
A P O R T A B L E A P P R O A C H T O L A S T R E S O R T
P A R S I N G A N D I N T E R P R E T A T I O N

Marcia C. Linebarger, Lewis M. Norton, Deborah A. DaM

A B S T R A C T

This paper describes an approach to robust processing which
is domain-independent in its design, yet which can easily take
advantage of domain-specific information. Robust processing
is well-integrated into standard processing in this approach,
requiring essentially only a single new BNF rule in the gram-
mar. We describe the results of implementing this approach
in two different domains.

1. I n t r o d u c t i o n

For best performance, natural language processing sys-
tems must be able to extract as much information as
possible from their inputs, even inputs which cannot be
fully processed. In order to do this, systems must be
equipped with robust processing mechanisms. In addi-
tion, cases also occur in which the system has the ability
to process an input, given sufficient time, but it is not de-
sirable to allow unlimited amounts of processing time. In
this paper we describe an approach to robust processing
which is domain-independent in its general architecture,
but which can be easily customized to particular domains
by simply listing key words and/or key concepts. The
approach uses the extensive grammar already available
to the system for standard processing but augments it
with a special BNF rule, called "backup", which is able
to prune the wordstream while it searches for key con-
cepts. Backup can be triggered either by a failure of nor-
mal parsing or by timing out. This approach has been
implemented in two distinct domains. In one of these
domains, when sufficient time is allotted to attain maxi-
mal performance, backup results in an 18% improvement
in score. We describe the general approach, discuss how
differences in the data in each domain lead to slightly
different implementations, and discuss our results.

2. Approach
The approach to robust processing which is described
in this paper is implemented in the PUNDIT natural
language processing system developed at Paramax Sys-
tems Corporation [6, 1]. PUNDIT includes a domain-
independent, top-down parser [7] which is the primary
component involved in robust processing. The key fea-
ture of robust processing in PUNDIT is that the parser

P a r a m a x S y s t e m s C o r p o r a t i o n

(a U n i s y s C o m p a n y)

70 E a s t S w e d e s f o r d R o a d

Pao l i , P A 19301

is allowed to skip over words when it is unable to find
a parse using every word. Skipping is an appropriate
strategy for the data in the two domains we are working
with, because parsing failures tend to be due to extra-
neous material such as interpolated irrelevant comments
and false starts. Another possible strategy, relaxation of
constraints as suggested by [19], is less appropriate for
the data we have examined, since few parsing failures
are due to violation of grammatical constraints. Skip-
ping over words has also been implemented in the ro-
bust parsing strategies of Seneff [15] and Strzalkowski
[18]; our approach differs from these in that in addition
to skipping, it provides a simple way of taking domain-
specific knowledge into account in the skipping process.
That is, when an analysis is not possible using every
word, the system begins searching through the word-
stream for keywords (or words denoting key concepts),
which are simply listed in a file. The use of keywords
permits the system to make use of the domain-specific
knowledge that certain words or concepts are important
in the domain. In fact, in a mature domain, the list of
keywords and concepts can be automatically generated
from the system's semantic interpretation rules.

Because the backup mechanism is implemented by
adding a single new BNF rule into the normal gram-
mar, robust processing has been implemented in PUN-
DIT without losing the advantages of the broad-coverage
syntactic grammar already in the system. This is in con-
trast to approaches like the template matcher discussed
in [8] or the frame combiner discussed in [16] which are
completely separate mechanisms from the standard lin-
guistic processing components.

In addition to inputs for which the system cannot find a
parse using the standard algorithm, there are also cases
where a complete analysis would be too costly in terms of
time. The system can also invoke backup in these cases,
using a variation of the timeout mechanism described in
[17]. The timeout mechanism in [17] allocates an abso-
lute amount of time per sentence; in contrast, PUNDIT'S

t imeout allocates time as a function of the number of
words in the input sentence so as not to penalize rela-
tively longer sentences.

31

Previous approaches to robust processing have typi-
cally either focused solely on data from one domain
[8, 16, 15, 4] or have implemented a domain-independent
approach [17]. Both of these alternatives have disad-
vantages. Approaches which have been tested on only
a single domain cannot be guaranteed to be extensible
to other domains. Entirely new approaches may be re-
quired when the system is ported to another domain. On
the other hand, the performance of domain-independent
approaches may suffer in domain-specific applications
because they are not able to use domain-specific knowl-
edge to constrain the processing. Our approach differs
from previous approaches in that, while the basic archi-
tecture is domain-independent, the approach also allows
domain-specific knowledge to assist in the processing.
We demonstrate the general applicability of the archi-
tecture by describing implementations in two distinct
domains. Although the basic mechanism is the same
in each domain, we also discuss differences in the im-
plementation which follow from basic differences in the
kind of data which must be processed.

