
T h e Lincoln Large -Vocabulary H M M CSR*
Douglas B. Paul

Lincoln Laboratory, MIT
Lexington, Ma. 02173

A B S T R A C T
The work described here focuses on recognition of the
Wall Street Journal (WSJ) pilot database [17], a new CSR
database which supports 5K, 20K, and up to 64K- word CSR
tasks. The original Lincoln Tied-Mixture HMM CSR was im-
plemented using a time-synchronous beam-pruned search of
a static network[14] and does not extend well to this task be-
cause the recognition network would be too large for currently
practical workstations. Therefore, the recognizer has been
converted to a stack decoder-based search strategy[I,7,16].
This decoder has been shown to function effectively on up
to 64K-word recognition of continuous speech. This paper
describes the acoustic modeling techniques and the imple-
mentation of the stack decoder used to obtain these results.

I N T R O D U C T I O N
The original Lincoln Tied-Mixture HMM CSR was
implemented as a single-layer static network with
a time-synchronous (TS) beam-pruned network-search
strategy[14]. When used with a bigram language model
(LM), this implementation generally requires an V ~ set
of word interconnection links. This is tractable for
vocabulary sizes on the order of 1K, but becomes in-
tractable for vocabulary sizes (V) of 5K or more words.
This implementation also is incompatible with or in-
tractable for many forms of LM, such as recursive or
tr igram models. A stack decoder [1,7,16] with fast
match[2,3,5] is used here to overcome the limitations of
the original decoder structure.

Previous work focused on a 1K word task, Resource
Management (RM)[18], which could be handled ade-
quately with the TS decoder. (The same decoder was
also used on the ATIS task[13].) However, only the stack
decoder was usable on the WSJ task. While the theory
of the stack decoder is adequately established [1,7,16],
many of the implementation details are still topics for
research. One topic of particular interest is fast match
techniques and structures. There are also a number of
pragmatic issues to be resolved for stack decoders and

*This work was sponsored by the Defense Advanced Research
Projects Agency. The views expressed are those of the author and
do not reflect the official policy or position of the U.S. Government.

tree searches in general. (The stack decoder implements
a tree search.)

Once a functioning stack decoder was developed, it be-
came possible to perform recognition experiments on the
WSJ database. This allowed both further debugging
and development of the stack decoder and exploration
of acoustic modeling techniques.

T H E B A S I C H M M S Y S T E M
The basic system, with the exception of the decoder, is
very similar to the earlier Lincoln tied-mixture (TM)
systems. The system used here has two observation
streams (TM-2): mel-cepstra and time differential mel-
cepstra. (Due to time limitations, the second differential
mel-cepstral observation stream used in the TS decoder
for SI tasks was not tested.) The system uses Gaussian
tied mixture [4,6] observation pdfs and treats each ob-
servation stream as if it is statistically independent of
all others. Triphone models [20] are used to model pho-
netic coarticulation. (Cross-word triphones, which are
a feature of the old TS decoder, will be implemented
later.) These models are smoothed with reduced con-
text phone models [20]. Each phone model is a three
state "linear" (no skip transitions) HMM. The phone
models are trained by the forward-backward algorithm
using an unsupervised monophone bootstrapping proce-
dure. The recognizer extrapolates (estimates) untrained
phone models, contains an adaptive background model,
allows optional intermediate silences, and can use any
left-to-right stochastic LM. The LM module is interfaced
via a proposed CSR-NL interface[ll].

T H E S T A C K D E C O D E R
The stack decoder is organized according to the descrip-
tion in reference [16] and uses the long-span LM search
control strategy. The basic paradigm used by the stack
decoder is: remove the best theory from the stack, apply
the fast matches (FM) to find a small number of poten-
tial successor words, evaluate the log-likelihood of these
successors with the detailed matchs (DM), and insert the
most promising new theories back onto the stack[2,3,5]
This paradigm requires that theories of different lengths

399

be compared. Therefore, this system maintains a "least-
upper-bound so-far" (lubsf) of all previously computed
theory output log-likelihoods. (Acoustic log-likelihoods
and the lubsf are functions of time.) The maximum of
the difference between this lubsf and each theory output
log-likelihood (StSc < 0) is used to determine the best
theory[15,16]. Theories whose StSc is less than a thresh-
old are pruned from the stack. Reference [16] defines
a method for estimating the most likely theory output
time, t_exit. The stack entries are sorted by a major sort
on t_exit and a minor sort on StSc. Thus the theories
are extended primarily on a time basis.

