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ABSTRACT 

This paper reports recent efforts to apply the speaker-independent 
SPHINX-H system to the DARPA Wall Street Journal continuous 
speech recognition task. In SPHINX-H, we incorporated ad- 
ditional dynamic and speaker-normalized features, replaced dis- 
crete models with sex-dependent semi-continuous hidden Markov 
models, augmented within-word triphones with between-word 
triphones, and extended generalized triphone models to shared- 
distribution models. The configuration of SPHINX-II being used 
for this task includes sex-dependent, semi-continuous, shared- 
distribution hidden Markov models and left context dependent 
between-word triphones. In applying our technology to this task 
we addressed issues that were not previously of concern owing to 
the (relatively) small size of the Resource Management task. 1 

1. Introduction 

Extending a continuous speech recognition system to a 
larger vocabulary and more general task domain requires 
more than a new dictionary and language model. The 
primary problem in the application of the SPHINX-II [1] 
system to the Wall Street Journal (WSJ) CSR task was to 
extend the Viterbi beam-search used in the SPHINX [2] 
system to be able to run experiments given the constraints 
of available processing and memory resources. 

First, we developed a practical form of between-word co- 
articulation modelng that was both time and memory ef- 
ficient The use of left context dependent between-word 
triphones is a departure from the left and fight between- 
word context modeling but it allows the system to retain 
partial between-word co-articulation modelng despite the 
size and complexity of the task. Second, we significantly 
reduced the size of the memory required. To reduce the 
memory requirements of our search component it was 
necessary to change the Viterbi evaluation to use an in- 

1This research is spomm~'ed by the Defense Advanced Research Projects Aganey, 
DoD, through J~pA Order 7239, and monitored by the Space and Naval Warfare 
Systems Cenamand under contract N00039-91-C-0158. Views and cenclusions 
contained in this document are those of the authors and should not be interpreted a s  

representing official polieie~, either expxessed or implied, of the Defense Advanced 
Research Pr'ojeets Agency or of the United States Government. 

place algorithm instead of a non-in-place one. Additionally 
we replaced the stack data structure used to recover the 
word sequence from the search, with a dictionary data 
structure. We decoupled the proto-type HMM state tran- 
sition probabilities from the word specific HMM instances 
to avoid duplicating memory. We also found that our 
pointerless implementation of the HMM topology saved us 
both memory and time. Finally, we improved decoding 
efficiency substantially. One way to improve decoder ef- 
ficiency is to reduce the search space. SPHINX-II reduces 
the search space with three pruning thresholds that are ap- 
plied at the state, model, and word levels. In addition, 
evaluating a state requires an acoustic score computation 
and a graph update operation. Both of these operations run 
in constant time over one state. For discrete models, the 
cost of computing the acoustic score was on a par with the 
graph update operation since the acoustic score was com- 
puted by table lookup. With the introduction of semi- 
continuous models the cost of computing the acoustic 
score in the straight forward implementation is as much as 
an order of magnitude greater than the discrete model. This 
increase directly effects the overall time required by the 
search. To address this problem we decomposed the 
search into four phases. Shared distribution probability 
computation, HMM arc evaluation, active HMM instance 
evaluation and language model application. The shared 
distribution probability computation and HMM arc evalua- 
tion allow us to share computations that potentially would 
be repeated many times. Lastly, the introduction of full 
backoff language models made the previous approach of 
precomputing the entire table of non-zero arc probabilities 
impractical. For the SPHINX-II CSR decoder we use a 
cache table of active states in the language model to reduce 
the cost of accessing the language model. 

2. Review of the SPHINX-II System 

In comparison with the SPHINX system [2], the SPHINX- 
II system [1] has reduced the word error rate by more than 
50% on most tasks by incorporating between-word coar- 
ticulation modelng [3], high-order dynamics [4], sex- 
dependent semi-continuous hidden Markov models [4], 
and shared-distribution models [5]. This section will 
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review SPHINX-H that will be used as the baseline acous- 
tic modeling system for this study. 

2.1 Signal Processing 

The input speech signal is sampled at 16 kHz with a pre- 
emphasized filter, 1 - 0.9 Z "1. A Hamming window with a 
width of 20 msec. is applied to the speech signal every 10 
msec. A 32nd-order LPC analysis is used to compute the 
12th-order cepstral coefficients. A bilinear transformation 
of cepstral coefficients is employed to approximate the 
mel-scale representation. In addition, relative power is 
also computed together with cepstral coefficients. The 
speech features used in SPHINX-II include LPC cepstral 
coefficients; 40-msec. and 80-msec differenced LPC 
cepstral coefficients; second-order differenced cepstral 
coefficients; and power, 40-msec differenced power, 
second-order differenced power. These features are vector 
quantized into four independent codebooks by the Linde- 
Buzo-Gray algorithm [6], each of which has 256 entries. 

