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A B S T R A C T  
The work described here focuses on recognition of the 
Wall Street Journal (WSJ) pilot database [17], a new CSR 
database which supports 5K, 20K, and up to 64K- word CSR 
tasks. The original Lincoln Tied-Mixture HMM CSR was im- 
plemented using a time-synchronous beam-pruned search of 
a static network[14] and does not extend well to this task be- 
cause the recognition network would be too large for currently 
practical workstations. Therefore, the recognizer has been 
converted to a stack decoder-based search strategy[I,7,16]. 
This decoder has been shown to function effectively on up 
to 64K-word recognition of continuous speech. This paper 
describes the acoustic modeling techniques and the imple- 
mentation of the stack decoder used to obtain these results. 

I N T R O D U C T I O N  
The original Lincoln Tied-Mixture HMM CSR was 
implemented as a single-layer static network with 
a time-synchronous (TS) beam-pruned network-search 
strategy[14]. When used with a bigram language model 
(LM), this implementation generally requires an V ~ set 
of word interconnection links. This is tractable for 
vocabulary sizes on the order of 1K, but becomes in- 
tractable for vocabulary sizes (V) of 5K or more words. 
This implementation also is incompatible with or in- 
tractable for many forms of LM, such as recursive or 
tr igram models. A stack decoder [1,7,16] with fast 
match[2,3,5] is used here to overcome the limitations of 
the original decoder structure. 

Previous work focused on a 1K word task, Resource 
Management (RM)[18], which could be handled ade- 
quately with the TS decoder. (The same decoder was 
also used on the ATIS task[13].) However, only the stack 
decoder was usable on the WSJ task. While the theory 
of the stack decoder is adequately established [1,7,16], 
many of the implementation details are still topics for 
research. One topic of particular interest is fast match 
techniques and structures. There are also a number of 
pragmatic issues to be resolved for stack decoders and 
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tree searches in general. (The stack decoder implements 
a tree search.) 

Once a functioning stack decoder was developed, it be- 
came possible to perform recognition experiments on the 
WSJ database. This allowed both further debugging 
and development of the stack decoder and exploration 
of acoustic modeling techniques. 

T H E  B A S I C  H M M  S Y S T E M  
The basic system, with the exception of the decoder, is 
very similar to the earlier Lincoln tied-mixture (TM) 
systems. The system used here has two observation 
streams (TM-2): mel-cepstra and time differential mel- 
cepstra. (Due to time limitations, the second differential 
mel-cepstral observation stream used in the TS decoder 
for SI tasks was not tested.) The system uses Gaussian 
tied mixture [4,6] observation pdfs and treats each ob- 
servation stream as if it is statistically independent of 
all others. Triphone models [20] are used to model pho- 
netic coarticulation. (Cross-word triphones, which are 
a feature of the old TS decoder, will be implemented 
later.) These models are smoothed with reduced con- 
text phone models [20]. Each phone model is a three 
state "linear" (no skip transitions) HMM. The phone 
models are trained by the forward-backward algorithm 
using an unsupervised monophone bootstrapping proce- 
dure. The recognizer extrapolates (estimates) untrained 
phone models, contains an adaptive background model, 
allows optional intermediate silences, and can use any 
left-to-right stochastic LM. The LM module is interfaced 
via a proposed CSR-NL interface[ll].  

T H E  S T A C K  D E C O D E R  
The stack decoder is organized according to the descrip- 
tion in reference [16] and uses the long-span LM search 
control strategy. The basic paradigm used by the stack 
decoder is: remove the best theory from the stack, apply 
the fast matches (FM) to find a small number of poten- 
tial successor words, evaluate the log-likelihood of these 
successors with the detailed matchs (DM), and insert the 
most promising new theories back onto the stack[2,3,5] 
This paradigm requires that  theories of different lengths 
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be compared. Therefore, this system maintains a "least- 
upper-bound so-far" (lubsf) of all previously computed 
theory output log-likelihoods. (Acoustic log-likelihoods 
and the lubsf are functions of time.) The maximum of 
the difference between this lubsf and each theory output 
log-likelihood (StSc < 0) is used to determine the best 
theory[15,16]. Theories whose StSc is less than a thresh- 
old are pruned from the stack. Reference [16] defines 
a method for estimating the most likely theory output 
time, t_exit. The stack entries are sorted by a major sort 
on t_exit and a minor sort on StSc. Thus the theories 
are extended primarily on a time basis. 

