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This paper deals with search algorithms for real-time speech recog- 
nition. We argue that software-only speech recognition has several 
critical advantages over using special or parallel hardware. We 
present a history of several advances in search algorithms, which 
together, have made it possible to implement real-time recogni- 
tion of large vocabularies on a single workstation without the need 
for any hardware accelerators. We discuss the Forward-Backward 
Search algorithm in detail, as this is the key algorithm that has 
made possible recognition of very large vocabularies in real-time. 
The result is that we can recognize continuous speech with a vocab- 
ulary of 20,000 words strictly in real-time entirely in software on 
a high-end workstation with large memory. We demonstrate that 
the computation needed grows as the cube root of the vocabulary 
size. 

1. Introduction 
The statistical approach to speech recognition requires that 
we compare the incoming speech signal to our model of 
speech and choose as our recognized sentence that word 
string that has the highest probability, given our acoustic 
models of speech and our statistical models of language. 
The required computation is fairly large. When we realized 
that we needed to include a model of understanding, our 
estimate of the computational requirement was increased, 
because we assumed that it was necessary for all of the 
knowledge sources in the speech recognition search to be 
tightly coupled. 

Over the years DARPA has funded major programs in 
special-purpose VLSI and parallel computing environments 
specifically for speech recognition, because it was taken for 
granted that this was the only way that real-time speech 
recognition would be possible. However, these directions 
became major efforts in themselves. Using a small num- 
ber of processors in parallel was easy, but efficient use of 
a large number of processors required a careful redesign of 
the recognition algorithms. By the time high efficiency was 
obtained, there were often faster uniprocessors available. 

Design of special-purpose VLSI obviously requires consid- 
erable effort. Often by the time the design is completed, the 
algorithms implemented are obsolete and much faster gen- 
eral purpose processors are available in workstations. The 

result is that neither of these approaches has resulted in real- 
time recognition with vocabularies of 1,000 words or more. 

Another approach to the speech recognition search problem 
is to reduce the computation needed by changing the search 
algorithm. For example, IBM has developed a flexible stack- 
based search algorithm and several fast match algorithms 
that reduce the search space by quickly eliminating a large 
fraction of the possible words at each point in the search. 
In 1989 we, at BBN [1], and others [2, 3] developed the 
N-best Paradigm, in which we use a powerful but inexpen- 
sive model for speech to find the top N sentence hypotheses 
for an utterance, and then we rescore each of these hypothe- 
ses with more complex models. The result was that the 
huge search space described by the complex models could 
be avoided, since the space was constrained to the list of 
N hypotheses. Even so, an exact algorithm for the N-best 
sentence hypotheses required about 100 times more com- 
putation than the simple Viterbi search for the most likely 
sentence. 

In 1990 we realized that we could make faster advances 
in the algorithms using off-the-shelf hardware than by us- 
ing special hardware. Since then we have gained orders of 
magnitude in speed in a short time by changing the search 
algorithms in some fundamental ways, without the need for 
additional or special hardware other than a workstation. This 
has resulted in a major paradigm shift. We no longer think 
in terms of special-purpose hardware - we take it for granted 
that recognition of any size problem will be possible with a 
software-only solution. 

There are several obvious advantages to software-based rec- 
ognizers: greater flexibility, lower cost, and the opportunity 
for large gains in speed due to clever search algorithms. 

1. Since the algorithms are in a constant state of flux, 
any special-purpose hardware is obsolete before it is 
finished. 

2. Software-only systems are key to making the technol- 
ogy broadly usable. 
- Many people will simply not purchase extra hardware. 
- Integration is much easier. 
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- 'Iqae systems are more flexible. 

3. For those people who already have workstations, soft- 
ware is obviously less expensive. 

4. Most importantly, it is possible to obtain much larger 
gains in speed due to clever search algorithms than from 
faster hardware. 

We have previously demonstrated real-time software-only 
recognition for the ATIS task with over 1,000 words. More 
recently, we have developed new search algorithms that per- 
form recognition of 20,000 words with fully-connnected bi- 
gram and trigram statistical grammars in strict real-time with 
little loss in recognition accuracy relative to research levels. 

