
ADAPTIVE LANGUAGE MODELING USING 
THE MAXIMUM ENTROPY PRINCIPLE 

Raymond Lau, Ronald Rosenfel~, Salim Roukos 

IBM Research Division 
Thomas J. Watson Research Center 

Yorktown Heights, NY 10598 

ABSTRACT 
We describe our ongoing efforts at adaptive statistical language mod- 
eling. Central to our approach is the Maximum Entropy (ME) Prin- 
ciple, allowing us to combine evidence from multiple sources, such 
as long-distance triggers and conventional short.distance trigrams. 
Given consistent statistical evidence, a unique ME solution is guar- 
anteed to exist, and an iterative algorithm exists which is guaranteed 
to converge to it. Among the advantages of this approach are its 
simplicity, its generality, and its incremental nature. Among its 
disadvantages are its computational requirements. We describe a 
succession of ME models, culminating in our current Maximum 
Likelihood / Maximum Entropy (ML/ME) model. Preliminary re- 
sults with the latter show a 27% perplexity reduction as compared to 
a conventional trigram model. 

1. STATE OF THE ART 
Until recently, the most successful language model (given 
enough training data) was the trigram [1], where the proba- 
bility of a word is estimated based solely on the two words 
preceding it. The trigram model is simple yet powerful [2]. 
However, since it does not use anything but the very immedi- 
ate history, it is incapable of adapting to the style or topic of 
the document, and is therefore considered a static model. 

In contrast, a dynamic or adaptive model is one that changes 
its estimates as a result of "seeing" some of the text. An 
adaptive model may, for example, rely on the history of the 
current document in estimating the probability of a word. 
Adaptive models are superior to static ones in that they are 
able to improve their performance after seeing some of the 
data. This is particularly useful in two situations. First, when 
a large heterogeneous language source is composed of smaller, 
more homogeneous segments, such as newspaper articles. An 
adaptive model trained on the heterogeneous source will be 
able to hone in on the particular "sublanguage" used in each of 
the articles. Secondly, when a model trained on data from one 
domain is used in another domain. Again, an adaptive model 
will be able to adjust to the new language, thus improving its 
performance. 

The most successful adaptive LM to date is described in [3]. A 
cache of the last few hundred words is maintained, and is used 

*This work is now continued by Ron Rosenfeld at Carnegie Mellon 
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to derive a "cache trigrarn". The latter is then interpolated 
with the static trigram. This results in a 23% reduction in 
perplexity, and a 5%-24% reduction in the error rate of a 
speech recognizer. 

In what follows, we describe our efforts at improving our 
adaptive statistical language models by capitalizing on the 
information present in the document history. 

2. TRIGGER-BASED MODELING 

T o  extract information from the document history, we propose 
the idea of a trigger pair as the basic information bearing 
element. If a word sequence A is significantly correlated with 
another word sequence B, then (A---, B) is considered a "trigger 
pair", with A being the trigger and B the triggered sequence. 
When A occurs in the document, it triggers B, causing its 
probability estimate to change. 

Before attempting to design a trigger-based model, one should 
study what long distance factors have significant effects on 
word probabilities. Obviously, some information about P(B) 
can be gained simply by knowing that A had occurred. But 
exactly how much? And can we gain significantly more by 
considering how recently A occurred, or how many times? 

We have studied these issues using the a Wail Street Journal 
corpus of 38 million words. Some illustrations are given in 
figs. 1 and 2. As can be expected, different trigger pairs give 
different answers, and hence should be modeled differently. 
More detailed modeling should be used when the expected 
return is higher. 

Once we determined the phenomena to be modeled, one main 
issue still needs to be addressed. Given the part of the docu- 
ment processed so far (h), and a word w considered for the next 
position, there are many different estimates of P(wlh). These 
estimates are derived from the various triggers of w, from the 
static trigram model, and possibly from other sources, how 
do we combine them all to form one optimal estimate? We 
propose a solution to this problem in the next section. 
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Figure 1: Probability of 'SHARES' as a function of the dis- 
tance from the last occurrence of 'STOCK' in the same doc- 
ument. The middle horizontal line is the unconditional prob- 
ability. The top (bottom) line is the probability of 'SHARES' 
given that 'STOCK'  occurred (did not occur) before in the 
document. 