T H E  FAST M A T C H  

The acoustic fast match (AFM) algorithm used here is 
an HMM phonetic tree generated from the vocabulary[3]. 
The output log-likelihood of the current theory is input 
to the root of the tree and the paths are evaluated using 
a TS beam search. If an output state's log-likelihood 
exceeds a threshold, the corresponding word is activated 
and the best score is recorded. (All references to scores 
in this paper refer to log-likelihoods.) 

This tree search needs to be terminated to limit its 
computation. The beam pruning threshold used in the 
AFM search is computed from an estimate of the upper- 
bound of the AFM state log-likelihoods (AFM-bound) 
and, when all states are pruned, the AFM terminates. 
This AFM-bound is computed by a reentrant phonetic 
tree. (Unlike the AFM tree, the leaves of this tree con- 
nect back to the root to provide a path for a word exit 
to enter the next word. Thus the scores in the FM tree 
drop off after the word ends while the upper bound of 
the scores in the FM-bounding tree does not.) This reen- 
trant tree is, in effect, an efficient implementation of a 
no-grammar recognizer whose only output of interest is 
the AFM-bound. 

errors occur.) 

Any of a number of phonetic units can be used in these 
trees: the goal is to minimize the total time required 
to compute the FMs and the DMs without increasing 
the error rate over that of the DMs alone. An elaborate 
(and expensive) FM will minimize the DM computation 
while a very cheap FM will result in a large amount 
of DM computation. Any of a large number of pho- 
netic units can be used: triphones, left-diphones, right- 
diphones, monophones, upper bounding context phones, 
simplified network phones. (An upper bounding context 
phone is a diphone or monophone whose scores are an 
upper bound of all scores which would be produced by 
the triphones covered by the context phone. A simpli- 
fied network phone might collapse its states into fewer 
states.) The two trees need not use the same phonetic 
units and each tree can also use a mix of phonetic units. 
One extreme would be triphone trees (maximally com- 
plex for a triphone based recognizer) and the other ex- 
treme would one-state monophone trees. It is also possi- 
ble to use simplified observation pdfs to reduce the com- 
putation. Each of these variations must be tested to 
evaluate the trade-offs. The Lincoln system currently 
uses TM left-diphones in both trees. Since TM pdfs are 
relatively expensive to compute, they are cached to pre- 
vent recgmputation. 

Because the theories are searched in dominantly t_exit 
order, it is possible to further reduce the total AFM com- 
putation time by grouping all of theories on the stack 
which have t_exit's within a small time zone, add their 
output likelihoods (for a full decode), and apply this sum 
as input to a single execution of the AFM tree search. 
(Substitute maximum for sum to perform a Viterbi de- 
code.) This single AFM computation may be somewhat 
more expensive than the AFM computation for a single 
theory, but it reduces the number of AFM executions. 

Once the AFM has completed, the LM fast match 
(LMFM) log-likelihoods are added to the AFM scores 
and the result is compared to another threshold. The set 
of words which survives the second threshold is passed 
to the DMs. (If an expensive LM algorithm is used, in- 
expensive estimates of the log-likelihoods may be used in 
the LMFM. Since the N-gram LMs used in this effort are 
very cheap to compute, the exact LM DM log-likelihood 
was used.) 

If the FM-likelihood is guaranteed to be greater than or 
equal to the DM-likelihood and the FM decision thresh- 
old is the DM lubsf, the FM will be admissible. (An ad- 
missible FM is an FM which is guaranteed not to cause 
any search errors[3]. This statement also assumes the 
beam pruning is generous enough that no FM-tree search 

T H E  D E T A I L E D  M A T C H  

The DM is implemented as a one-word-at-a-time beam- 
pruned TS ttMM applied to each word which survives 
the FMs. The input likelihood for each word decode 
comes from the output likelihood array in each stack 
entry. (This theory output log-likelihood output must 
time truncated in order to fit the important portion into 
this finite array before inserting any new theory onto the 
stack.) There is rarely any difficulty fitting the output 
of a word into this array, but it may not be possible for a 
continuing sound such as a zone of background (silence). 
This is handled by using "continuable" background mod- 
els. The state of the background HMM is also stored on 
the stack and a long background is modeled as a suc- 
cession of theories ending in background. (Of course, 
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normal input is possible only for the first of this series of 
background theories. The later theories rely on the state 
information.) This also enables a theory to decide that 
a transition to background has occurred without waiting 
for the next word to begin. 