First, we will very briefly review some of the search algo- 
rithms that we have developed. Then we will explain how 
the Forward-Backward Search can be used to achieve real- 
time 20,000-word continuous speech recognition. 

2. Previous A l g o r i t h m s  

The two most commonly used algorithms for speech recog- 
nition search are the time-synchronous beam search [4] and 
the best-first stack search [5]. (We do not consider "island- 
driven" searches here, since they have not been shown to be 
effective.) 

2.1. T i m e - S y n c h r o n o u s  S e a r c h  

In the time-synchronous Viterbi beam search, all the states 
of the model are updated in lock step frame-by-frame as 
the speech is processed. The computation required for this 
simple method is proportional to the number of states in the 
model and the number of frames in the input. If we discard 
any state whose score is far below the highest score in that 
frame we can reduce the computation by a large factor. 

There are two important advantages of a time-synchronous 
search. First, it is necessary that the search be time- 
synchronous in order for the computation to be finished at 
the same time that the speech is finished. Second, since 
all of the hypotheses are of exactly the same length, it is 
possible to compare the scores of different hypotheses in or- 
der to discard most hypotheses. This technique is called the 
beam search. Even though the beam search is not theoreti- 
cally admissible, it is very easy to make it arbitrarily close 
to optimal simply by increasing the size of the beam. The 
computational properties are fairly well-behaved with minor 
differences in speech quality. 

One minor disadvantage of the Viterbi search is that it finds 
the state sequence with the highest probability rather than 
the word sequence with the highest probability. This is only 

a minor disadvantage because the most likely state sequence 
has been empirically shown to be highly correlated to the 
most likely word sequence. (We have shown in [6] that a 
slight modification to the Viterbi computation removes this 
problem, albeit with a slight approximation. When two paths 
come to the same state at the same time, we add the prob- 
abilities instead of taking the maximum.) A much more 
serious problem with the time-synchronous search is that it 
must follow a very large number of theories in parallel even 
though only one of them will end up scoring best. This can 
be viewed as wasted computation. 

We get little benefit from using a fast match algorithm with 
the time-synchronous search because we consider starting all 
possible words at each frame. Thus, it would be necessary 
to run the fast match algorithm at each frame, which would 
be too expensive for all but the least expensive of fast match 
algorithms. 

2.2. Best-First  Stack Search 

The true best-first search keeps a sorted stack of the highest 
scoring hypotheses. At each iteration, the hypothesis with 
the highest score is advanced by all possible next words, 
which results in more hypotheses on the stack. The best-first 
search has the advantage that it can theoretically minimize 
the number of hypotheses considered if there is a good func- 
tion to predict which theory to follow next. In addition, it 
can take very good advantage of a fast match algorithm at 
the point where it advances the best hypothesis. 

The main disadvantage is that there is no guarantee as to 
when the algorithm will finish, since it may keep backing 
up to shorter theories when it hits a part of the speech that 
doesn't match well. In addition it is very hard to compare 
theories of different length. 

2.3.  P s e u d o  T i m e - S y n c h r o n o u s  S t a c k  S e a r c h  

A compromise between the strict time-synchronous search 
and the best-first stack search can be called the Pseudo Time- 
Synchronous Stack Search. In this search, the shortest hy- 
pothesis (i.e. the one that ends earliest in the signal) is 
updated first. Thus, all of the active hypotheses are within 
a short time delay of the end of the speech signal. To keep 
the algorithm from requiring exponential time, a beam-type 
pruning is applied to all of  the hypotheses that end at the 
same time. Since this method advances one hypothesis at 
a time, it can take advantage of a powerful fast match al- 
gorithm. In addition, it is possible to use a higher order 
language model without the computation growing with the 
number of states in the language model. 
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2.4. N-best Paradigm 

The N-best Paradigm was introduced in 1989 as a way to 
integrate speech recognition with natural language process- 
ing. Since then, we have found it to be useful for applying 
the more expensive speech knowledge sources as well, such 
as cross-word models, tied-mixture densities, and trigrarn 
language models. We also use it for parameter and weight 
optimization. The N-best Paradigm is a type of fast match 
at the sentence level. This reduces the search space to a 
short list of likely whole-sentence hypotheses. 