T H E FAST M A T C H

The acoustic fast match (AFM) algorithm used here is
an HMM phonetic tree generated from the vocabulary[3].
The output log-likelihood of the current theory is input
to the root of the tree and the paths are evaluated using
a TS beam search. If an output state's log-likelihood
exceeds a threshold, the corresponding word is activated
and the best score is recorded. (All references to scores
in this paper refer to log-likelihoods.)

This tree search needs to be terminated to limit its
computation. The beam pruning threshold used in the
AFM search is computed from an estimate of the upper-
bound of the AFM state log-likelihoods (AFM-bound)
and, when all states are pruned, the AFM terminates.
This AFM-bound is computed by a reentrant phonetic
tree. (Unlike the AFM tree, the leaves of this tree con-
nect back to the root to provide a path for a word exit
to enter the next word. Thus the scores in the FM tree
drop off after the word ends while the upper bound of
the scores in the FM-bounding tree does not.) This reen-
trant tree is, in effect, an efficient implementation of a
no-grammar recognizer whose only output of interest is
the AFM-bound.

errors occur.)

Any of a number of phonetic units can be used in these
trees: the goal is to minimize the total time required
to compute the FMs and the DMs without increasing
the error rate over that of the DMs alone. An elaborate
(and expensive) FM will minimize the DM computation
while a very cheap FM will result in a large amount
of DM computation. Any of a large number of pho-
netic units can be used: triphones, left-diphones, right-
diphones, monophones, upper bounding context phones,
simplified network phones. (An upper bounding context
phone is a diphone or monophone whose scores are an
upper bound of all scores which would be produced by
the triphones covered by the context phone. A simpli-
fied network phone might collapse its states into fewer
states.) The two trees need not use the same phonetic
units and each tree can also use a mix of phonetic units.
One extreme would be triphone trees (maximally com-
plex for a triphone based recognizer) and the other ex-
treme would one-state monophone trees. It is also possi-
ble to use simplified observation pdfs to reduce the com-
putation. Each of these variations must be tested to
evaluate the trade-offs. The Lincoln system currently
uses TM left-diphones in both trees. Since TM pdfs are
relatively expensive to compute, they are cached to pre-
vent recgmputation.

Because the theories are searched in dominantly t_exit
order, it is possible to further reduce the total AFM com-
putation time by grouping all of theories on the stack
which have t_exit's within a small time zone, add their
output likelihoods (for a full decode), and apply this sum
as input to a single execution of the AFM tree search.
(Substitute maximum for sum to perform a Viterbi de-
code.) This single AFM computation may be somewhat
more expensive than the AFM computation for a single
theory, but it reduces the number of AFM executions.

Once the AFM has completed, the LM fast match
(LMFM) log-likelihoods are added to the AFM scores
and the result is compared to another threshold. The set
of words which survives the second threshold is passed
to the DMs. (If an expensive LM algorithm is used, in-
expensive estimates of the log-likelihoods may be used in
the LMFM. Since the N-gram LMs used in this effort are
very cheap to compute, the exact LM DM log-likelihood
was used.)

