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A B S T R A C T  

The relative size and location of prosodic phrase boundaries 
provides an important cue for resolving syntactic ambiguity. 
In previous work, we have introduced an analysis/synthesis 
formalism for scoring parses in terms of the similarity be- 
tween prosodic patterns recognized from a given utterance 
and synthesized for the hypothesized parse. This paper de- 
scribes a new approach to the synthesis problem, as well as 
an alternative scoring criterion. Specifically, a decision tree 
is designed to predict prosodic phrase structure for a given 
syntactic parse, and the tree is used to compute a parse 
score, which now is the probability of the recognized break 
sequence. Unlike the rule-based synthesis algorithm used in 
the previous work, the decision tree can be automatically 
trained and can therefore be designed specifically for differ- 
ent speaking styles or task domains. In experiments with a 
corpus of ambiguous sentences spoken by FM radio a n n o u n c -  

e r s ,  we have achieved disambiguation performance similar to 
the rule-based algorithm, which is close to the performance of 
human subjects in perceptual experiments using the scoring 
algorithm with hand labeled breaks. 

1. Introduction 

Spoken language understanding is a difficult problem, in 
part because of the many ambiguities inherent in natu- 
ral language. Syntactic ambiguity arises when a given 
expression can be described by more than one syntactic 
structure, and contributes substantially to the difficulty 
of the natural language processing problem. Several fac- 
tors may be involved in resolving such ambiguities, in- 
cluding semantics, discourse and bias toward a specific 
syntactic structure. In spoken language, prosody, or the 
suprasegmental information in an utterance, is an im- 
portant  cue. Prosody is especially useful in automatic 
speech understanding, since computer representations of 
semantics and discourse are not as sophisticated as hu- 
man knowledge. 

Experiments have shown that  listeners can resolve sev- 
eral types of syntactic ambiguities by using prosodic in- 
formation [3, 6]. The results of Price el al. [6] indicated 
that human listeners could reliably select the intended 
meaning of two target syntactic structures (86% cor- 
rect identification for six out of seven types of structural 

ambiguity). Of the prosodic pat terns  studied in that  
work, the relative size and location of phrase boundaries 
seemed to provide the principal cue for resolving ambigu- 
ities. Thus, it seems likely that  automatically detected 
prosodic phrase breaks could be used in speech under- 
standing systems to reduce syntactic ambiguity. 

Assuming that  prosodic cues can be detected automat- 
ically, there are many different ways in which prosody 
might be used in syntactic disambiguation for speech un- 
derstanding. In earlier work [9], we proposed a scoring 
algorithm to rank candidate parses based on an analy- 
sis/synthesis method.  In this approach prosodic patterns 
recognized from a given ut terance are compared to those 
synthesized using a hypothesized syntactic parse from a 
set of possible parses. Specifically the method involves: 
(1) automatically predicting prosodic break locations for 
each candidate syntactic s t ructure (synthesis); (2) au- 
tomatically recognizing prosodic breaks in the spoken 
utterance (analysis); and (3) scoring each hypothesized 
parse according to a measure of the similarity between 
predicted and observed prosodic structure.  The score 
can then be used to rank competing hypotheses, as in 
the experiments here, or used in combination with other 
knowledge sources to choose the correct sentence inter- 
pretation. 

This algorithm originally used a rule-based synthesis al- 
gorithm together with a correlation measure of similarity 
between predicted and observed prosodic phrase struc- 
ture. Here, we expand on this approach by presenting an 
alternative prediction and scoring method.  Specifically, 
we replace the rule-based synthesis component  with a 
stochastic model which uses a decision tree to predict 
prosodic phrase structure. The probabil i ty distributions 
at the leaves of the tree can be used to find the proba- 
bility of an obshrved prosodic s t ructure  given a syntactic 
parse, and this probability is then the prosodic score for 
the hypothesized parse. 

In the following section, we briefly describe the speech 
corpus and break index representation of prosodic phrase 
structure. Next, we review the synthesis and scoring 
components used in our previous parse scoring system 
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[9]. As an alternative, we introduce a probabilistic scor- 
ing algorithm based on a stochastic model of phrase 
structure. We then present experimental  results for the 
different synthesis/scoring techniques using the task of 
automatically disambiguating confusable sentence pairs, 
comparing results to those of human listeners. Finally, 
we discuss the implications of the results for future work. 

