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A B S T R A C T  

Over the last decade technological advances have been made which en- 
able us to envision real-world applications of speech technologies. It is 
possible to foresee applications where the spoken query is to be recognized 
without even prior knowledge of the language being spoken, for exana- 
pie, information centers in public places such as train stations and airports. 
Other applications may require accurate identification of the speaker for se- 
curity reasons, including control of access to confidential information or for 
telephone-based transactions. Ideally, the speaker's identity can be verified 
continually during the transaction, in a manner completely transparent to 
the user. With these views in mind, this paper presents a unified approach 
to identifying non-linguistic speech features from the recorded signal using 
phone-based acoustic likelihoods. 

This technique is shown to be effective for text-independent language, 
sex, and speaker identification and can enable better and more friendly 
human-machine interaction. With 2s of speech, the language can be identi- 
fied with better than 99% accuracy. Error in sexddentification is about 1% 
on a per-sentence basis, and speaker identification accuracies of 98.5% on 
'lIMIT (168 speakers) and 99.2% on BREF (65 speakers), were obtained 
with one utterance per speaker, and 100% with 2 utterances for both corpora. 
An experiment using unsupervised adaptation for speaker identification on 
the 168 TIMIT speakers had the same identification accuracies obtained 
with supervised adaptation. 

I N T R O D U C T I O N  

As speech recognition technology advances, so do the 
aims of system designers, and the prospects of potential ap- 
plications. One of the main efforts underway in the com- 
munity is the development of speaker-independent, task- 
independent large vocabulary speech recognizers that can 
easily be adapted to new tasks. It is becoming apparent 
that many of the portability issues may depend more on the 
specification of the task, and the ergonomy, than on the per- 
formance of the speech recognition component itself. The 
acceptance of speech technology in the world at large will 
depend on how well the technology can be integrated in sys- 
tems which simplify the life of the users. This in turns means 
that the service provided by such a system must be easy to 
use, and as fast as other providers of the service (i.e., such as 
using a human operator). 

While the focus has been on improving the performance 
of the speech recognizers, it is also of interest to be able 
to identify what we refer to as some of the "non-linguistic" 
speech features present in the acoustic signal. For example, 
it is possible to envision applications where the spoken query 
is to be recognized without prior knowledge of the language 

being spoken. This is the case for information centers in 
public places, such as train stations and airports, where the 
language may change from one user to the next. The ability 
to automatically identify the language being spoken, and to 
respond appropriately, is possible. 

Other applications, such as for financial or banking trans- 
actions, or access to confidential information, such as fi- 
nancial, medical or insurance records, etc., require accurate 
identification or verification of the user. Typically security 
is provided by the human who "recognizes" the voice of 
the client he is used to dealing with (and often will also be 
confirmed by a fax), or for automated systems by the use 
of cards and/or codes, which must be provided in order to 
access the data. With the widespread use of telephones, 
and the new payment and information retrieval services of- 
fered by telephone, it is a logical extension to explore the 
use of speech for user identification. An advantage is that 
if text-independent speaker verification techniques are used, 
the speaker's identity can be continually verified during the 
transaction, in a manner completely transparent to the user. 
This can avoid the problems encountered by theft or dupli- 
cation of cards, and pre-recording of the user's voice during 
an earlier transaction. 

With these future views in mind, this paper presents a uni- 
fied approach for identifying non-linguistic speech features, 
such as the language being spoken, and the identity or sex 
of the speaker, using phone-based acoustic likelihoods. The 
basic idea is similar to that of using sex-dependent models for 
recognition, but instead of the output being the recognized 
string, the output is the characteristic associated with the 
model set having the highest likelihood. This approach has 
been evaluated for French/English language identification, 
and speaker and sex identification in both languages. 

P H O N E - B A S E D  A C O U S T I C  L I K E L I H O O D S  

The basic idea is to train a set of large phone-based ergodic 
hidden Markov models (HMMs) for each non-linguistic fea- 
ture to be identified (language, gender, speaker, ...). Feature 
identification on the incoming signal x is then performed by 
computing the acoustic likelihoods f(xlAi) for all the mod- 
els Ai of a given set. The feature value corresponding to the 
model with the highest likelihood is then hypothesized. This 
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decoding procedure can efficiently be implemented by pro- 
cessing all the models in parallel using a time-synchronous 
beam search strategy. 