3. M A X I M U M  E N T R O P Y  S O L U T I O N S  

Using several different probability estimates to arrive at one 
combined estimate is a general problem that arises in many 
tasks. We use the maximum entropy (ME) principle ([4, 5]), 
which can be summarized as follows: 

1. Reformulate the different estimates as constraints on the 
expectation of various functions, to be satisfied by the 
target (combined) estimate. 

2. Among all probabilitydistributionsthat satisfy these con- 
straints, choose the one that has the highest entropy. 
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Figure 2: Probability o f 'WINTER'  as a function of the num- 
ber of times 'SUMMER' occurred before it in the same doc- 
ument. Horizontal lines are as in fig. 1. 

In the next 3 sections, we describe a succession of models we 
developed, all based on the ME principle. We then expand on 
the last model, describe possible future extensions to it, and 
report current results. More details can be found in [6, 7]. 

4. M O D E L  I: E A R L Y  A T T E M P T S  

Assume we have identified for each word w in a vocabulary, 
V, a set of nw trigger words tw~ t ~ . . .  t~,,; we further assume 
that we have the relative frequency of observing a trigger 
word, t, occurring somewhere in the history, h, (in our case 
we have used a history length, K, of either 25, 50, 200, or 
1000 words) and the word w just occurs after the history from 
some training text; denote the observed relative frequency of 
a trigger and a word w by 

c(t E h and w immediatelyf ollows h) 
d(t, w) = 

N 

where c(.) is the count in the training data. We use {t, w} 
to indicate the event that trigger t occurred in the history and 
word w occurs next; the term long-distance bigram has been 
used for this event. 

Assume we have a joint distribution p(h, w) of the history of 
K words and the next word w. We require this joint model 
to assign to the events {t, w} a probability that matches the 
observed relative frequencies. Assuming we have R such 
constraints we find a model that has Maximum Entropy: 

p*(h, w) = arg max - E p ( h ,  w) lgp(h, w) 
h,w 

subject to the R trigger constraints;: 

p(t, w) = E p(h, w) = d(t, w) 
h:tEh 

We also include the case that none of the triggers of word w 
occur in the history (we denote this event by {to, w}.) Using 
Lagrange multipliers, one can easily show that the Maximum 
Entropy model is given by: 

p(h, w) = H ItWt 
t:tE h 

i.e., the joint probability is the product of lh(W) factors one 
factor for each trigger t,~ of word w that occurs in the history 
h (or one factor if none of the triggers occur.) The Maximum 
Entropy joint distribution over a space of ]VI K÷l is given by 
R parameters, one for each constraint. In our case, we used a 
maximum of 20 triggers per word for a 20k vocabulary with 
an average of 10 resulting in 200,000 constraints. 

! we  also imposed  u n i g r a m  constraints  to match  the  u n i g r a m  distribution 
o f  the vocabu la ry  
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• The log 4.1. l tow to determine the factors? 

One can use the "Brown" algorithm to determine the set of fac- 
tors. At each iteration, one updates the factor of one constraint 
and as long as one cycles through all constraints repeatedly 
the factors will converge to the optimal value. At the i-th 
iteration, assume we are updating the factor that corresponds 
to the {t, w}-constraint. Then the update is given by: 

d( t, w) 
P ~ '  = P~llm(t, 

W) 

where the model predicted value m(t, w) is given by: 

m(t, w) = E P°lt(h' w) (I)  
h:tE h 

where pOll uses the old factor values. 