In reference [15], a technique for eliminating theories 
from the stack which are "covered" by an "LM-future- 
equivalent" (LMF-equivaient) theory is proposed. (One 
theory covers another if all entries in its output log- 
likelihood array are greater than those of the second 
theory at the corresponding times.) Two theories are 
LMF-equivalent if the probabilities of all future word 
sequences are the same for both theories. Thus, for 
an N-gram LM, any theories which share the same N- 
1 final words are LMF-equivalent. Any LMF-equivalent 
covered theory can never beat its covering theory and 
therefore can be eliminated. This is analogous to a 
path join in a TS decoder. The mechanism also serves 
to eliminate the poorer of two theories which differ 
only in optional inter-word backgrounds. (Since op- 
tional inter-word backgrounds are not considered by the 
LM, they may be eliminated before determinating LMF- 
equivalence.) For any limited left-context-span LM, this 
mechanism prevents the exponential theory growth that 
can occur in a tree search. 

The words passed to the DM by the FM are generally 
acoustically similar and thus frequently share many of 
the triphones. Therefore the same observation pdfs are 
likely to be needed more than once. As in the FM, the 
TM likelihoods are cached to minimize the cost of reuse. 

This stack decoder does not yet include cross-word pho- 
netic models. It will be possible to add them to the sys- 
tem, but they will certainly increase the complexity of 
the acoustic DM and perhaps also of the AFM (depend- 
ing on the type of phonetic unit used in the AFM). Since 
the system still has some known difficulties/bugs, the im- 
plementation of the cross-word phonetic models will be 
delayed until these problems are under control. Since 
the 5K word WSJ vocabulary already contains over 6K 
word-internal triphones and cross-word triphone mod- 
els will greatly increase this number, practical machine 
size limits dictate that clustered triphones [9,10] or lower 
context phonetic units, such as semiphones [14], be used 
to reduce the memory required to implement cross-word 
phonetic models. 

R E C O G N I T I O N  RESULTS 

The initial work developing and implementing the above 
described stack decoder was performed using the Re- 
source Management (RM) database[18]. The WSJ-pilot 
database training and development-test data has only 

been fully available for about 5 weeks (as of this writ- 
ing) and therefore the number of experiments that have 
been performed on it is limited. Where possible, results 
will be reported on the WSJ-pilot database, but some 
results will be quoted from work performed on the RM 
databases. All results must be considered preliminary, 
particularly since, as noted above, only non-cross-word 
triphones are being used and the recognizer has known 
but as yet unfixed algorithmic/implementation bugs. 

One result that became obvious very quickly after tran- 
sitioning to the WSJ data was that algorithmic decisions 
made on the RM data could be very inappropriate for the 
WSJ task (and presumably any similar large vocabulary 
task). For instance, work on the RM task suggested that 
a triphone FM tree with a monophone FM-bounding 
tree was a good choice for the AFM. This worked very 
well for RM but rather slowly for WSJ. The triphone 
FM dominated the computation and was so slow that it 
slowed down the entire system. The diphone trees men- 
tioned above were significantly faster for WSJ and still 
worked very well for RM. Similarly, the run-times are 
much longer and the recognition error rates are much 
higher for WSJ experiments indicating that it is a sig- 
nificantly harder task than RM. The stack decoder is 
also more than an order-of-magnitude faster than the 
TS decoder on an RM with a (full-branching) bigram 
LM task. 