2.2 Training 

Training procedures are based on the forward-backward 
algorithm. Word models are formed by concatenating 
phonetic models; sentence models by concatenating word 
models. There are two stages of training. The first stage is 
to generate the shared-distribution mapping table. Forty- 
eight context-independent discrete phonetic models are in- 
itially estimated from the uniform distribution. Deleted 
interpolation[7] is used to smooth the estimated 
parameters with the uniform distribution. Then context- 
dependent models are estimated based on the context- 
independent ones. There are 16,713 triphones in the 
DARPA WSJ-CSR training corpus when both within-word 
and left-context-dependent between-word triphones are 
considered. To simplify training, one codebook discrete 
models were used, where the acoustic features consist of 
the cepstral coefficients, 40-msec differenced cepstrum, 
and power and 40-msec differenced power. After the 
16,713 discrete models are obtained, the shared- 
distribution clustering procedure [5] is applied to create the 
senones, 6255 in the case of the WSJ-CSR task. The 
second stage is to train 4-codebook models. We first es- 
timate 51 context independent, four-codebook discrete 
models with the uniform distribution. With these context 
independent models and the senone table, we then estimate 
the shared-distribution SCHMMs. Because of substantial 
difference between male and female speakers, two sets of 
sex-dependent SCHMMs are are separately trained to en- 
hance performance. 

To summarize, the configuration of the SPHINX-II for 
WSJ-CSR system is: 

• four codebooks of acoustic features, 

• semi-continuous, shared-distribution triphones 
models, over 

• left-context-dependent between-word and 
within-word triphone models, 

• sex-dependent SCHMMs. 

2.3 Recognition 

For each input utterance, the artificial sex is first deter- 
mined automatically [8, 9]. After the sex is determined, 
only the models of the determined sex are activated during 
recognition. This saves both time and memory. For each 
input utterance, a Viterbi beam search is used to determine 
the optimal state sequence in the language network. 

3. New Techniques for CSR Decoding 

3.1 Lef t  Contex t  Dependen t  
C r o s s - W o r d  Models  

Using context dependent acoustic models across word 
boundaries presents two problems. The first of which is 
training the models and the second of which is using them 
in a decoder. The training problem is a relatively simple 
one. Since we are using a supervised training procedure it 
is simply a matter of transcribing the acoustic sequence to 
account for the cross-word phonetic context. An additional 
complication is introduced when optional silences can ap- 
pear between words but this is also relatively easy to deal 
with by adding the appropriate optional phonetic se- 
quences. One question that does arise is whether context 
dependent models for word beginning, word ending and 
word middle should be considered separately. In 
SPHINX-II they are kept separate [10]. 

The decoding problem is difficult since instead of a single 
word sequence to consider there are many alternative word 
sequences to consider. Consider the extension of a single 
word sequence W 1..n. Each possible one word extension of 
W gives rise to a particular phonetic right context at the 
end of w n. There may be as many as N of these, where N is 
the number of basic phonetic units in the system. A 
similar problem appears when considering the best word 
sequence prior to a word wn+ 1, each possible prior word, 
w n, gives rise to a particular phonetic left context for the 
start of wn+ 1. The final case to consider is a word that is 
exactly one phonetic unit in length. Here the number of 
possibilities to consider is order N 2. None the less, for 
small tasks (< 1000 words) with artificial grammars, it is 
possible to precompile only the relevant phonetic tran- 
sitions since not all possible transitions will be allowed by 
the artificial grammar. When a larger and more natural task 
is considered, one such as WSJ CSR, these techniques are 
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Figure 1: When decoding with the Bakis model the out- 
put distributions, lc i, depend only on the name of t h e  
model. In the multiplexed Bakis model each lc i is a func- 
tion of the model name and the word sequence history, 
his t  i. 

not applicable because of memory and run time con- 
straints. 

We made two important modifications in the application of 
cross-word context dependent phonetic models. The first 
was to model only the left context at word beginnings and 
ignore the right context at word endings. The second was 
to use the word-sequence-history information in each state 
to select the appropriate left context model for that state. 
See figure 1. An advantage afforded by left-context-only- 
modeling is that on each inter-word transition only one 
context is considered since the left context is uniquely 
determined by the word history W1..n. If the right context 
is modeled all possible right contexts must be considered 
at word endings since the future is not yet known. The 
advantages afforded by using the best-word-sequence to 
select the appropriate left context model come in both 
space and time savings. Space is saved since only one 
model is needed at word beginnings rather than N. Time is 
saved since only one model is evaluated at word begin- 
nings. 