- 2. Corpora and  Label ing  

The experiments presented here are primarily based on 
the corpus of ambiguous sentences described in more de- 
tail in (Price et a/.,1991)[6]. Four professional FM ra- 
dio announcers were asked to read 35 pairs of sentences, 
where members of a pair were phonetically similar but 
associated with different syntactic structures and there- 
fore different meanings. The sentences included five ex- 
amples of each of seven types of structural ambiguity: 
parenthetical clauses vs. non-parenthetical subordinate 
clauses, appositions vs. at tached noun (or prepositional) 
phrases, main clauses linked by coordinating conjunc- 
tions vs. a main clause and a subordinate clause, tag 
questions vs. at tached noun phrases, far vs. near attach- 
ment of final phrase 1, left vs. right at tachment of middle 
phrase, and particles vs. prepositions. 

In addition to the ambiguous sentence corpus, we also 
used a corpus of radio news speech for training the 
new stochastic synthesis algorithm. The data consists 
of 14 news stories, six from one announcer and eight 
from a second announcer, both female, for a total of 
211 sentences (4210 words). These news stories were 
used only for training the synthesis algorithm, so just  
the word transcriptions were used (no acoustic informa: 
tion). These sentences differ from the ambiguous sen- 
tence pairs (the test data) in several ways. The ambigu- 
ous sentences are, on the average, shorter (7.6 vs. 19.6 
words) and have a flatter syntactic structure (4 vs. 7 
levels). In addition, the ambiguous sentence pairs were 
designed to cover specific syntactic structures, some of 
which are not generally found in the FM radio news sto- 
ries. For example, the fourteen radio stories contain no 
sentences with tag questions and only five examples of 
embedded sentences, although both of these structures 
are common in the ambiguous sentences. 

The parse scoring algorithms described here are based on 
an integer "break index" representation of prosodic con- 
stituent structure. Each word boundary in an utterance 
is labeled with a break index from 0-6 that  corresponds 
to a level in a constituent hierarchy, or equivalently to 
the amount  of prosodic decoupling between words. A 

1 High vs. low attachment is probably more accurate syntactic 
terminology, but "far" vs. "near" is used in [6] as more descriptive. 

"0" represents the most t ightly bound words, such as in 
clitic groups, while a "6" represents the prosodic break 
between sentences. The correspondence between this 
seven-level system of indices and various hierarchies pro- 
posed in the l i terature is discussed in depth in Wight- 
m a n  et  al. [10]. For training and evaluating our algo- 
rithms, utterances have been hand-labeled according to 
this break indexing system. Sentences were also anno- 
tated with skeletal parses as part  of a preliminary version 
of the University of Pennsylvania Treebank project [4]. 

3. Rule-Based Syn thes i s  and Scoring 
The focus of this paper is on the synthesis and scoring 
components of our prosodic parse scoring system. The 
rule-based synthesis and correlation scoring algorithms 
used in previous work are described below for reference. 
The analysis component ,  prosodic break recognition, is 
also based on classification trees and is described in [8]. 

3.1. P e r f o r m a n c e  S t r u c t u r e  Syn thes i s  

Prosodic phrase break prediction algorithms have typi- 
cally been rule-based. In our previous work, we inves- 
t igated a variety of rule-based algorithms designed to 
predict performance structures,  based on Gee and Gros- 
jean's Phi algorithm [2]. Since results for these algo- 
rithms were similar [9], only the performance of the Phi 
algorithm will be used for comparison here. 

Given the syntactic structure,  the Phi algorithm iter- 
atively groups successively larger prosodic constituents 
together, beginning at the word level, to form a binary 
tree. A break index, which indicates the relative coher- 
ence between constituents, is deterministically assigned 
after each word in the sentence according to node count 
in the tree. The absolute value of the breaks is not lin- 
guistically meaningful and, in addition, has no theoreti- 
cal upper bound. We refer to these indices as C-breaks 
to distinguish them from the seven-level labeling system 
used in the analysis. 

3 . 2 .  C o r r e l a t i o n  S c o r e  

In [9], a correlation score was used to compare the C- 
breaks for competing syntactic structures with observed 
breaks for some utterance to be disambiguated. Specif- 
ically, the score is simply an estimate of the correlation 
coefficient between observed and synthesized breaks. 

An advantage of the correlation score is tha t  it is invari- 
ant to linear transformations of the break indices. Tha t  
is, a high-valued sequence of breaks will have the same 
interpretation as a low-valued sequence of breaks, if rel- 
atively higher and lower breaks are in the same position. 
A disadvantage is that  it requires a hard decision from 
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the synthesis step, and therefore is limited in the amount  
of variability it allows. 