Using the ME joint model, we define a conditional unigrara 
model by: 

p* (h, w) 
p(wlh) = E w p , ( h , w  ) 

This is a "time-varying" unigram model where the previous K 
words determine the relative probability that w would occur 
next. The perplexity of the resulting model was about 2000 
much higher than the perplexity of a static unigram model. 
In particular, the model underestimated the probability of the 
frequent words. To ease that problem we disallowed any 
triggers for the most frequent L words. We experimented 
with L ranging from 100 to 500 words. The resulting model 
was better though its perplexity was still about 1100 which is 
43% higher than the static unigram perplexity of 772. O n e  

reason that we conjecture was that the ME model gives a 
rather high probability for histories that are quite unlikely in 
reality and the trigger constraints are matched using those 
unrealistic histories. We tried an ad hoc computation where 
the summation over the histories in Equation 1 was weighed 
by a crude estimate, w(h), of the probability of the history i.e. 
we used 

m(t, w) = E w(h)P°ll(h, w) 
h:tEh 

The resulting model had a much lower perplexity of 559, 

about 27% lower than the static unigram model on a test set 
of (1927 words). This ad hoc computation indicates that we 
need to model the histories more realistically. The model we 
propose in the next section is derived from the viewpoint that 
ME indicates that R factors define a conditional model that 
captures the"Iong-distance" bigram constraints and that using 
this parametric form with Maximum Likelihood estimation 
may ailow us to concentrate on typical histories that occur in 
the data. 

5. M O D E L  H: ML OF C O N D I T I O N A L  ME 
The ME viewpoint results in a conditional model that belongs 
to the exponential family with K parameters when K con- 
straints are contemplated. We can use Maximum Likelihood 

estimation to estimate the K factors of the model. 
likelihood of a training set is given by: 

N-1 
L = E lgp(wt+l Ih,) 

t=o 

N- 1 Hiet~(w,.i) ~i 

where lh(w) is the set of triggers for word w that occur in h. 
The convexity of the log likelihood guarantees that any hill 
climbing method will converge to the global optimum. The 
gradient can be shown to be: 

o 
Olz---~L = -L-(d(t, w) - E p(wlhl) 

[~wt h:t6h 

one can use the gradient to iteratively re-estimate the factors 
by: 

new_ oil 1 
P~ - Pwt + T~(d( t, w) - m'(t, w)) 

lawt 

where the model predicted value m'(t, w) for a constraint is: 

m'(t, w) = ~ P(wlh)) 
h:tEh 

The training data is used to estimate the gradient given the 
current estimate of the factors. The size of the gradient step 
can be optimized by a line search on a small amount of training 
data. 

Given the "time-varying" unigram estimate, we use the meth- 
ods of [8] to obtain a bigram LM whose unigram matches the 
time-varying unigram using a window of the most recent L 
words. 

6. C U R R E N T  M O D E L :  M L / M E  
For estimating a probability function P(x), each constraint i 
is associated with a constraint function f i(x) and a desired 
expectation ci. The constraint is then written as: 

def E E p f  i = P(x)ffi(x) = Ci . (2) 
x 

Given consistent constraints, a unique ME solutions is guar- 
anteed to exist, and to be of the form: 

P(x) = H Pif'(x) ' (3) 
i 

where the pi 's are some unknown constants, to be found. 
Probability functions of the form (3) are called log-linear, 
and the family of functions defined by holding thefi's fixed 
and varying the pi 's  is called an exponential family. 

To search the exponential family defined by (3) for the ~i's 
that will make P(x) satisfy all the constraints, an iterative 
algorithm, "Generalized Iterative Scaling", exists, which is 
guaranteed to converge to the solution ([9]). 
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6.1. Formulating Triggers as Constraints 

To reformulate a trigger pair A---, B as a constraint, define the 
constraint functionf~..~ as: 

1 i fAEh,  w=B 
fa--~(h, w) = 0 otherwise (4) 

Set c,~-.,n to R~. .~] ,  the empirical expectation offA-,B (ie its 
expectation in the training data). Now impose on the desired 
probability estimate P(h, w) the constraint: 

Ep [fA--~t~] = E [f~--.B] (5) 

6.2. Estimating Conditionals: 
The ML/ME Solution 

Generalized Iterative Scaling can be used to find the ME 
estimate of a simple (non-conditional) probability distribution 
over some event space. But in our case, we need to estimate 
conditional probabilities of the form P(wlh). How should this 
be done more efficiently than in the previous models? 