3. D o m a i n s

We now briefly describe our two application domains,
with emphasis on those properties of the domains which
affect the details of implementing backup "last resort"
processing.

3.1. Air Traffic Contro l

Air traffic control (ATC) involves oral communication,
as controllers interact with pilots via radio, issuing com-
mands which govern the movements of planes both on
the ground and in the air [3]. Since the controllers are
already speaking into microphones, their half of this di-
alogue is easy to capture in a high-quality signal. If
this input can be understood, possible applications will
range from intelligent indexing for archival purposes to
real-time monitoring for safety and planning purposes.

Utterances in the ATC domain tend to be short se-
quences of relatively independent commands. The range
of possible commands is well-bounded, and controllers
are trained to avoid expressing these commands in dif-
ferent phrasings. As a consequence, it is possible to sep-
arate utterances into their constituent commands with
high reliability, and similarly, to resume processing at
the next command if processing of the present command
fails for any reason. Also, some commands may be irrel-
evant for a given application. For example, wind advi-
sories could be ignored by an application only concerned
with ground operations.

A sample well-formed utterance follows:

Delta seven forty six turn right heading two seven zero
cleared to land runway two nine left.

3 . 2 . A i r T r a v e l I n f o r m a t i o n S y s t e m

Our second domain is called ATIS (Air Travel Informa-
tion System) [12, 13, 11]. This is basically a database
query application. The input utterances are retrieval
requests addressed to a database of information about
flight schedules, fares, etc. This application has been
set up by DARPA as an infrastructure for research in
spoken language understanding.

DARPA has arranged for the collection of data in this
domain [5]. This data is spontaneous speech from naive
users, who have no idea what phrasings will work and
which will not. Thus, they use an extremely wide set
of variations for each request, so that the system is ex-
pected to process inputs ranging from a vanilla Show me
flights from Boston to Denver to I am going to have to go
to Denver; I will be leaving from Boston, etc. Disfluen-
cies are more prevalent in this domain, since the speak-
ers are not trained users. Another feature distinguishing
ATIS from ATC is that ATIS utterances, no matter how
discursive they appear, normally constitute a single re-
quest. Therefore parse fragments created by the backup
mechanism seldom correspond to individual commands
as they do in the ATC domain; instead, a single request
may give rise to several fragments which must be inte-
grated during semantic and pragmatic processing 1.

In both domains, since the input is spoken, there is the
additional possibility of errors introduced by the speech
recognition component. While the techniques discussed
in this paper have obvious applicability to recovery from
such errors, in what follows we will assume perfection
on the part of the recognizer, and that all errors and
disfluencies originate with the speaker. Note, however,
that current recognizers do not include punctuation in
their output, either within sentences or at the end of
them. We-therefore have included no punctuation in our
data.

4. I m p l e m e n t a t i o n

Grammars used with PUNDIT have at the top level a BNF
rule for the "center" node. This rule is always a disjunc-
tion of possibilities; for example, in a toy grammar, the
center rule might expand to either assertion or question.
In typical application domains this rule is more com-
plex, including perhaps compounds and/or fragments.
One important fact about the disjuncts for the present
discussion is that they are required to consume the whole

1A detai led discussion of PUNDIT's general approach to frag-
men t s can be found in [9].

32

input word string in order to succeed.

In any grammar , our approach to robust parsing is im-
plemented by adding one additional disjunct at the end
of the center rule. We call this disjunct "backup". The
BNF rule for backup has the following form:

• If positioned at a keyword, reset the t ime allotment
if necessary, then retry the other center options, re-
laxing the requirement to consume the entire word
string. If a parse is found, call the center rule on
the remainder of the word string.

• If not positioned at a keyword, or if a parse is not
found in the previous step, skip to the next keyword
if any, reset the time allotment if necessary, and call
the center rule on the word string starting with the
keyword. If no keyword is found, fail.

The backup rule is entered either if normal parsing fails
(i.e., none of the other disjunets of the center rule pro-
duce a parse consuming the whole word string), or if
t imeout occurs. Users specify an amount of t ime in the
form of a number (possibly fractional) of seconds per
word, so that longer inputs are given more time. Once
t ime has expired, no rule will execute except the backup
rule, which will reallot t ime based on the length of the
remaining word string, and then proceed as described
above.