This approach has the following advantages: 
• It can perform text-independent feature recognition. (Text- 

dependent feature recognition can also be performed.) 
• It is more precise than methods based on long-term statis- 

tics such as long term spectra, VQ codebooks, or proba- 
bilistic acoustic maps[26, 28]. 

• It can easily take advantage of phonotactic constraints. 
(Theseare shown to be useful for language identification.) 

• It can easily be integrated in recognizers which are based 
on phone models as all the components already exist. 

A disadvantage of the approach is that, at least in the cur- 
rent formulation, phonetic labels are required for training the 
models. However, there is in theory no absolute need for 
phonetic labeling of the speech training data to estimate the 
HMM parameters. Labeling of a small portion of the train- 
ing data can be enough to bootstrap the training procedure 
and insure the phone-based nature of the resulting models. 
(In this case, phonotactic constraints must be obtained only 
from speech corpora.) We have sucessfully experimented 
with this approach for speaker identification. 

In our implementation, each large ergodic HMM is built 
from small left-to-right phonetic HMMs. The Viterbi algo- 
rithm is used to compute the joint likelihood f (x ,  s lAi) of the 
incoming signal and the most likely state sequence instead of 
f(xlAi). This implementation is therefore nothing more than 
a slightly modified phone recognizer with language-, sex-, or 
speaker- dependent model sets used in parallel, and where 
the output phone string is ignored 1 and only the acoustic 
likelihood for each model is taken into account. 

The phone recognizer can use either context-dependent or 
context-independent phone models, where each phone model 
is a 3-state left-to-fight continuous density hidden Markov 
model (CDHMM) with Gaussian mixture observation den- 
sities. The covariance matrices of all Gaussian components 
are diagonal. Duration is modeled with a gamma distribu- 
tion per phone model. As proposed by Rabiner et a1.[23], the 
HMM and duration parameters are estimated separately and 
combined in the recognition process for the Viterbi search. 

Maximum likelihood estimators are used to derive lan- 
guage specific models whereas maximum a posteriori (MAP) 
estimators are used to generate sex- and speaker- specific 
models as has already been proposed in [11]. The MAP 
estimates are obtained with the segmental MAP algorithm 
[16, 9, 10] using speaker-independent seed models. These 
seed models are used to estimate the parameters of the prior 
densities and to serve as an initial estimate for the segmental 
MAP algorithm. This approach provides a way to incorpo- 
rate prior information into the model training process and is 

~The likelihood computation can in fact be simplified since there is 
no need to maintain the backtracking infomlation necessary to know the 
recognized phone sequence. 

particularly useful to build the speaker specific models when 
using only a small amount of speaker specific data. 

In our earlier reported results using this approach for 
language- and speaker-identification[13, 14, 7], the acous- 
tic likelihoods were computed sequentially for each of the 
models. As mentioned earlier, the Viterbi decoder is now 
implemented as a one-pass beam search procedure applied 
on all the models in parallel, resulting in an efficient decoding 
procedure which saves a lot of computation. 

E X P E R I M E N T A L  C O N D I T I O N S  

Four corpora have been used to carry out the experiments 
reported in this paper: BDSONS[2] and BREF[15, 8] for 
French; and TIMIT[4] and WSJ0122] for English. From the 
BDSONS corpus only the phonetically equilibrated sentence 
sub-corpus (CDROM 6) has been used for testing, whereas 
depending on experiment, the 3 other corpora have been used 
for training and testing. 

The BDSONS Corpus: BDSONS, Base de Donn6es des 
Sons du Fran~ais[2], was designed to provide a large cor- 
pus of French speech data for the study of the sounds in 
the French language and to aid speech research. The cor- 
pus contains an "evaluation" subcorpus consisting primarily 
of isolated and connected letters, digits and words from 32 
speakers (16m/16f), and an "acoustic" subcorpus which in- 
cludes phonetically balanced words and sentences from 12 
speakers (6m/6f). 