If the FM-likelihood is guaranteed to be greater than or
equal to the DM-likelihood and the FM decision thresh-
old is the DM lubsf, the FM will be admissible. (An ad-
missible FM is an FM which is guaranteed not to cause
any search errors[3]. This statement also assumes the
beam pruning is generous enough that no FM-tree search

T H E D E T A I L E D M A T C H

The DM is implemented as a one-word-at-a-time beam-
pruned TS ttMM applied to each word which survives
the FMs. The input likelihood for each word decode
comes from the output likelihood array in each stack
entry. (This theory output log-likelihood output must
time truncated in order to fit the important portion into
this finite array before inserting any new theory onto the
stack.) There is rarely any difficulty fitting the output
of a word into this array, but it may not be possible for a
continuing sound such as a zone of background (silence).
This is handled by using "continuable" background mod-
els. The state of the background HMM is also stored on
the stack and a long background is modeled as a suc-
cession of theories ending in background. (Of course,

400

normal input is possible only for the first of this series of
background theories. The later theories rely on the state
information.) This also enables a theory to decide that
a transition to background has occurred without waiting
for the next word to begin.

In reference [15], a technique for eliminating theories
from the stack which are "covered" by an "LM-future-
equivalent" (LMF-equivaient) theory is proposed. (One
theory covers another if all entries in its output log-
likelihood array are greater than those of the second
theory at the corresponding times.) Two theories are
LMF-equivalent if the probabilities of all future word
sequences are the same for both theories. Thus, for
an N-gram LM, any theories which share the same N-
1 final words are LMF-equivalent. Any LMF-equivalent
covered theory can never beat its covering theory and
therefore can be eliminated. This is analogous to a
path join in a TS decoder. The mechanism also serves
to eliminate the poorer of two theories which differ
only in optional inter-word backgrounds. (Since op-
tional inter-word backgrounds are not considered by the
LM, they may be eliminated before determinating LMF-
equivalence.) For any limited left-context-span LM, this
mechanism prevents the exponential theory growth that
can occur in a tree search.

The words passed to the DM by the FM are generally
acoustically similar and thus frequently share many of
the triphones. Therefore the same observation pdfs are
likely to be needed more than once. As in the FM, the
TM likelihoods are cached to minimize the cost of reuse.

This stack decoder does not yet include cross-word pho-
netic models. It will be possible to add them to the sys-
tem, but they will certainly increase the complexity of
the acoustic DM and perhaps also of the AFM (depend-
ing on the type of phonetic unit used in the AFM). Since
the system still has some known difficulties/bugs, the im-
plementation of the cross-word phonetic models will be
delayed until these problems are under control. Since
the 5K word WSJ vocabulary already contains over 6K
word-internal triphones and cross-word triphone mod-
els will greatly increase this number, practical machine
size limits dictate that clustered triphones [9,10] or lower
context phonetic units, such as semiphones [14], be used
to reduce the memory required to implement cross-word
phonetic models.

R E C O G N I T I O N RESULTS

The initial work developing and implementing the above
described stack decoder was performed using the Re-
source Management (RM) database[18]. The WSJ-pilot
database training and development-test data has only

been fully available for about 5 weeks (as of this writ-
ing) and therefore the number of experiments that have
been performed on it is limited. Where possible, results
will be reported on the WSJ-pilot database, but some
results will be quoted from work performed on the RM
databases. All results must be considered preliminary,
particularly since, as noted above, only non-cross-word
triphones are being used and the recognizer has known
but as yet unfixed algorithmic/implementation bugs.

One result that became obvious very quickly after tran-
sitioning to the WSJ data was that algorithmic decisions
made on the RM data could be very inappropriate for the
WSJ task (and presumably any similar large vocabulary
task). For instance, work on the RM task suggested that
a triphone FM tree with a monophone FM-bounding
tree was a good choice for the AFM. This worked very
well for RM but rather slowly for WSJ. The triphone
FM dominated the computation and was so slow that it
slowed down the entire system. The diphone trees men-
tioned above were significantly faster for WSJ and still
worked very well for RM. Similarly, the run-times are
much longer and the recognition error rates are much
higher for WSJ experiments indicating that it is a sig-
nificantly harder task than RM. The stack decoder is
also more than an order-of-magnitude faster than the
TS decoder on an RM with a (full-branching) bigram
LM task.