The Exact N-best Algorithm [1] has the side benefit that it 
is also the only algorithm that guarantees finding the most 
likely sequence of words. Theoretically, the computation 
required for this algorithm cannot be proven to be less than 
exponential with the length of the utterance. However, this 
case only exists when all the models of all of the phonemes 
and words are identical (which would present a more seri- 
ous problem than large computation). In practice, we find 
that the computation required can be made proportional to 
the number of hypotheses desired, by the use of techniques 
similar to the beam search. 

Since the development of the exact algorithm, there have 
been several approximations developed that are much faster, 
with varying degrees of  accuracy [2, 3, 7, 8]. The most 
recent algorithm [9] empirically retains the accuracy of the 
exact algorithm, while requiring little more computation than 
that of a simple 1-best search. 

The N-best Paradigm has the potential problem that if a 
knowledge source is not used to find the N-best hypothe- 
ses, the answer that would ultimately have the highest score 
including this knowledge source may be missing from the 
top N hypotheses. This becomes more likely as the error 
rate becomes higher and the utterances become longer. We 
have found empirically that this problem does not occur for 
smaller vocabularies, but it does occur when we use vocab- 
ularies of 20,000 words and trigram language models in the 
rescoring pass. 

This problem can be avoided by keeping the lattice of all 
sentence hypotheses generated by the algorithm, rather than 
enumerating independent sentence hypotheses. Then the lat- 
tice is treated as a grammar and used to rescore all the hy- 
potheses with the more powerful knowledge sources [10]. 

2.5. Forward-Backward Search Paradigm 

The Forward-Backward Search algorithm is a general 
paradigm in which we use some inexpensive approximate 
time-synchronous search in the forward direction to speed up 
a more complex search in the backwards direction. This al- 
gorithm generally results in tw o orders of magnitude speedup 
for the backward pass. Since it was the key mechanism that 

made it possible to perform recognition with a 20,000-word 
vocabulary in real time, we discuss it in more detail in the 
next section. 

3. T h e  F o r w a r d - B a c k w a r d  S e a r c h  Algorithm 

We developed the Forward-Backward Search (FBS) algo- 
rithm in 1986 as a way to greatly reduce the computation 
needed to search a large language model. While many sites 
have adopted this paradigm for computation of the N-best 
sentence hypotheses, we feel that its full use may not be 
fully understood. Therefore, we will discuss the use of the 
FBS at some length in this section. 

The basic idea in the FBS is to perform a search in the 
forward direction to compute the probability of each word 
ending at each frame. Then, a second more expensive search 
in the backward direction can use these word-ending scores 
to speed up the computation immensely. If  we multiply the 
forward score for a path by the backward score of another 
path ending at the same frame, we have an estimate of the 
total score for the combined path, given the entire utterance. 
In a sense, the forward search provides the ideal fast match 
for the backward pass, in that it gives a good estimate of the 
score for each of the words that can follow in the backward 
direction, including the effect of  all of the remaining speech. 

When we first introduced the FBS to speed up the N-best 
search algorithm, the model used in the forward and back- 
ward directions were identical. So the estimate of the back- 
ward scores provided by the forward pass were exact. This 
method has also been used in a best-first stack search [8], in 
which it is very effective, since the forward-backward score 
for any theory covers the whole utterance. The forward- 
backward score solves the primary problem with the besst- 
first search, which is that different hypotheses don't span the 
same amount of  speech. 