The BREF Corpus: BREF is a large read-speech cor- 
pus, containing over 100 hours of speech material, from 120 
speakers (55m/65f)[15]. The text materials were selected 
verbatim from the French newspaper Le Monde, so as to 
provide a large vocabulary (over 20,000 words) and a wide 
range of phonetic environments[8]. Containing 1115 distinct 
diphones and over 17,500 triphones, BREF can be used to 
train vocabulary-independenet phonetic models. The text 
material was read without verbalized punctuation. 

The DARPA WSJ0 Corpus: The DARPA Wall Street 
Journal-based Continuous-Speech Corpus (WSJ)[22] has 
been designed to provide general-purpose speech data (pri- 
marily, read speech data) with large vocabularies. Text 
materials were selected to provide training and test data 
for 5K and 20K word, closed and open vocabularies, and 
with both verbalized and non-verbalized punctuation. The 
recorded speech material supports both speaker-dependent 
and speaker-independent training and evaluation. 

The DARPA TIMIT Corpus: The DARPA TIMIT 
Acoustic-Phonetic Continuous Speech Corpus[4] is a cor- 
pus of read speech designed to provide speech data for the 
acquisition of acoustic-phonetic knowledge and for the de- 
velopment and evaluation of automatic speech recognition 
systems. TIMIT contains a total of 6300 sentences, 10 sen- 
tences spoken by each of 630 speakers from 8 major dialect 
regions of the U.S. The TIMIT CDROM[4] contains a train- 
ing/test subdivision of the data that ensures that there is no 
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overlap in the text materials. All of the utterances in TIMIT 
have associated time-aligned phonetic transcriptions. 

Since the identification of non-linguistic speech features 
is based ,on phone recognition, some phone recognition re- 
sults for the above corpora are given here. The speaker- 
independent (SI) phone recognizers use sets of context- 
dependent (CD) models which were automatically selected 
based on their frequencies in the training data. There are 
428 sex-dependent CD models for BREF, 1619 for WSJ and 
459 for TIMIT. Phone errors rates are given in Table 1. For 
BREF and WSJ phone errors are reported after removing 
silences, whereas for TIMIT silences are included as tran- 
scribed. Scoring without the sentence initial/final silence 
increases the phone error by about 1.5%. The phone er- 
ror for BREF is 21.3%, WSJ (Feb-92 5knvp) is 25.7% and 
TIMIT (complete testset) is 27.6% scored using the 39 phone 
set proposed by[18]. These results are provided to calibrate 
the recognizers used in the experiments in this paper, and 
observe differences in the corpora. It appears that the BREF 
data is easiest to recognize at the phone level, and that TIMIT 
is more difficult than WSJ. 

i Condition Correct Subs. 
BREF 81.7 13.7 
WSJ nvp 79.3 16.2 
TIMIT 77.3 17.3 

Del. Ins. Errors 
4.6 3.0 21.3 
4.5 5.0 25.7 
5.4 4.9 27.6 

Table 1: Phone error (%) with CD models and phonebigram. 

SEX I D E N T I F I C A T I O N  

It is well known that the use of sex-dependent models gives 
improved performance over one set of speaker-independent 
models. However, this approach can be costly in terms of 
computation for medium-to-large-size tasks, since recogni- 
tion of the unknown sentence is typically carried out twice, 
once for each sex. A logical alternative is to first determine 
the speaker's sex, and then to perform word recognition us- 
ing the models of selected sex. This is the approach used in 
our Nov-92 WSJ system[6]. In these experiments the stan- 
dard SI-84 training material, containing 7240 sentences from 
84 speakers (42m/42f) is used to build speaker-independent 
phone models. Sex-dependent models are then obtained us- 
ing MAP estimation[11] with the SI seed models. The phone 
likelihoods using context-dependent male and female mod- 
els were computed, and the sex of the speaker was selected 
as the sex associated with the models that gave the highest 
likelihood. Since these CD male and female models are the 
same as are used for word recognition, there is no need for ad- 
ditional training material or effort. No errors were observed 
in sex identification for WSJ on the Feb92 or Nov92 5k test 
data containing 851 sentences, from 18 speakers (10m/8f). 