4. Probabilistic Synthesis and Scoring 
Although the performance-structure-based algorithms 
appear  to be quite useful, rule-based methods have some 
disadvantages. First, they are difficult to implement for 
different styles or to tailor for a specific task domain, 
sihce the development of new rules is required. Second, 
they do not allow for the natural  variability in phras- 
ing observed in multiple spoken renditions of the same 
sentence. An alternative to the rule-based approach is 
to use a model that  can be trained automatically,  such 
as a stochastic model. The fact that  stochastic models 
associate a probabil i ty with a sequence of break indices 
suggests a method of parse scoring based on the proba- 
bility of a parse given the recognized breaks. 

4.1.  Decision Tree Break Synthesis 

Existing break synthesis models tha t  can be automat-  
ically trained are b a s e d  on decision trees. Wang and 
Hirschberg [7] first proposed the use of  decision trees 
to predict the presence or absence of a prosodic break, 
with very successful results. Although their experiments 
involved predicting only one type of break, the model 
is general and can be extended to predict an arbi trary 
number of levels. 

Using a set of allowable questions about  bracketed word 
sequences, binary decision trees parti t ion the labeled 
training data  into successively more homogeneous sets 
with respect to class distributions. Classes in our case 
are different levels of prosodic breaks (i.e., 0 - 6). Trees 
are designed using a greedy growing algorithm [1], which 
iteratively reduces the impuri ty  of the class distributions 
at the leaves of the tree 2. In this work, the size of the 
tree was determined based on complexi ty/performance 
trade-offs in the training set. At each terminal node of 
the tree, the training da ta  defines a relative frequency 
estimate of the probabili ty for each level of break repre- 
sented. The tree can be used for synthesis by choosing 
the most probable break level at each terminal node, as 
in [7]. For the parse scoring application, however, the 
stochastic model can be used to find the probabili ty of 
a break sequence given a hypothesized parse. Using the 
probabilities directly has potential  performance advan- 
tages over making a hard decision on predicted parses 
before a subsequent scoring stage. 

The decision tree was designed using the FM radio news 
stories, based on questions that  used part-of-speech in- 

~Specifically, we use the Gini criterion i(t) = ~ i C j  p(ilt)p(jlt) 
as a measure of impurity. 

formation, syntact ic  information and location in the sen- 
tence in terms of numbers  of words. Part-of-speech in- 
formation used was based only on capitalization and 
function word tables, and the questions about  syn- 
tactic s t ructure are based on Treebank skeletal parses 
[4]. The different syntact ic  units used are SBAR or 
SBARQ (declarative or question embedded sentences), S 
or SINV (declarative or inverted main clauses), NP, VP, 
PP, phrase beginning with Wh-question word, A D J P  or 
ADVP. All questions are based on features derived from 
text  information only; no acoustic information is used 
in the synthesis algorithm. The  specific questions are 
detailed below; mot ivat ion for these can be found in [5], 
where a similar set of questions were investigated. Ab- 
breviations in parentheses refer to labels used in the re- 
sulting tree, i l lustrated in Figure 1. 

1. Is this a sentence boundary? (sent) 

2. Is the left word is a content word and the right word a 
function word? (cw-fw) 

3. Is the left word a function word and the right word a 
content word? (fw-cw) 

4. What is the function word type of word to the right? I.e. 
conjunctions, articles, auxiliary verbs and models, pro- 
nouns, prepositions, and a default category. (fw-type) 

5. Is either adjacent word capitalized, i.e. a proper name? 
(cap) 

6. How many content words have occurred since the previ- 
ous function word? ( #  cw) 

7. How many function words have occurred since the pre- 
vious function word? (#  fw) 

8. What is the relative location in the sentence? Specifi- 
cally, what is the ratio of the number of orthographic 
words over the sentence length in words quantized to 
the nearest eighth? (sloc) 

9. What is the largest syntactic unit that dominates the 
word preceding the potential boundary location and 
does not dominate the succeeding word? (dora lft) 

10. What is the largest syntactic unit that dominates the 
word succeeding the potential boundary location and 
does not dominate the preceding word? (dom rt) 

11. What is the smallest syntactic unit that dominates 
both? (dom both) 

12. How many syntactic units end between the two words? 
(# ]) 

13. How many syntactic units begin between the two words? 

(# D 
14. What is the depth (number of levels from the top) in 

the syntax tree of the right word? Depth was measured 
as the number of open brackets minus the number of 
closed brackets. (depth) 

15. What is the total number of initiating and terminating 
syntactic units between the two words? This number 
is roughly related to how far the juncture is from the 
bottom of the syntax tree. (height) 
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yes ~ - ,  w no e.,_,,,,~, 

- -  , o r  PP 

\ o r  sixth eighth 

Figure h Synthesis decision tree used in parse scoring, designed on radio news text. The syntactic features of each 
word juncture determine assignment to a terminal node, which is associated with a probability distribution of breaks. 