A series of no-LM tests using RM training and test data
was performed to demonstrate the large vocabulary ca-
pability of the stack decoder. Since a dictionary was not
available at the time this test was performed, a "tri-
letter" dictionary was used (ie. each three letter se-
quence is used in the same fashion as one would use
a triphone). The recognizer used RM words augmented
with WSJ words to achieve the desired vocabulary. Over
a vocabulary size range of 1K to 64K words, the system
ran effectively with computation time proportional to
the square root of the vocabulary size. The stack decoder
used in this test contained a triphone-based FM and thus
this result is mostly indicative of the FM computational
requirements. This decoder was also demonstrated on
the 64K-word task using a perplexity 79 bigram LM.

The stack decoder was tested on a variety of the con-
ditions provided by the WSJ-pilot database (Table 1).
Due to the limited time available and the immature state
of the decoder, only a subset of the available conditions
could be tested. Since we were primarily interested in the
performance of the decoder, only closed vocabulary tests
were performed. (In a closed vocabulary test, all words
in the test set are in the recognizer's vocabulary.) The
language models are N-gram back-off LMs[8,12]. The bi-
gram models are "baseline" models and the dictionary is

401

a function word dependent triphone dictionary derived
from the "baseline" dictionary supplied by Dragon. (The
baseline components are standardized components sup-
plied with the database[17].)

Inspection of the actual output of the system reveals a
non-trivial number of malfunctions. (The total effect of
these problems on the results is probably less than 10%
of the numbers in Table 1.) In some cases, the likelihood
of the output sentence is less than the likelihood of the
correct sentence. This could be caused by a pruning
error (either FM or DM) or a bug in one (or more) of
the routines. Another problem which shows up is an
incorrect likelihood for the output theory, probably due
to occasional errors in locating the most likely output
time for a theory (t_ezit).

Inspection of these results (Table 1) suggests several ob-'
servations. Comparison of lines 2 and 3 show a signifi-
cant improvement (8.0% v. 10.1% word error) when 2400
rather than 600 SD training sentences are used. Thus,
the "knee" in the function of performance vs. amount
of training data is not reached by 600 SD training sen-
tences. Comparison of the LSD trained systems shows
the error rate to increase less than linearly with the
perplexity: V=5K, p=44: 6.0%; V=5K, p=80: 8.0%;
V=5K, p=l18: 10.5%; V=20K, p=158: 13.6%; and
V=20K, p=236: 18.0%.

R A P I D S P E A K E R E N R O L L M E N T

There are four basic methods of producing acoustic mod-
els for speech recognition: static SI training, static SD
training, rapid speaker enrollment, and recognition-time
adaptation. The two static methods train the models
using prerecorded data and do not change the models
thereafter. Rapid speaker enrollment records a small
amount of data from a speaker and uses the data to
adapt an existing set of models. Recognition-time adap-
tation adapts the models to the speaker during the recog-
nition process and may be supervised or unsupervised
depending on whether or not the speaker corrects the
recognition output. We have added a rapid enrollment
mode to our TM trainer.

The rapid enrollment algorithm used is: read an existing
set of TM models into the trainer and adapt (train) only
the Gaussians based upon the new data[19]. To date,
only a few pilot experiments using one test speaker have
been performed, shown in Table 2. (The recognition
experiments were performed using an obsolete version
of the recognizer with a higher error rate than the one
used to produce the database results, so the two tables
should not be compared.) These results suggest that the
adaptation algorithm is operational, but are too statis-

402

tically weak to draw any firm conclusions. They suggest
that another speaker's SD models may give poor ini-
tial performance, but are improved significantly by the
rapid enrollment process. Both SI models perform bet-
ter initially, but are only improved a small amount by
the enrollment. All three sets of rapid-enrolled models
gave similar performance. And, as usual, SD models,
given enough training data, yield the best performance.