An elegant solution was proposed by [10]. Let P(h, w) be the 
desired probability estimate, and let P(h, w) be the empirical 
distribution of the training data. Letfi(h, w) be any constraint 
function, and let cl be its desired expectation. Equation 5 can 
be rewritten as: 

E P(h). E P(wlh) .fi(h, w) = ci (6) 
h w 

We now modify the constraint to be: 

PCh). ~ PCwlh) . f iCh, w) = ci (7) 
h w 

One possible interpretation of this modification is as follows. 
Instead of constraining the expectation offi(h, w) with regard 
to P(h, w), we constrain its expectation with regard to a dif- 
ferent probability distribution, say Q(h, w), whose conditional 
Q(wlh) is the same as that of P, but whose marginal Q(h) is 
the same as that of P. To better understand the effect of this 
change, define H as the set of all possible histories h, and 
define Hi, as the partition of H induced byfi .  Then the modi- 
fication is equivalent to assuming that, for every constralntfi, 
P(Hfj) = P(Hf,). Since typically H/., is a very small set, the 
assumption is reasonable. 

The unique ME solution that satisfies equations like (7) or 
(6) can be shown to also be the Maximum Likelihood (ML) 
solution, namely that function which, among the exponential 
family defined by the constraints, has the maximum likelihood 
of generating the data. The identity of the ML and ME so- 
lutions, apart from being aesthetically pleasing, is extremely 
useful when estimating the conditional P(wlh). It means that 

hillclimbing methods can be used in conjunction with Gen- 
eralized Iterative Scaling to speed up the search. Since the 
likelihood objective function is convex, hillclimbing will not 
get stuck in local minima. 

6.3. Incorporating the trigram model 

We combine the trigger based model with the currently best 
static model, the N-Gram, by reformulating the latter to fit 
into the ML/ME paradigm. The usual unigram, bigram and 
trigram ML estimates are replaced by unigram, bigrarn and 
trigrarn constraints conveying the same information. Specifi- 
cally, the constraint function for the unigram wl is: 

1 i fw = wl 
fw,(h,w)= 0 otherwise (8) 

and its associated constraint is: 

P(wlh rw,(h, w)=  fw, (h, w) 
h w 

(9) 

Similarly, the constraint function for the bigram Wl, w2 is 

1 i fhends in  wl and w =  w2 (10) 
fwt,~(h, w) = 0 otherwise 

and its associated constraint is 

P(h) ~ P(wlh)f w,,~(h, w) = Ef w,,w2(h, w). 
h w 

(11) 

and similarly for higher-order ngrarns. 

The computational bottleneck of the Generalized Iterative 
Scaling algorithm is in constraints which, for typical histories 
h, are non-zero for a large number of w's. This means that bi- 
gram constraints are more expensive than trigram constraints. 
Implicit computation can be used for unigram constraints. 
Therefore, the time cost of bigram and trigger constraints 
dominates the total time cost of the algorithm. 

7. ME: P R O S  A N D  C O N S  

The ME principle and the Generalized Iterative Scaling algo- 
rithm have several important advantages: 

. 

. 

The ME principle is simple and intuitively appealing. It 
imposes all of the constituent constraints, but assumes 
nothing else. For the special case of constraints derived 
from marginal probabilities, it is equivalent to assuming 
a lack of higher-order interactions [11]. 

ME is extremely general. Any probability estimate of 
any subset of the event space can be used, including es- 
timates that were not derived from the data or that are 
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inconsistent with it. The distance dependence and count 
dependence illustrated in figs. 1 and 2 can be readily 
accommodated. Many other knowledge sources, includ- 
ing higher-order effects, can be incorporated. Note that 
constraints need not be independent of nor uncorrelated 
with each other. 