4 .2 .  P r o b a b i l i t y  S c o r e  

Use of the decision tree for break synthesis suggests an 
alternative approach to the correlation score, which is 
to compute the probability of the sequence of automat- 
ically labeled break indices conditioned on the hypoth- 
esized parse. The probability score is computed as fol- 
lows. The text and the hypothesized parse are processed 
to generate a sequence of feature vectors [z 1, . .- ,  zn], one 
for each word, which are subsequently each encoded by 
the tree to a node ti = T ( z l ) .  The score of the observed 
breaks indices [bl , . . . ,  b,], is then 

1  logp(b, lt,), se=~ 
i=l 

where p(blt ) is the distribution associated with terminal 
node t. The factor I/n normalizes the score to account 
for differences in word length; otherwise, the score is 
biased to favor shorter sentences. 

Rather than computing the probability of the sequence 
of breaks, we could have explicitly predicted a sequence 
of breaks from text, taking the most probable sequence, 
and then used the correlation scoring approach with 
these synthesized breaks. However, if the predicted 
break indices are the same for both parses, then it is im- 
possible to distinguish them using the correlation score, 
though it was possible to choose between them using the 
probability of observed breaks. This phenomenon does 

occur for the ambiguous sentences and therefore correla- 
tion scoring has lower disambiguation performance than 
probability scoring. Of course, if two hypothesized syn- 
tactic structures result in the same node sequence, the 
sentence cannot be disambiguated with the tree. How- 
ever, in our corpus of 35 pairs of ambiguous sentences, 
only two were assigned the same node sequence. The 
corresponding human productions for this sentence pair 
had similar ambiguities in break indices labeled for at 
least one of the four speakers. 

5. E x p e r i m e n t s  

We have tested our analysis/synthesis approach by using 
it to perform the same task that the human subjects in 
[6] were asked to perform. Specifically, we attempt to 
select which of two interpretations was intended by the 
speaker by choosing the interpretation with the high- 
est score. For each test utterance, we use an automatic 
break labeling algorithm to recognize the break indices 
(the algorithm used in [8] with additional acoustic fea- 
tures) under each of the two possible sentence hypothe- 
ses. The two break sequences are then scored according 
to a synthesis model using the syntactic structure of the 
corresponding sentence hypothesis. The candidate sen- 
tence having the highest score is selected. In the event 
of a tie, the first sentence in the pair is chosen. These 
experiments were repeated using both the the rule-based 
synthesis algorithm and the new decision tree algorithm. 
The Phi algorithm was evaluated in conjunction with the 
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correlation score, and the decision tree synthesis algo- 
rithm was used with a probabilistic score. In addition, 
we repeat the experiments using hand-labeled breaks in 
order to examine the perf~rm'ance of the synthesis mod- 
ule alone. The results of these experiments are summa- 
rized in Table 1 for each of the 14 types (7 pairs) of 
syntactic ambiguity, which list the percent of sentence 
correctly identified for each category out of a set of 20 
sentences/category. For comparison, Table 1 also con- 
tains the results reported for the human subjects [6]. 

Not all syntactic differences can be disambiguated by 
prosodic information, and such cases obviously cannot 
be handled by our algorithms. For completeness, Table 1 
includes results for all categories, although our analysis 
will focus mainly on the categories that were most reli- 
ably identified by human listeners (those for which mean 
response minus standard deviation was greater than 
chance, indicated with an asterisk in the table). In ad- 
dition, this analysis will ignore the main-main vs. main- 
subordinate clause category, since in [6], the sentences 
were found to be very similar prosodically. 

The results based on the hand-labeled break indices show 
that the decision tree synthesis algorithm in combination 
with a probabilistic score gave disambiguation accuracy 
similar to the Phi algorithm, and comparable to perfor- 
mance of human listeners on this test subset. 

When using automatically labeled breaks rather than 
hand-labeled breaks, there is significant degradation in 
performance for both the Phi and decision tree algo- 
rithms. The biggest loss in performance was for the 
particle category, which was correctly identified with the 
hand-labeled breaks but identified at the level of chance 
using the automatically labeled breaks. In this case, au- 
tomatically detected prominence information may prove 
to be useful, because particles are often prominent 
whereas prepositions are not [6]. 