D I S C U S S I O N A N D C O N C L U S I O N S

The results of these investigations suggest that the stack
decoder will be a viable competitor to time synchronous
approaches. (This should come as no surprise since IBM
has had operational stack decoders for years[l].) These
results also show that a number of additional strategies,
such as covered LMF-equivalent theory elimination are
necessary to achieve useful speeds. (In one test where a
bug prevented the covered LMF-equivalent theory elim-
ination, a 4000 element stack overflowed after 10 CPU
hours. After the bug was fixed, the sentence decoded in
10 minutes with a maximum stack size of less than 100.
This much improvement while dramatic, was rare--the
system with the bug successfully decoded many other
sentences.) Very few sentences require a stack size ex-
ceeding a few hundred theories. Several other tech-
niques, such as efficient fast matches and sharing each
fast match across a group of theories--which can limit
the number of acoustic fast matches to less than one per
input observation were found to be important. Tied mix-
ture pdfs are expensive to compute and the caching of
the pdfs is also vital to achieving adequate speeds. Even
with the caching, the pdf computation can be the single
most expensive operation.

The tests on rapid speaker enrollment reported here are
little more than pilot tests for debugging purposes and no
strong conclusions can be drawn. The results, however,
show promise and will require more rigorous testing.

So far, we have not addressed such issues as recognition-
time speaker adaptation and language-model adaptation
(ie. handling out-of-vocabulary words at recognition
time). The current tests show error propagation not to
be a serious problem, so the initial reaction to an out-of-
vocabulary word--a recognition error--should not cause
problems elsewhere in the input. Nor have we had a
chance to test on the spontaneous data recorded as part
of the WSJ-pilot database.

The recognition results achieved on the WSJ-pilot
database are encouraging. Even without cross-word pho-
netic models (cross-word phonetic models halved our er-
ror rates for RM using the TS decoder[14]), the error
rates are high enough to show the WSJ task to be very

challenging, but not so high tha t one is intimidated by
the task. We hope to improve our future performance by
fixing some of the bugs, by improving the quality of our
modeling techniques, and by making the system more
able to adapt to its user and environment.

R E F E R E N C E S
1. L. R. Bahl, F. Jelinek, and R. L. Mercer, "A Maxi-

mum Likelihood Approach to Continuous Speech Recog-
nition," IEEE Trans. Pattern Analysis and Machine In-
telligence, PAMI-5, March 1983.

2. L. Bahl, P. S. Gopalakrishnam, D. Kanevsky, D. Na-
hamoo, "Matrix Fast Match: A Fast Method for Iden-
tifying a Short List of Candidate Words for Decoding,"
ICASSP 89, Glasgow, May 1989.

3. L. Bahl, S. V. De Gennaro, P. S. Gopalakrishnam, R. L.
Mercer, "A Fast Approximate Acoustic Match for Large
Vocabulary Speech Recognition," submitted to ASSP.

4. J.R. Bellegaxda and D.H. Nahamoo, "Tied Mixture Con-
tinuous Parameter Models for Large Vocabulary Isolated
Speech Recognition," Proc. ICASSP 89, Glasgow, May
1989.

5. L. S. Gillick and R. Roth, "A Rapid Match Algorithm
for Continuous Speech Recognition," Proceedings June
1990 Speech and Natural Language Workshop, Morgan
Kanfmann Publishers, June, 1990.

6. X. D. I-Iuang and M.A. Jack, "Semi-continuous Hid-
den Markov Models for Speech Recognition," Computer
Speech and Language, Vol. 3, 1989.

7. F. Jelinek, "A Fast Sequential Decoding Algorithm Us-
ing a Stack," IBM J. Res. Develop., vol. 13, November
1969.

8. S. M. Katz, "Estimation of Probabilities from Sparse
Data for the Language Model Component of a Speech
Recognizer," ASSP-35, pp 400-401, March 1987.

9. K. F. Lee, Automatic Speech Recognition: The Devel-
opment o] the SPHINX System, Kluwer Academic Pub-
lishers, Norwell, MA, 1989.

10. D.B. Paul and E. A. Martin, "Speaker Stress-Resistant
Continuous Speech Recognition," Proc. ICASSP 88,
New York, NY, April 1988.