For BREF, sex-dependent models were also obtained from 
SI seeds by MAP estimation. The training data consisted of 
2770 sentences from 57 speakers (28m/29f). No errors in 

sex-identification were observed on 109 test sentences from 
21 test speakers (10m/1 If). 

To further investigate sex identification based on acous- 
tic likelihoods on a larger set of speakers, the approach was 
evaluted on the 168 speakers of the TIMIT test corpus. The 
SI seed models were trained using all the available training 
data, i.e., 4620 sentences from 462 speakers, and adapted 
using data from the 326 males speakers and 136 females to 
form gender-specific models. The test data consist of 1344 
sentences, comprised of 8 sentences from each of the 168 
test speakers (112m/560. Results are shown in the first row 
of Table 2 where the error rate is given as a function of the 
speech duration. Each speech segment used for the test is 
part of a single sentence, and always starts at the beginning of 
the sentence, preceeded by about lOOms of silence 2. These 
results on this more significant test show that sex identifica- 
tion error rate using phone-based acoustic likelihoods is 2.8 % 
with 400ms of speech and is under 1% with 2s of speech. 
The 400ms of speech signal (which includes about lOOms of 
silence) represents about 4 phones, about the number found 
in a typical word (avg. 3.9 phones/word) in TIMIT. This im- 
plies that before the speaker has finished enunciating the first 
word, one is fairly certain of the speaker's sex. Sentences 
misclassified with regards to the speaker's sex had better 
phone recognition accuracies with the cross-sex models. 

Using exactly the same test data and the same phone mod- 
els, an experiment of text-dependent sex identification was 
carried out in order to assess if by adding linguistic informa- 
tion the speaker's gender can be more easily identified. To do 
this a long left-to-right HMM is built for each sex by concate- 
nating the sex-dependent CD phone models corresponding 
to the TIMIT transcriptions. The basic idea is to measure the 
lower bound on the error rate that would be obtained if higher 
order knowledge such as lexical information were provided. 
The acoustic likelihoods are then computed for the two mod- 
els. These likelihood values are lower than are obtained for 
text-independent identification. The results are given in the 
second row of Table 2 where it can be seen that the error 
rate is not any better than the error rate obtained with the 
text-independent method. This shows that acoustic-phonetic 
knowledge is sufficient to accomplish this task. 

Duration 0.4s 0.8s 1.2s 1.6s 2.0s EOS 
Text indep. 2.8 1.9 1.5 1.2 0.9 ~ 1.2 
Text dep. 3.4 2.2 1.0 1.0 1.2 i 1.3 

J 

Table 2: Error rate in sex identification as a function of duration. (EOS is 
End Of Sentence identification error rate.) 

While in our previous work[6], sex-identification was used 
primarily as a means to reduce the computation, sex identifi- 
cation can permit the synthesis module of a system to respond 
appropriately to the unknown speaker. In French, where the 

2The initial and final silences of each test sentence have been automati- 
cally reduced to lOOms. 
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formalities are used perhaps more than in English, the system 
acceptance may be easier if the familiar "Bonjour Madame" 
or "Je vous en prie Monsieur" is foreseen. 

Since sex-identification is not perfect, some fall-back 
mechanism must be integrated to avoid including the signs of  
politeness if the system is unsure of  the sex. This can be ac- 
complished by comparing the likelihoods of  the model sets, 
or by being wary of  speakers for whom the better likelihood 
jumps back and forth between models. 

L A N G U A G E  I D E N T I F I C A T I O N  

Language identification is another feature that can be 
identified using the same approach. In this case language- 
dependent models are used instead of  sex-dependent ones. 
The basic idea is to process in parallel the unknown incom- 
ing speech by different sets of  phone models (each set is a 
large ergodic HMM) for each of  the languages under con- 
sideration, and to choose the language associated with the 
model set providing the highest normalized likelihood. 3 In 
this way, it is no longer necessary to ask the speaker to select 
the language, before using the system. If  the language can be 
accurately identified, it simplifies using speech recognition 
for a variety of  applications, from selecting an appropriate 
operator, or aiding with emergency assistance. Language 
identification can also be done using word recognition, but it 
is much more efficient to use phone recognition, which has 
the added advantage of  being task independent. 