When correlation is used as the similarity measure, the 
decision tree performance degrades about 10% in accu- 
racy, e.g., from 74% to 64% with automatically labeled 
breaks and on the reliable categories. Clearly the prob- 
abilistic score is preferable. However, the fact that the 
accuracy of the decision tree when used with the corre- 
lation score is much lower than that for the performance 
structure algorithms, suggests that some improvement is 
possible in the tree synthesis algorithm. 

6. D i s c u s s i o n  

In summary, we have introduced a decision tree synthe- 
sis algorithm and probability-based scoring method for 
use in an analysis/synthesis formalism. We have evalu- 
ated this new probabilistic synthesis/scoring mechanism 

on a set of 70 ambiguous sentences, each spoken by four 
radio announcers, and have compared performance to 
the rule-based synthesis algorithm and correlation scor- 
ing previously investigated. The performance structure 
(rule-based) synthesis algorithm and the probabilistic 
decision tree approach gave similar results. Considering 
only eight categories of structures that could be disarm 
biguated by humans with high reliability (out of fourteen 
categories investigated), the algorithms achieve disam- 
biguation performance comparable to human listeners 
when scoring hand-labeled break indices (89-91% accu- 
racy). However, as in the case of the rule-based algo- 
rithms, performance degrades to 73-74% accuracy when 
scoring automatically labeled break indices. 

The decision tree result is very encouraging, given the 
significant differences between the training and test data. 
Since the decision tree can be easily retrained for specific 
applications, performance should improve with training 
based on a larger and more representative sample of sen- 
tences. Moreover, the decision tree synthesis method 
could also be improved through the use of new questions 
and more detailed part-of-speech labels. The question 
set used here was originally chosen to classify only in- 
termediate and intonational phrases, and new questions 
about factors that are correlated with the lower level 
breaks might be particularly useful additions. 

The parse scoring algorithm on hand-labeled data shows 
some loss in accuracy relative to human performance if 
we also consider the sentences that were less reliably 
identified by the human listeners. Several different fac- 
tors probably account for this effect, including the fact 
that these sentences simply exhibit more variability. It is 
also likely that humans are using other prosodic cues in 
addition to phrase breaks to resolve ambiguities, such as 
phrasal prominence. This additional information could 
be incorporated using the analysis/synthesis approach 
with a probabilistic synthesis model that predicts both 
breaks and prominences. 

Using the parse scoring algorithms with automatically 
labeled breaks incurs a significant loss in disambigua- 
tion performance. While it is possible that further im- 
provements in the detection algorithm may be success- 
ful, using the break detection algorithm jointly with the 
probabilistic synthesis model in scoring a parse may also 
improve perfor~nance. 

While these results are encouraging, there are several is- 
sues that may affect performance in a spoken language 
system. First, the syntactic parses were hand corrected. 
Second, the sentences here represent a narrow range of 
syntactic classes and performance outside of this set may 
vary. Finally, the analysis component used phone seg- 
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Hand Labels ] Machine Labels 
Ambiguity & G-G & T-prob ] & G-G J & T-prob 

4- Parenthetical 60 70 60 35 
- P a r e n t h e t i c a l  90 70 60 70 
4- Apposition 90 100 95 90 
- Apposition 60 70 30 50 
Main-Main 55 60 85 85 
Main-Subordinate 50 65 70 60 
4- Tag 90 100 90 90 
- Tag 70 80 55 55 
Far Attach 100 65 70 65 
Near A ttach 40 70 40 55 
Left Attach 100 80 85 80 
Right Attach 100 95 90 75 
Particle 100 100 55 55 
Preposition 95 95 80 80 

Average 791 80 169 68 
Average for * 91 89 73 74 

77 
96* 
92* 
91" 
88 
54 

95* 
81 
78 
63 

94* 
95* 
82* 
81" 

84 
91 

Perception 
Human 

Table 1: Percent correct disambiguation as a function of syntactic ambiguity for: different synthesis algorithms 
compared to hand-labeled breaks (G-G: Gee/Grosjean,  T-prob: decision tree synthesis); different synthesis algorithms 
compared to automatical ly labeled breaks; and human perceptual  results. Those categories which were identified 
by human listeners with significant reliability are marked with asterisks. Percentages are based on 5 sentences from 
each of 4 speakers, giving 20 utterances in each category and 280 ut terances total. 

mentat ions from a recognizer constrained to the correct 
word sequence. While these issues need to be investi- 
gated, it is possible tha t  use of prosodic parse scoring 
may help overcome and not be limited by problems in 
other components  of a spoken language system. For ex- 
ample, it is possible tha t  using a prosodic parse score 
would enhance the overall performance of the system 
because recognition errors would yield low probabil i ty 
break index sequences. 
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