The opportunity for introducing domain knowledge to
influence the behavior of the backup rule comes in the
specification of the keywords. To discuss what we have
done in the two domains we experimented with, we first
need to introduce the PUNDIT knowledge base. This is
simply a mapping of word tokens to a hierarchical set of
concepts [10]. Synonyms usually denote the same con-
cep t . The "is-a" relation is defined over the hierarchy,
so that a concorde is-a jet is-a plane, a propeller_plane
also is-a plane, etc.

The keywords used by backup can be specified as word
tokens or as concepts. In the latter case, the concept is
taken to refer to any word token that maps to the con-
cept or any descendant of the concept in the knowledge
base. Keywords may also be specified by syntactic cat-
egory, e.g., determiners or tensed verbs may function as
keywords.

4 . 1 . A i r T r a f f i c C o n t r o l

In the ATC domain, we designated only word tokens as
keywords. Furthermore, the list of keywords was chosen
manually with great care, and is not very extensive. The
choices were dictated by tile semantics of the possible

commands which controllers may issue, and the normal
phraseology (defined by the FAA) for expressing those
commands. The intent, which we were able to achieve
to a large degree, was to have skipping to the next key-
word be equivalent to skipping to the start of the next
command. Most of the keywords are verbs, correspond-
ing to the imperative form most often used to express
commands.

4 . 2 . A i r T r a v e l I n f o r m a t i o n S y s t e m

In contrast, the list of keywords for the ATIS domain
is much larger, and consists mostly of concepts, which
in effect makes it even larger in terms of words. The
basic idea is not to skip over any word which might be
useful. Thus we included prepositions, wh-introducers,
and such word tokens, plus all the concepts known to the
PUNDIT semantic interpreter for that domain. This list of
concepts was obtained mechanically from the files driv-
ing the interpreter, followed by the removal of concepts
which were descendants of other concepts in the list, for
these would be redundant for the purposes of the backup
procedure. As a consequence, the only words skipped
are meaningless (to the semantic interpreter), including
unknown words.

An ATIS utterance normally constitutes a single
database retrieval request. Therefore an additional step
in this domain is to integrate the parse fragments ob-
tained by the robust parsing procedure. We delegate
this responsibility to the semantic and pragmatic inter-
preter [14, 2]. For those fragments which are complete
sentences, no extensions are necessary. The interpreter
merely treats them as distinct sentences coming in se-
quentially in the context of the ongoing dialogue.

For true fragments we did need to add some new capabil-
ity. We assume that the overall content of the utterance
is either a request for some flights or some fares. For
noun phrase fragments, either the head is a flight or a
fare, or it is not. If it is, our normal reference resolution
capabilities are sufficient to resolve the flight or fare with
any other flight or fare in the context 2. If the head is
not a flight or fare, flight and fare entities are explicitly
generated into the context space maintained by the se-
mantic interpreter, and the fragment is interpreted as a
modifier of either the flight or the fare. Then normal ref-
erence resolution takes over. For example, the fragment
afternoon ends up with the same semantic representa-
tion as does afternoon flight, and the system proceeds as
before.

2This is because dialogues often proceed like the following:
Show me flights from Boston to Denver. [answer] Show me just
afternoon flights. So in effect, afternoon flights is treated as show
afternoon flights [2, 13, 11].

33

Prepositional phrase fragments are treated in a manner
completely analogous to noun phrase fragments whose
heads are not flights or fares. For example, in the af-
ternoon becomes flight in the afternoon, and the system
proceeds as before.

The data for this domain has not warranted t reatment
of any other fragment types.

5 . R e s u l t s

5 . 1 . A i r T r a f f i c C o n t r o l

We performed experiments on a set of 233 utterances
in the ATC domain, incorporating utterances from two
different controllers. One was guiding planes which had
just landed; the other was guiding planes as they taxied
in preparation for takeoff.

Substantial benefits are gained from using backup, or
"last-resort" processing, after normal parsing fails or a
t imeout occurs. Figure 1 shows that application accu-
racy is improved by the use of such processing, at two dif-
ferent settings of the t imeout parameter . In fact, perfor-
mance with backup at the lower t imeout setting clearly
exceeds performance without backup at the higher time-
out setting. The improvement comes at a cost of in-
crease(] cpu time, as can be seen in Figure 2; the increase
is less for the higher value of the t imeout parameter , even
though the benefit to accuracy remains high.

