comparison, we also ran some keyword lists se- 
lected using our original method and filtered through a 
human-generated "stop list". The performance was sim- 
ilar: for example, a list of 211 keywords resulted in an 
accuracy of 67.5%. 

The problem for the topic classifier was that  scores for 
messages from different topics were not generally com- 
parable due to differences in the acoustic confusability of 
the keywords. When tested on the true transcripts of the 
speech messages, the topic classifier did extremely well, 
missing only 2 or 3 messages out of the 120 with any of 
the keyword lists. Unfortunately, when run on the recog- 
nized transcriptions, some topics (most notably "pets", 
with its preponderance of monosyllabic keywords) never 
received competitive scores. 

In principle, this problem could be corrected by esti- 
mating keyword frequencies not from true transcriptions 
of training data  but  from their recognized counterparts. 
Unfortunately, this is a fairly expensive approach, re- 
quiring that  the full training corpus be run through the 
recognizer. Instead, we took a more expedient course. In 
the process of evaluating our Switchboard recognizer, we 
had run recognition on over a hundred messages on top- 
ics other than the ten used in the topic identification test. 
For each of these off-topic messages, we computed scores 
based on each of the test topic language models to esti- 
mate the (per word) handicap that  each test topic should 
receive. When the 120 test messages were rescored us- 
ing this adjustment, the results improved dramatically 
for all but  the smallest list (where the keywords were 
too sparse for scores to be adequately estimated). The 
improved results are given in the last column of Table 2. 

5.  C O N C L U S I O N S  

As the Switchboard testing demonstrates, message iden- 
tification via large vocabulary continuous speech recog- 
nition is a successful strategy even in challenging speech 
environments. Although the quality of the recognition 
as measured by word accuracy rates was very low for this 
task - only 22% of the words were correctly transcribed - 
the recognizer was still able to extract  sufficient informa- 
tion to reliably identify speech messages. This supports 
our belief in the advantages of using articulatory and 
language model context. 

We were surprised not to find a more pronounced benefit 
from using large numbers of keywords for the topic iden- 
tification task. Our prior experience had indicated that  
there were small but significant gains as the number of 
keywords grew and, although such a pat tern is perhaps 
suggested by the results in Table 2, the gains (beyond 
those in the recalibration estimates) are too small to 
be considered significant. It is possible that  with bet- 
ter modelling of keyword frequencies or by introducing 
acoustic distinctiveness as a keyword selection criterion, 
such improvements might be realized. 

Given the strong performance of both of our identifi- 
cation systems, we also look forward to exploring how 
much we can restrict the amount of training and testing 
material and still maintain the quality of our results. 
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