11. D. B. Paul, "A CSR-NL Interface Specification," Pro-
ceedings October, 1989 DARPA Speech and Natural
Language Workshop, Morgan Kaufmann Publishers,
October, 1989.

12. D. B. Paul, "Experience with a Stack Decoder-Based
HMM CSR and Back-Off N-Gram Language Models,"
Proc. DARPA Speech and Natural Language Workshop,
Morgan Kaufmann Publishers, Feb. 1991.

13. D. B. Paul, "New Results with the Lincoln Tied-Mixture
HMM CSR System," Proceedings Fourth DARPA
Speech and Natural Language Workshop, Morgan Kanf-
mann Publishers, February, 1991.

14. D. B. Paul, "The Lincoln Tied-Mixture HMM Contin-
uous Speech Recognizer," ICASSP 91, Toronto, May
1991.

15. D. B. Paul, "Algorithms for an Optimal A* Search and
Linearizing the Search in the Stack Decoder," ICASSP
91, Toronto, May 1991.

16. D. B. Paul, "An Efficient A* Stack Decoder Algorithm
for Continuous Speech Recognition with a Stochastic
Language Model," this proceedings.

17. D. B. Paul and J. M. Baker, "The Design for the Wall
Street Journal-based CSR Corpus," this proceedings.

18. P. Price, W. Fisher, J. Bernstein, and D. Pallett, "The
DARPA 1000-Word Resource Management Database
for Continuous Speech Recognition," ICASSP 88, New
York, April 1988.

19. D. Rtischev, "Speaker Adaptation in a Large-
Vocabulary Speech Recognition System," Masters The-
sis, MIT, 1989.

20. R Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Kras-
ner, and J. Makhoul, "Context-Dependent Modeling for
Acoustic-Phonetic Recognition of Continuous Speech,"
Proc. ICASSP 85, Tampa, FL, April 1985.

403

.

2.
3.
4.
5.

.

7. SI-84
8. SI-12

9. LSD
10. LSD

Tr. sent Punct Vocab LM Perp Wd err (std dev)-]
LSD 2400
LSD 2400
SD (LSD)* 600
LSD 2400
SD 600
SI-84 7200

7200
7200

2400
2400

VP 5K TG 44 6.0% (.5%)
VP 5K BG 80 8.0% (.6%)
VP 5K BG 80 10.1% (.6%)

NVP 5K BG 118 10.5% (.7%)
VP 5K BG 80 12.6% (.4%)
VP 5K TG 44 15.0% (.8%)
VP 5K BG 80 19.3% (.8%)
VP 5K BG 80 21.7% (.8%)

20K BG 236 18.0% (.8%)

Table 1: WSJ Development Test Results: • LSD speaker subset of line 5; LSD=longitudinal SD (3 spkr subset of SD);
SD: 12 speakers; SI-84: train on 84 speakers, test on 10 SI-test speakers; SI-12: trained on all 12 SD speakers, test
on 10 SI-test speakers; VP=verbalized punctuation; NVP=non-verbalized punctuation; TG=trigram; BG=bigram;
std dev=binomial standard deviation; The dictionary is a function-word dependent triphone dictionary. All bigram
language models are the "baseline" models and all tests use a closed recognition vocabulary.

LSD-2400 (test speaker)
LSD-2400 (test speaker)

LSD-2400 (non-test speaker)
LSD-2400 (non-test speaker)

SI-84

SI-12
SI-12

n o

yes

n o

yes

n o

yes

n o

yes

11%
13%

30%
21%

22%
18%

19%
18%

Standard LSD
(control)

Standard SI-84

Standard SI-12

Table 2: Rapid Enrollment Test Results: These are pilot results tested on one non-database speaker using an obsolete
version of the stack decoder and a non-standard (biased) set of 20 short WSJ test sentences containing 168 words,
so comparisons should not be made with the development test results. The standard deviation of the error rates is
about 3%. Enrollment was performed using the standard WSJ 40 adaptation sentences recorded by the test speaker.
Test conditions: 1 speaker, VP, 5K, BG (p=80).

404