However, the true power of this algorithm is revealed when 
we use different models in the forward and backward di- 
rections. For example, in the forward direction we can use 
approximate acoustic models with a bigram language model. 
Then, in the backward pass we can use detailed HMM mod- 
els with a trigram language model. In this case, the forward 
scores still provide an excellent (although not exact) esti- 
mate of the ranking of different word end scores. Because 
both searches are time-synchronous, it does not matter that 
the forward and backward passes do not get the same score. 
(This is in contrast to a backward best-first or A* search, 
which depends on the forward scores being an accurate pre- 
diction of the actual scores that will result in the backward 
pass.) 

In order to use these approximate scores, we need to rood- 
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ify the algorithm slightly. The forward scores are normal- 
ized relative to the highest forward score at that frame. 
(This happens automatically in the BYBLOS decoder, since 
we normalized the scores in each frame in order to pre- 
vent undertow.) We multiply the normalized forward score 
by the normalized backward score to produce a normalized 
forward-backward score. We can compare these normalized 
forward-I)ackward scores to the normalized backward scores 
using the usual beam-type threshold. This causes us to con- 
sider more than one path in the backwards direction. The 
best path (word sequence) associated with each word end 
may not turn out to be the highest, but this does not mat- 
ter, because the backward search will rescore all the allowed 
paths anyway. 

We find that the backward pass can run about 1000 times 
faster than it would otherwise, with the same accuracy. For 
example, when using a vocabulary of 20,000 words a typical 
beam search that allows for only a small error rate due to 
pruning requires about 20 times real time. In contrast, we 
find that the backward pass runs at about 1/60 real time! 
This makes it fast enough so that it can be performed at the 
end of the utterance with a delay that is barely noticeable. 

But the FBS also speeds up the forward pass indirectly! 
Since we know there will be a detailed backward search, we 
need not worry about the accuracy of the forward pass to 
some extent. This allows us the freedom to use powerful 
approximate methods to speed up the forward pass, even 
though they may not be as accurate as we would like for a 
final score. 

4. S u b l i n e a r  C o m p u t a t i o n  
Fast match methods require much less computation for each 
word than a detailed match. But to reduce the computation 
for speech recognition significantly for very large vocabu- 
lary problems, we must change the computation from one 
that is linear with the vocabulary to one that is essentially 
independent of  the vocabulary size. 

4.1. M e m o r y  vs Speed Tradeoffs  

One of the classical methods for saving computation is to 
trade increased memory for reduced computation. Now that 
memory is becoming large and inexpensive, there are several 
methods open to us. The most obvious is various forms of 
fast match. We propose one such memory-intensive fast 
match algorithm here. Many others could be developed. 

Given an unknown word, we can make several orthogonal 
measures on the word to represent the acoustic realization 
of that word as a single point in a multi-dimensional space. 
If we quantize each dimension independently, we determine 
a single (quantized) cell in this space. We can associate 
information with this cell that gives us a precomputed es- 

timate of the HMM score of each word. The computation 
is performed only once, and is therefore very small and in- 
dependent of the size of the vocabulary. (Of course the 
precompilation of the scores of  each of the words given a 
cell in the space can be large.) The precision of the fast 
match score is limited only by the amount of  memory that 
we have, and our ability to represent the scores efficiently. 

4.2.  C o m p u t a t i o n  vs  V o c a b u l a r y  S i z e  

To learn how the computation of our real-time search al- 
gorithm grows with vocabulary size we measured the com- 
putation required at three different vocabulary sizes: 1,500 
words, 5,000 words, and 20,000 words. The time required, 
as a fraction of real time, is shown plotted against the vo- 
cabulary size in Figure !. 
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Figure 1: Run time vs vocabulary size. Plotted on a linear 
and a log-log scale. 

As can be seen, the computation increases very slowly with 
increased vocabulary. To understand the behavior better we 
plotted the same numbers on a log-log scale as shown above. 
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Here we can see that the three points fall neatly on a straight 
line, leading us to the conclusion that the computation grows 
as a power of the vocabulary size, V. Solving the equation 
gives us the formula 

t i m e =  0.04 V 1/3 (1) 

This is very encouraging, since it means that if we can de- 
crease the computation needed by a small factor it would 
be feasible to increase the vocabulary size by a much larger 
factor, making recognition with extremely large vocabularies 
possible. 