Experimental results for language identification for En- 
glish/French were given in [13, 14], where models trained on 
TIMIT [4] and BREF [15], were tested on different sentences 
taken from the same corpus. While these results gave high 
identification accuracies (100% if an entire sentence is used, 
and greater than 97% with 4ooms, and error free with 1.6s of  
speech signal), it is difficult to discern that the language and 
not the corpus are being identified. Identification of  inde- 
pendent data taken from the WSJ0 corpus was less accurate: 
85% with 400ms, and 4% error with 1.6s of  speech signal. 

In these experiments we attempted to avoid the bias due to 
corpus, by testing on data from the same corpora from which 
the models are built, and on independent test data from dif- 
ferent corpora. The language-dependent models are trained 
from similar-style corpora, BREF for French and WSJ0 for 
English, both containing read newspaper texts and similar 
size vocabularies[8, 15, 22]. For each language a set of  
context-independent phone models were built, 35 for French 
and 46 for English. 4 Each phone model has 32 gaussians per 

3 In fact, this is not a new idea: House and Neuberg (1977)[ 12] proposed a 
similar approach for language identification using models of broad phonetic 
classes, where we use phone models. Their experimental results, however, 
were synthetic, based on phonetic transcriptions derived from texts. 

4The 35 phones used to represent French include 14 vowels (including 
3 nasal vowels), 20 consonants (6 plosives, 6 fricatives, 3 nasals, and 5 
semivowels), and silence. The phone table can be found in [5]. For English, 
the set of 46 phones include 21 vowels (including 3 diphthongs and 3 
schwas), 24 consonants (6 plosives, 8 fricatives, 2 affricates, 3 nasals, 5 

mixture, and no duration model is used. In order to mini- 
mize influences due to the use of  different microphones and 
recording conditions a 4 kHz bandwidth is used. The train- 
ing data were the same as for sex-identification on BREF 
(2770 sentences from 57 speakers) and WSJ (standard SI-84 
training: 7240 sentences from 84 speakers). 

Language identification accuracies are given in Tables 3 
and 4 without and with phonotactic constraints provided by 
a phone bigram. Results are given for 4 test corpora, WSJ 
and TIMIT for English, and BREF and BDSONS for French, 
as a function of  the duration of  the speech signal which 
includes approximately lOOms of  silence. As for speaker- 
identification, the initial and final silences were automatically 
removed based on HMM segmentation, so as to be able to 
compare language identification as a function of  duration 
without biases due to long initial silences. The test data 
for WSJ are the first 10 sentences for each of  the 10 speak- 
ers (5m/5f) in the Feb92-si5knvp (speaker-independent, 5k, 
non-verbalized punctuation) test data. For TIMIT, the 192 
sentences in the "coretest" set containing 8 sentences from 
each of  24 speakers (16m/80 was used. The BREF test data 
consists of  130 sentences from 20 speakers (10m/100 and 
for BDSONS the data is comprised of  121 sentences from 11 
speakers (5m/60. 

Duration 0.4s 0.8s 1.2s 1.6s 2.0s 2.4s 
Eng. WSJ 7.0 3.0 2.0 2.0 1.0 1.0 
Eng. TIMIT 10.9 6.3 3.1 2.1 0 0 
Fr. BREF 10.8 2.3 2.3 0.8 0.8 0.8 
Fr. BDSONS 7.5 4.1 1.7 1.7 0.8 0 
Overall 9.4 4.2 2.4 1.7 0.5 0.4 

Table 3: Language identification error rates as a function of duration and 
language (without phonotactic constraints). 

Duration 0.4s 0.8s 1.2s 1.6s 2.0s 2.4s 
Eng. WSJ 5.0 3.0 1.0 2.0 1.0 1.0 
Eng. TIMIT 9.4 5.7 2.6 2.1 0.5 0 
Fr. BREF 8.5 1.5 0.8 0 0.8 0.8 
Fr. BDSONS 7.4 2.5 2.5 1.7 0.8 0 
Overall 7.9 3.5 1.8 1.5 0.7 0.4 

Table 4: Language identification error rates as a function of duration and 
language (with phonotactic constraints). 