A series of no-LM tests using RM training and test data 
was performed to demonstrate the large vocabulary ca- 
pability of the stack decoder. Since a dictionary was not 
available at the time this test was performed, a "tri- 
letter" dictionary was used (ie. each three letter se- 
quence is used in the same fashion as one would use 
a triphone). The recognizer used RM words augmented 
with WSJ words to achieve the desired vocabulary. Over 
a vocabulary size range of 1K to 64K words, the system 
ran effectively with computation time proportional to 
the square root of the vocabulary size. The stack decoder 
used in this test contained a triphone-based FM and thus 
this result is mostly indicative of the FM computational 
requirements. This decoder was also demonstrated on 
the 64K-word task using a perplexity 79 bigram LM. 

The stack decoder was tested on a variety of the con- 
ditions provided by the WSJ-pilot database (Table 1). 
Due to the limited time available and the immature state 
of the decoder, only a subset of the available conditions 
could be tested. Since we were primarily interested in the 
performance of the decoder, only closed vocabulary tests 
were performed. (In a closed vocabulary test, all words 
in the test set are in the recognizer's vocabulary.) The 
language models are N-gram back-off LMs[8,12]. The bi- 
gram models are "baseline" models and the dictionary is 
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a function word dependent triphone dictionary derived 
from the "baseline" dictionary supplied by Dragon. (The 
baseline components are standardized components sup- 
plied with the database[17].) 

Inspection of the actual output of the system reveals a 
non-trivial number of malfunctions. (The total effect of 
these problems on the results is probably less than 10% 
of the numbers in Table 1.) In some cases, the likelihood 
of the output sentence is less than the likelihood of the 
correct sentence. This could be caused by a pruning 
error (either FM or DM) or a bug in one (or more) of 
the routines. Another problem which shows up is an 
incorrect likelihood for the output theory, probably due 
to occasional errors in locating the most likely output 
time for a theory (t_ezit). 

Inspection of these results (Table 1) suggests several ob-' 
servations. Comparison of lines 2 and 3 show a signifi- 
cant improvement (8.0% v. 10.1% word error) when 2400 
rather than 600 SD training sentences are used. Thus, 
the "knee" in the function of performance vs. amount 
of training data is not reached by 600 SD training sen- 
tences. Comparison of the LSD trained systems shows 
the error rate to increase less than linearly with the 
perplexity: V=5K, p=44: 6.0%; V=5K, p=80: 8.0%; 
V=5K, p=l18: 10.5%; V=20K, p=158: 13.6%; and 
V=20K, p=236: 18.0%. 

R A P I D  S P E A K E R  E N R O L L M E N T  

There are four basic methods of producing acoustic mod- 
els for speech recognition: static SI training, static SD 
training, rapid speaker enrollment, and recognition-time 
adaptation. The two static methods train the models 
using prerecorded data and do not change the models 
thereafter. Rapid speaker enrollment records a small 
amount of data from a speaker and uses the data to 
adapt an existing set of models. Recognition-time adap- 
tation adapts the models to the speaker during the recog- 
nition process and may be supervised or unsupervised 
depending on whether or not the speaker corrects the 
recognition output. We have added a rapid enrollment 
mode to our TM trainer. 

The rapid enrollment algorithm used is: read an existing 
set of TM models into the trainer and adapt (train) only 
the Gaussians based upon the new data[19]. To date, 
only a few pilot experiments using one test speaker have 
been performed, shown in Table 2. (The recognition 
experiments were performed using an obsolete version 
of the recognizer with a higher error rate than the one 
used to produce the database results, so the two tables 
should not be compared.) These results suggest that the 
adaptation algorithm is operational, but are too statis- 

402 

tically weak to draw any firm conclusions. They suggest 
that another speaker's SD models may give poor ini- 
tial performance, but are improved significantly by the 
rapid enrollment process. Both SI models perform bet- 
ter initially, but are only improved a small amount by 
the enrollment. All three sets of rapid-enrolled models 
gave similar performance. And, as usual, SD models, 
given enough training data, yield the best performance. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