3.2 Memory Organization 

The WSJ-CSR task is significantly different from the pre- 
vious CSR tasks in the size of the lexicon and in the style 
of the language model. The lexicon is nearly an order of 
magnitude larger than previous lexicons and the language 
model contains more than two orders of magnitude more 
transitions than the Resource Management task. Several 
changes were required in the decoder design so that it 
could be run with out paging to secondary storage because 
of limited memory. Our redesign entailed changing the 
Viterbi evaluation to use an in-place algorithm, changing 
the management of history pointers to use a hash table 
rather than a stack, decoupling the prroto-type HMM state 
transition probabilities from the word specific HMM in- 
stances, and changing from a statically compiled language 
model to dynamically interpreted language model. Finally, 
the pointerless implementation of the HMM topology con- 
tinued to save both memory and time. 

In Place Viterbi Evaluation. In our previous decoder the 
Viterbi evaluation used a separate set of source and des- 
tination states. The advantage to this approach is that states 
may be updated without regard to order. The disadvantage 
to this approach is that two sets fields must be kept for 
each state. By changing to an in-place evaluation only one 
set of fields is needed. Another feature of the previous 
decoder was that a word HMM was instantiated by making 
a copy of the appropriate HMMs and concatenating them 
together. As result duplicate copies of the arc transition 
probabilties would be made for each occurrence of HMM i 
in a word. To save this space a pointer to the proto-type 
HMM is kept in the instance HMM and the arc transition 
probabilities are omitted. 

The pointerless topology is a feature of the previous 
decoder [11] that implicitly encodes the topology of the 
model in the evaluation procedure. Not only does this save 
the memory and time associated with pointer following but 
it also allows, at no additional cost, the order dependent 
evaluation required by the in place Viterbi evaluation. 
Taken together these changes reduced the per state 
memory cost from 28 bytes/state to 8 bytes/states. 

History Pointers and Language Model. By using a 
dictionary data structure instead of a stack data structure 
we reduced the amount of memory devoted to the word 
history sequences by an order of magnitude. The reduction 
comes because the dictionary does not differentiate iden- 
tical word histories with differing segmentations. Besides 
the memory savings an advantage to this approach is that 
word histories can be rapidly compared for equality. A 
disadvantage is that the true segmentation cannot be 
recovered using this data structure. Finally, a consequence 
of using a fully backed-off language model is that it was 
no longer practical to precompile a graph that encoded all 
the language model transitions. Instead the language model 
is dynamically interpreted at mn time. 

3.2 Search Reduction 

Viterbi beam search depends on the underlying dynamic 
programming algorithm that restricts the number of states 
to be ISI, where is S is the set of Markov states. For the 
bigram language model ISI is a linear function of W, the 
size of the lexicon. Therefore the time to decode an ut- 
terance is O(ISI * 1) where I is the length of the input. The 
problem, at least when bigram language models are used, 
is not to develop a more efficient algorithm but to develop 
strategies for reducing the size of S. Beam search does this 
by considering only those states that fall with in some 
beam. The beam is defined to be all those states s, where 
score(s) is with in e of the best_score(S). In the WSJ-CSR 
task the size of S has increased by almost an order of 
magnitude. With this motivation a refinement of the beam 
search strategy was developed that reduces the number of 
the states kept in the beam by a factor of two. 
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In the previous implementation of the decoder the beam 
was defined as beam = {s I score(s) > t~ + best_score(S)}. 
To further reduce the size of the beam two additional prun- 
ing thresholds have been added. The first threshold, re, is 
nominally for phone level pruning and the second, to, is 
nominally for word level pruning. The set of states, P that 
it is applied to corresponds to the final (dummy) states of 
each instance of  a phonetic model. The set of states W, 
that co is applied to corresponds to the final (dummy) states 
of the final phonetic models of each word. The inequality 
relationship among the three beam thresholds is given by 
eqn. 1. The set containment relationship among the three 
sets is given by eqn. 2. 

1. t x ~ x  ~ ¢o 2. S D P D W .  