While WSJ sentences are more easily identified as English 
for short durations, errors persist longer than for TIMIT. In 
contrast for French with 4ooms of  signal, BDSONS data is 
better identified than BREF, perhaps because the sentences 
are phonetically balanced. For longer durations, BREF is 
slightly better identified than BDSONS. The performance 
indicates that language identification is task independent. 

Using phonotactic constraints is seen to improve language 
identification, particularly for short signals. The smallest 
improvement is seen for TIMIT, probably due to the nature 

semivowels), and silence. 
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of the selected sentences which emphasized rare phone se- 
quences. The error rate with 2s of speech is less than 1% and 
with Is of speech (not shown in the tables) is about 2%. With 
3s of speech, language identification is almost error free. 

Due to the source of the BREF and WSJ data, language 
identification is complicated by the inclusion of foreign 
words. One of the errors on BREF involved such a sentence. 
The sentence was identified as French at the beginning and 
then all of a sudden switched to English. The sentence was 
"Durant mon adolescence, je d6vorais les r6cits westerns de 
Zane Grey, Luke Short, et Max Brand...", where the italicized 
words were pronounced in correct English. 

We are in the process of obtaining corpora for other lan- 
guages to extend our language identification work. However, 
there are variety of applications where a bilingual system,just 
French/English would be of use, including air traffic control 
(where both French and English are permitted languages for 
flights within France), telecommunications applications, and 
many automated information centers, ticket distributors, and 
tellers, where already you can select between English and 
French with the keyboard or touch screen. 

S P E A K E R  I D E N T I F I C A T I O N  

Speaker identification has been the topic of active re- 
search for many years (see, for example, [3, 21, 26]), and 
has many potential applications where propriety of informa- 
tion is a concern. In our experiments with speaker iden- 
tification, a set of CI phone models were built for each 
speaker, by supervised adaptation of SI models[l 1], and 
the unknown speech was recognized by all of the speakers 
models in parallel) Speaker-identification experiments were 
performed using BREF for French and TIMIT for English. 
TIMIT has recently been used in a few studies on speaker 
identification[l, 20, 27, 14] with high speaker identification 
rates reported using subsets of 100 to all 462 speakers. 

For the experiments with TIMIT, a speaker-independent 
set of 40 CI models were built using data from all of the 462 
training speakers with 8kHz Mel frequency-based cepstral 
coefficients and their first order differences. 31-phone model 
sets were then adapted to each of the 168 test speakers using 
8 sentences (2 SA, 3 SX, and 3 SI) for adaptation. We chose 
this set for identification test so as to evaluate the performance 
for speakers not in the original SI training material, which 
greatly simplifies the enrollment procedure for new speakers. 
A reduced number of phones was used so as to minimize 
subtle distinctions, and to reduce the number of models to 
be adapted. The remaining 2 SX sentences for each speaker 
were reserved for the identification test. While the original CI 
models had a maximum of 32 Gaussians, the adapted models 
were limited to 4 mixture components, since the amount of 
adaptation data was relatively limited. 

5Using HMM for speaker recognition has been previously proposed, see 
[26] for a review, and also [24, 25]. 

The unknown speech was recognized by all of the speakers 
models in parallel by building one large HMM. Error rates 
are shown as a function of the speech signal duration in Ta- 
ble 5, for text-independent speaker identification. As for sex 
and language identification, the initial and final silences were 
adjusted to have a maximum duration of lOOms according 
to the provided time-aligned transcriptions. Using the en- 
tire utterance the identification accuracy is 98.5%. With 
2.5s of speech the speaker identification accuracy is 98.3%. 
For the small number of sentences longer than 3s, speaker 
identification was correct, suggesting that with longer sen- 
tences performance will improve. This is also supported by 
the result that speaker-identification using both sentences for 
identification was 100%. 

Duration 0.5s 1.0s 1.5s 2.0s 2.5s EOS 
TIMIT 36.9 19.6 7.8 3.9 1.7 1.5 
BREF 33.8 13.1 7.8 3.3 2.6 0.8 

Table 5: Text-independent speaker identification error rate as a function of 
duration for 168 test speakers of TIMIT, and 65 speakers from BREE (EOS 
is End Of Sentence identification error rate.) 