Figure 1: Effect of backup on score

0.5

0.4

0.3

, ~ 0.2

C

0.1

[] backup

• n o backup

0.3

Timeout Parameter

1.1

Figure 2: Effect of backup on runtime

We investigated the effects of varying the t imeout param-
eter when backup processing is in use. Recall that this
parameter is the amount of cpu t ime allotted for eacl~
word of an utterance before t imeout. Backup processing
resets this allotment, adjusted for the current position
in the utterance, so that the amount of t ime spent pro-
cessing an utterance can increase by a factor of two to

four over the initial allotment, depending on the number
of keywords in the utterance.

100 ¸

90

8 7o
O~

i i - - - - l i - - I I •

I I I I I i $ I (I I I (I

0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Timeout Parameter

Figure 3: Effect of varying t imeout

Figure 3 shows the results of our investigation. A setting
of the t imeout parameter below 0.3 is clearly undesirable.
A setting of 0.3 enables the system to process correctly
all but a handful of the utterances it could handle at a
higher setting; that is, the curve changes at this point to
a nearly horizontal orientation. At a setting of 1.1, the
system achieves maximal performance accuracy. Some-
what surprisingly, if the utterances of each controller are
considered separately, these findings remain the same,
even though the content and phrasing of the utterances
vary noticeably.

The opt imal setting of the t imeout parameter depends
on the relative costs of processing t ime and application
errors. The 0.3 setting might be opt imal for archival pur-
poses or high volume processing. The 1.1 setting might
be necessary for applications which demand maximal ac-
curacy at any cost.

5 . 2 . A i r T r a v e l I n f o r m a t i o n S y s t e m

As examples of data which our system handles prop-
erly, we list some inputs which are successfully processed.
All of them were previously unseen test data from the
November 1992 ATIS test. None of them would result
in a parse from normal parsing. These inputs include
false starts, corrections, constructions not covered by our
grammar, and breaks in parsing due to unknown words.
Our technique contributes for all these phenomena.

I would like to do you have any flights between Philadel-
phia and Allanta (false start)

Okay shoot I would have to choose the Delta flight nine
seventy seven departing at twelve pm and arriving in San
Francisco at two ten pm shoot and choose were unknown
words, but the system recovers and understands the cho-
sen flight.

34

Okay American Airlines does it leave Philadelphia for
Dallas in the mornings Left dislocation, not in our gram-
mar; the airline is parsed as a fragment separate from
the main body of the question, and semantic processing
integrates the two parses correctly.

Yes could you please give me a list of all American Air-
line first class flights lo from Philly to Dallas Fort Worth
please The correction of the preposition at to from Philly
is successfully handled by our technique; to is dropped,
and parse fragments are produced for the rest of the in-
put starting at from.

Q u a n t i t a t i v e R e s u l t s Because the semantic integra-
tion of f ragmentary information is still in progress, the
robust processing mechanism did not affect our final
score on the ATIS evaluation. However, we did look
closely at the effect of robust processing on parsing ac-
curacy, in order to answer the following two questions:

• How much does the backup mechanism improve
parsing accuracy?

• How often does the backup mechanism do the right
thing?

In order to answer the first question, we compared the
proportion of usable or potentially usable non-X parses
which the system produced with and without backup
on the subset of the 1992 ATIS test collected at BBN.
Without backup, 77% of the parses were usable; with
backup, 88% were usable. Thus, backup resulted in an
11% increase in the number of usable parses.

In order to answer the second question, we looked at the
parses produced by backup. We found that 45% of them
were usable or potentially usable by semantics. Of the
parses that were not usable, we found that most of the
t ime they were unusable because the system did not have
information about some semantically important word in
the sentence. Because of this missing information, the
system ended up ignoring the word, and consequently
the parse did not contain this important word. The fact
that many of the unusable parses were due to lexical
gaps was encouraging, because it means that the backup
mechanism will continue to improve in this respect sim-
ply as new words are added to the system in the normal
course of development.

6 , C o n c l u s i o n a n d F u t u r e D i r e c t i o n s

We have described a domain-independent approach to
robust processing which can be customized to particular
domains through the simple mechanism of building a list
of keywords, where keywords may correspond to specific

word tokens, syntactic categories, or semantic concepts.
The approach was tested in two different domains, ATC
and ATIS. Differences in the way that information is
conveyed in the two domains necessitated slight differ-
ences in the implementations across the two domains; in
particular, additional semantic processing was required
in the ATIS domain to put together information from
the fragmentary outputs of the parser. Future plans in-
clude development of keyword selection techniques, both
domain-independent and domain-specific; and improve-
ments to the semantic integration process.