The results of these investigations suggest that the stack 
decoder will be a viable competitor to time synchronous 
approaches. (This should come as no surprise since IBM 
has had operational stack decoders for years[l].) These 
results also show that a number of additional strategies, 
such as covered LMF-equivalent theory elimination are 
necessary to achieve useful speeds. (In one test where a 
bug prevented the covered LMF-equivalent theory elim- 
ination, a 4000 element stack overflowed after 10 CPU 
hours. After the bug was fixed, the sentence decoded in 
10 minutes with a maximum stack size of less than 100. 
This much improvement while dramatic, was rare--the 
system with the bug successfully decoded many other 
sentences.) Very few sentences require a stack size ex- 
ceeding a few hundred theories. Several other tech- 
niques, such as efficient fast matches and sharing each 
fast match across a group of theories--which can limit 
the number of acoustic fast matches to less than one per 
input observation were found to be important. Tied mix- 
ture pdfs are expensive to compute and the caching of 
the pdfs is also vital to achieving adequate speeds. Even 
with the caching, the pdf computation can be the single 
most expensive operation. 

The tests on rapid speaker enrollment reported here are 
little more than pilot tests for debugging purposes and no 
strong conclusions can be drawn. The results, however, 
show promise and will require more rigorous testing. 

So far, we have not addressed such issues as recognition- 
time speaker adaptation and language-model adaptation 
(ie. handling out-of-vocabulary words at recognition 
time). The current tests show error propagation not to 
be a serious problem, so the initial reaction to an out-of- 
vocabulary word--a recognition error--should not cause 
problems elsewhere in the input. Nor have we had a 
chance to test on the spontaneous data recorded as part 
of the WSJ-pilot database. 

The recognition results achieved on the WSJ-pilot 
database are encouraging. Even without cross-word pho- 
netic models (cross-word phonetic models halved our er- 
ror rates for RM using the TS decoder[14]), the error 
rates are high enough to show the WSJ task to be very 



challenging, but  not so high tha t  one is intimidated by 
the task. We hope to improve our future performance by 
fixing some of the bugs, by improving the quality of our 
modeling techniques, and by making the system more 
able to adapt  to its user and environment.  
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. 

2. 
3. 
4. 
5. 

. 

7. SI-84 
8. SI-12 

9. LSD 
10. LSD 

Tr. sent Punct Vocab LM Perp Wd err (std dev)-] 
LSD 2400 
LSD 2400 
SD (LSD)* 600 
LSD 2400 
SD 600 
SI-84 7200 

7200 
7200 

2400 
2400 

VP 5K TG 44 6.0% (.5%) 
VP 5K BG 80 8.0% (.6%) 
VP 5K BG 80 10.1% (.6%) 

NVP 5K BG 118 10.5% (.7%) 
VP 5K BG 80 12.6% (.4%) 
VP 5K TG 44 15.0% (.8%) 
VP 5K BG 80 19.3% (.8%) 
VP 5K BG 80 21.7% (.8%) 

20K BG 236 18.0% (.8%) 

Table 1: WSJ Development Test Results: • LSD speaker subset of line 5; LSD=longitudinal SD (3 spkr subset of SD); 
SD: 12 speakers; SI-84: train on 84 speakers, test on 10 SI-test speakers; SI-12: trained on all 12 SD speakers, test 
on 10 SI-test speakers; VP=verbalized punctuation; NVP=non-verbalized punctuation; TG=trigram; BG=bigram; 
std dev=binomial standard deviation; The dictionary is a function-word dependent triphone dictionary. All bigram 
language models are the "baseline" models and all tests use a closed recognition vocabulary. 

LSD-2400 (test speaker) 
LSD-2400 (test speaker) 

LSD-2400 (non-test speaker) 
LSD-2400 (non-test speaker) 

SI-84 

SI-12 
SI-12 

n o  

yes 

n o  

yes 

n o  

yes 

n o  

yes 

11% 
13% 

30% 
21% 

22% 
18% 

19% 
18% 

Standard LSD 
(control) 

Standard SI-84 

Standard SI-12 

Table 2: Rapid Enrollment Test Results: These are pilot results tested on one non-database speaker using an obsolete 
version of the stack decoder and a non-standard (biased) set of 20 short WSJ test sentences containing 168 words, 
so comparisons should not be made with the development test results. The standard deviation of the error rates is 
about 3%. Enrollment was performed using the standard WSJ 40 adaptation sentences recorded by the test speaker. 
Test conditions: 1 speaker, VP, 5K, BG (p=80). 
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