For French, the acoustic seed models were 35 SI CI mod- 
els, built using data from 57 BREF training speakers, exclud- 
ing 10 sentences to be used for adaptation and test. In order 
to have a similar situation to English, these models were 
adapted to each of 65 speakers (including 8 new speakers 
not used in training) using only 8 sentences for adaptation, 
and reserving 2 sentences for identification test. Using only 
one sentence per speaker for identification, there is one er- 
ror, giving an identification accuracy of 99.2%, and when 
2 sentences are used all speakers are correctly identified (as 
observed for TIMIT). Speaker-identification results are given 
in Table 5 for 65 speakers (27m/38f) as a function of signal 
duration. It can be noted that the identification accuracies 
as a function of time are similar for both corpora. However, 
since BREF sentences are somewhat longer than TIMIT sen- 
tences, the overall identification error rate per sentence is 
lower for BREF (EOS), even though the error for BREF at 
2.5s is greater. For both TIMIT and BREF, when there was 
a confusion, the speaker was always identified by another 
speaker of the same sex. 

Experiments for text-dependent speaker identification us- 
ing exactly the same models and test sentences were per- 
formed. For both TIMIT and BREF a performance degrada- 
tion was observed (on the order of 4% using the accuracy at 
the end of the sentence.) These results were contrary to our 
expectations, in that typically text-dependent speaker verifi- 
cation is considered to outperform text-independent[3, 19]. 

An experiment was also performed in which speaker- 
adapted models were built for each of the 168 test speakers 
from TIMIT without knowledge of the phonetic transcrip- 
tion, using the same 8 sentences for adaptation. Performing 
text-independent speaker identification as before on the re- 
maining 2 sentences give the results shown in Table 6. As be- 
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fore if both sentences are used for identification, the speaker 
identification accuracy is 100%. This experimental result 
indicates that the time consuming step of providing phonetic 
transcriptions is not needed for accuracte text-independent 
speaker identification. 

DurationlO5s 1.Os 16.~s[2.0s]2.5s EOS TIMIT 37.5 21.2 . 4.0 2.1 1.5 

Table 6: Text-independent speaker identification error rate as a function 
of duration for 168 test speakers of TIMIT with unsupervised adaptation. 
(EOS is End Of Sentence identification error rate.) 

S U M M A R Y  

In this paper we have reported on recent work on the iden- 
tification of non-linguistic speech features from recorded sig- 
nals using phone-based acoustic likelihoods. The inclusion 
of this technique in speech-based systems, can broaden the 
scope of applications of speech technologies, and lead to 
more user-friendly systems. 

The approach is based on training a set of large phone- 
based ergodic HMMs for each non-linguistic feature to be 
identified (language, gender, speaker, ...), and identifying the 
feature as that associated with the model having the high- 
est acoustic likelihood of the set. The decoding procedure 
is efficiently implemented by processing all the models in 
parallel using a time-synchronous beam search strategy. 

This has been shown to be a powerful technique for sex-, 
language-, and speaker-identification, and has other possible 
applications such as for dialect identification (including for- 
eign accents), or identification of speech disfluencies. Sex- 
identification for BREF and WSJ was error-free, and 99% 
accurate for TIMIT with 2s of speech. With 2s of speech 
the language is correctly identified as English or French with 
over 99% accuracy. Speaker identification accuracies of 
98.5% on TIMIT (168 speakers) and 99.1% on BREF (65 
speakers) were obtained with one utterance per speaker, and 
100% if 2 utterances were used for identification. The same 
identification accuracy was obtained on the 168 speakers of 
TIMIT using unsupervised adaptation, verifying that it is 
not necessary to provide phonetic transcription for accurate 
speaker identification. Being independent of the spoken text, 
and requiring only a small amount of speech (on the order 
of 2.5s), this technique is promising for a variety of appli- 
cations, particularly those for which continual verification is 
preferable. 

In conclusion, we propose a unified approach to identify- 
ing non-linguistic speech features from the recorded signal 
using phone-based acoustic likelihoods. This technique has 
been shown to be effective for language, sex, and speaker 
identification and can enable better and more friendly human 
machine interaction. 
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