R e f e r e n c e s
1. Deborah A. DaM. PUNDIT - natural language inter-

faces. In G. Comyn, N.E. Fuchs, and M.J. Ratcliffe, edi-
tors, Logic Programming in action, Heidelberg, Germany,
September 1992. Springer-Verlag.

2. Deborah A. Dahl and Catherine N. Ball. Reference reso-
lution in PUNDIT. In P. Saint-Dizier and S. Szpakowicz,
editors, Logic and logic grammars .for language p,vcess-
ing. Ellis Horwood Limited, 1990.

3. Deborah A. Dahl, Lewis M. Norton, and Nghi N. Nguyen.
Air traffic control instruction monitoring using spoken
language understanding. In Proceedings of the 36th Air
Traffic Control Association Meeting, Atlantic City, N J,
November 1992.

4. Philip J. Hayes and George V. Mouradian. Flexible pars-
ing. American Journal of Computational Linguistics,
7(4):232-242, 1981.

5. Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. The ATIS spoken language systems pilot
corpus. In Proceedings o] the DARPA Speech and Lan-
guage Workshop, Hidden Valley, PA, June 1990.

6. L. Hirschman, M. Palmer, J. Dowding, D. Dahl,
M. Linebarger, R. Passonneau, F.-M. Lang, C. Ball, and
C. Weir. The PUNDIT natural-language processing sys-
tem. In AI Systems in Government Con]. Computer So-
ciety of the IEEE, March 1989.

7. Lynette Hirsehman and John Dowding. Restriction
grammar: A logic grammar. In P. Saint-Dizier and S. Sz-
pakowicz, editors, Logic and Logic Grammars]or Lan-
guage Processing, pages 141-167. Ellis Horwood, 1990.

8. Eric Jackson, Douglas Appelt, John Bear, Robert Moore,
and Ann Podtozny. A template matcher for robust NL
interpretation. In Proceedings of the DARPA Speech and
Natural Language Workshop. Morgan Kaufmann, Febru-
ary 1991.

9. Marcia C. Linebarger, Deborah A. Dahl, Lynette
Hirschman, and Rebecca J. Passonneau. Sentence frag-
ments regular structures. In Proceedings o] the 26th An-
nual Meeting of the Association for Computational Lin-
guistics, Buffalo, NY, June 1988.

10. David L. Matuszek. K-Pack: A programmer's interface
to KNET. Technical Memo 61, Unisys Corporation, P.O.
Box 517, Paoli, PA 19301, October 1987.

11. Lewis M. Norton, Deborah A. DaM, and Marcia C.
Linebarger. Recent improvements and benchmark re-
suits for the Paramax ATIS system. In Proceedings of
the DARPA Speech and Language Workshop, Harriman,
New York, February 1992.

35

12. Lewis M. Norton, Deborah A. DaM, Donald P. McKay,
Lynette Hirschman, Marcia C. Linebarger, David Mager-
man, and Catherine N. Ball. Management and evalua-
tion of interactive dialog in the air travel domain. In
Proceedings of the DARPA Speech and Language Work-
shop, Hidden Valley, PA, June 1990.

13. Lewis M. Norton, Marcia C. Linebarger, Deborah A.
Da~hl, and Nghi Nguyen. Augmented role filling capabil-
ities for semantic interpretation of natural language. In
Proceedings of the DARPA Speech and Language Work-
shop, Pacific Grove, CA, February 1991.

14. Martha Palmer. Semantic Processing]or Finite Do-
mains. Cambridge University Press, Cambridge, Eng-
land, 1990.

15. Stephanie Seneff. A relaxation method for understanding
spontaneous utterances. In Proceedings o] the DARPA
Speech and Natural Language Workshop. Morgan Kauf-
mann, February 1992.

16. David Stallard and Robert Bobrow. Fragment processing
in the DELPHI system. In Proceedings of the Speech
and Natural Language Workshop, San Marco, California,
1992. Morgan Kaufmann.

17. Tomek Stralkowski. TTP: a fast and robust parser for
natural language. Technical report, New York University
Department of Computer Science, New York, NY, 1991.

18. Tomek Strzalkowski and Barbara Vauthey. Information
retrieval using robust natural language processing. In
Proceedings of the Thirtieth Annual Meeting of the As-
sociation for Computational Linguistics, pages 104-111,
1992.

19. R. M. Weischedel and N. K. Sondheimer. Meta-rules as a
basis for processing ill-formed input. American Journal
of Computational Linguistics, 9(3-4):161-177, 1983.

36