5. Summary 
We have discussed the search problem in speech recognition 
and concluded that, in our opinion, it is no longer worth con- 
sidering parallel or special propose hardware for the speech 
problem, because we have been able to make faster progress 
by modifying the basic search algorithm in software. At 
present, the fastest recognition systems are based entirely 
on software implementations. We reviewed several search 
algorithms briefly, and discussed the advantage of time- 
synchronous search algorithms over other basic strategies. 
The Forward-Backward Search algorithm has turned out to 
be an algorithm of major importance in that it has made 
possible the first real-time recognition of 20,000-word vo- 
cabularies in continuous speech. Finally, we demonstrated 
that the computation required by this algorithm grows as the 
cube root of the vocabulary size, which means that real-time 
recognition with extremely large vocabularies is feasible. 

Acknowledgement 

Some of this work was supported by the Defense Advanced 
Research Projects Agency and monitored by the Office of 
Naval Research under Contract Nos. N00014-91-C-0115, 
and N00014-92-C-0035. 

R e f e r e n c e s  

1. Schwartz, R. and Y.L. Chow (1990) "The N-Best Algorithm: 
An Efficient and Exact Procedure for Finding the N Most 
Likely Sentence Hypotheses", ICASSP-90, April 1990, Albu- 
querque $2.12, pp. 81-84. Also in Proceedings of the DARPA 
Speech and Natural Language Workshop, Cape Cod, Oct. 
1989. 

2. V. Steinbiss (1989) "Sentence-Hypotheses Generation in a 
Continuous-Speech Recognition System," Proc. of the Euro- 
pean Conf. on Speech Communication and Technology, Paris, 
Sept. 1989, Vol. 2, pp. 51-54 

3. Mari~o, J. and E. Monte (1989) "Generation of Multiple Hy- 
pothesis in Connected Phonetic-Unit Recognition by a Mod- 
ified One-Stage Dynamic Programming Algorithm", Proc. of 
the European Cor~. on Speech Communication and Technol- 
ogy, Paris, Sept. 1989, Vol. 2, pp. 408-411 

4. Lowerre, B. (1977) "The Harpy Speech Recognition System", 
Doctoral Thesis CMU 1977. 

5. Bald, L.R., de Souza, P., Gopalalaishnan, P.S., Kanevsky, 
D., and D. Nahamoo (1990) "Constructing Groups of Acous- 
tically Confusable Words". Proceedings of the ICASSP 90, 
April, 1990. 

6. Schwartz, R.M., Chow, Y., Kimball, O., Roucos, S., Krasner, 
M., and L Makhoul (1985) "Context-Dependent Modeling 
for Acoustic-Phonetic Recognition of Continuous Speech", 
Proceedings of the ICASSP 85, pp. 1205-1208, March, 1985. 

7. R.M. Schwartz and S.A. Austin, "Efficient, High-Performance 
Algorithms for N-Best Search," Proc. DARPA Speech and 
Natural Language Workshop, Hidden Valley, PA, Morgan 
Kaufmann Publishers, pp. 6-11, June 1990. 

8. Soong, F., Huang, E., "A Tree-Trellis Based Fast Search 
for Finding the N Best Sentence Hypotheses in Continuous 
Speech Recognition". Proceedings of the DARPA Speech and 
Natural Language Workshop, Hidden Valley, June 1990. 

9. Alleva, F., Huang, X., Hwang, M-Y., Rosenfeld, R., "An 
Improved Search Algorithm Using Incremental Knowledge 
for Continuous Speech Recognition and An Overview of 
the SPHINX-II Speech Recognition System", DARPA Human 
Language Technology Workshop, Princeton, NJ, March, 1993. 

10. Murveit, H., Butzberger, J., Digalakis, V., Weintraub, M., 
"Progressive-Search Algorithms for Large Vocabulary Speech 
Recognition", DARPA Human Language Technology Work- 
shop, Princeton, NJ, March, 1993. 

95 