3. The information captured by existing language models 
can be absorbed into the ML/ME model. We have shown 
how this is done for the conventional N-gram model. 
Later on we will show, how it can be done for the cache 
model of [3]. 

4. Generalized Iterative Scaling lends itself to incremental 
adaptation. New constraints can be added at any time. 
Old constraints can be maintained or else allowed to 
relax. 

5. A unique ME solution is guaranteed to exist for con- 
sistent constraints. The Generalized Iterative Scaling 
algorithm is guaranteed to converge to it. 

This approach also has the following weaknesses: 

1. Generalized Iterative Scaling is computationally very ex- 
pensive. When the complete system is trained on the 
entire 50 million words of Wall Street Journal data, it is 
expected to require many thousands of MIPS-hours to 
run to completion. 

2. While the algorithm is guaranteed to converge, we do 
not have a theoretical bound on its convergence rate. 

3. It is sometimes useful to impose constraints that are not 
satisfied by the training data. For example, we may 
choose to use Good-Tmqng discounting [12], or else the 
constraints may be derived from other data, or be ex- 
ternally imposed. Under these circumstances, the con- 
straints may no longer be consistent, and the theoretical 
results guaranteeing existence, uniqueness and conver- 
gence may not hold. 

8. I N C O R P O R A T I N G  T H E  

C A C H E  M O D E L  

It seems that the power of the cache model, described in sec- 
tion 1, comes from the "bursty" nature of language. Namely, 
infrequent words tend to occur in "bursts", and once a word 
occurred in a document, its probability of recurrence is sig- 
nificantly elevated. 

Of course, this phenomena can be captured by a trigger pair 
of the form A ~ A, which we call a "self trigger". We 
have done exactly that in [13]. We found that self triggers are 
responsible for a disproportionatelylarge part of the reduction 

in perplexity. Furthermore, self triggers proved particularly 
robust: when tested in new domains, they maintained the 
correlations found in the training databetter than the"regular" 
triggers did. 

Thus self triggers are particularly important, and should be 
modeled separately and in more detail. The trigger model 
we currently use does not distinguish between one or more 
occurrences of a given word in the history, whereas the cache 
model does. For self-triggers, the additional information can 
be significant (see fig. 3). 

P( DEFAULT ) 
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Figure 3: Behavior of a self-trigger: Probability of 'DE- 
FAULT' as a function of the number of times it already oc- 
curred in the document. The horizontal line is the uncondi- 
tional probability. 

We plan to model self triggers in more detail. We will consider 
explicit modeling of frequency of occurrence, distance from 
last occurrence, and other factors. All of these aspects can 
easily be formulated as constraints and incorporated into the 
ME formalism. 

9. R E S U L T S  

The ML/ME model described above was trained on 5 mil- 
lion words of Wail Street Journal text, using DARPA's of- 
ficial "200" vocabulary of some 20,000 words. A conven- 
tionai trigram model was used as a baseline. The constraints 
used by the ML/ME model were: 18,400 unigram constraints, 
240,000 bigram constraints, and 414,000 trigram constraints. 
One experiment was run with 36,000 trigger constraints (best 
3 triggers for each word), and another with 65,000 trigger con- 
straints (best 6 triggers per word). All models were trained 
on the same data, and evaluated on 325,000 words on in- 
dependent data. The Maximum Entropy models were also 
interpolated with the conventional trigram, using yet unseen 
data for interpolation. Results are summarized in table 1. 
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Test-set % improvement 
model Perplexity over baseline 
trigrarn 173 - -  
ML/ME-top3 134 23% 

+trigram 129 25% 
MI_/ME-top6 130 25% 

127 27% +trigram 

Table 1: Improvement of Maximum Likelihood / Maximum 
Entropy model over a conventional trigram model. Training 
is on 5 million words of WSJ text. Vocabulary is 20,000 
words. 

The trigger constraints used in this run were selected very 
crudely, and their number was not optimized. We believe 
much more improvement can be achieved. Special modeling 
of self triggers has not been implemented yet. Similarly, we 
expect it to yield further improvement. 
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