The motivation for partitioning the state space into subsets 
of states that are subject to different pruning thresholds 
comes from the observation that leads to the use of a prun- 
ing threshold in the first place. A state s is most likely to 
participate in the final decoding of the input when score(s) 
is closest to best_score(S). Similarly a phonetic sub-word 
unit is most likely to participate in the final decoding when 
score(p) is closest to best_score(S). Likewise for the word 
units. The difference between the state sets P and W and 
the state set S is that there is more than a single state of 
contextual information available. Put another way, when 
there is more information a tight pruning threshold can be 
applied with out an increase in search errors. Currently all 
the pruning thresholds are determined empirically. Infor- 
mally we have found that the best threshold settings for 
and to are two and four orders of magnitude tighter than t~. 

3.3 Search Decomposition 

The search is divided into four phases. 

1. shared distribution probability computation 

2. HMM arc probability evaluation 

3. active HMM instance evaluation 

4. language model application 
For each time frame the shared distribution probability 
computation first computes the probabilities of the top 
N=4 codewords in the codebook. Then the top N 
codewords and their probabilities are combined with each 
of D=6255 discrete output probability distribution func- 
tions. Although not all distributions will be used at every 
frame of the search a sufficiently large number are used so 
that computation on demand is less efficient. 

The D output probabilities are then combined with the 
M=I 6,713 models in the HMM arc probability evaluation. 
Here we only compute the arc probabilities of those 
HMMs that have active instances as part of a word. Two 
advantages accrue from separating the arc probability com- 
putation from the state probability computation. First the 
arc transition probability and acoustic probability need 

Decoder Development Summary 

Size x Real 
Condition Error % (Mb) Time 

baseline 24.7% 172 167 

+ left context 19.5% 

+ Into Lang. Model 77 217 

+ Word Hist. Dict. 57 

+ Inplaee Viterbi 53 

+ Multiple Pruning 63 

+ Acoustic Score 53 

+ HMM Arc 46 

+ LM. Cache 19.5% 57 40 

Table 1: The effect of each change to the decoder is summarized 
in terms of error rata, memory size and run time. The baseline 
result refers to the results obtained with original decoder that 
implemented no cross word modeling. 

only be combined once. Second this naturally leads to stor- 
ing HMM arc transition probabilities separately from the 
HMM instances which results in a space savings. 

The active HMMs, ie. those HMM instances correspond- 
ing to phones in an active word, are updated with arc 
probabilities from the corresponding HMM protc-type. In 
this case updating an HMM means combining all the 
HMM instance state probabilities with the appropriate arc 
probabilities of the proto-type HMM and performing the 
Viterbi update procedure. 

For each word history h ending at time t the language 
model is consulted for the vector of probabilities cor- 
responding to the probability of each of one word exten- 
sion of h. Between the language model and the word tran- 
sition module sits a cache. For the WSJ-CSR 5000 word 
system, a 200 entry LRU 2 cache provides a hit rate of 
92%. The cache reduces the cost of using this language 
model by an order of magnitude. For the a 5000 word 
lexicon, a 200 entry cache requires four megabytes. 

4. WSJ-CSR Experimental Setup 

The WSJ corpus consists of approximately 45-million 
words of text published by the Wall Street Journal between 
the years 1987 and 1989. This corpus was made available 
through the Association for Computation Linguistics/Data 
Collection Initiative (ACL/DCI) [12]. 

2LRU - least recently used 
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4.1. Language Models 

For the purposes of the February dry run eight standard 
bigram language models were provided by D. Paul at Lin- 
coln Labs [13]. The language models were trained only on 
the WSJ data that was not held out for acoustic training 
and testing. The language models are characterized along 
three dimensions, lexicon size (5k or 20k), closed or open 
vocabulary, and verbalized (vp) or non-verbalized pronun- 
ciation (nvp). The distinction between open closed 
vocabulary models is in the method used to chose the lex- 
icon. For the open vocabulary the lexicon approximately 
consists of the N most common words in the corpus. For 
the closed vocabulary, a set of N words were selected in a 
manner that would allow the creation of a sub-corpus that 
would have 100% lexical coverage by this closed 
vocabulary. For further details see [14]. The development 
test set perplexities for the eight language models are given 
in table 2. 

4.2. Training and Evaluation 
Acoustic Data Sets 

The base line speaker independent training data set 
provided by the National Institute of Standards and Tech- 
nology (NIST) [15] consisted of 7240 utterances of read 
WSJ text equally divided among VP and NVP texts. The 
texts chosen to train the system were quality filtered to 
remove very long and very short short sentences as well as 
removing sentences containing words not among the 64k 
most frequently occurring words in the WSJ corpus [13]. 
The data was collected from 843 speakers, equally divided 
among male and female persons. Data recording was per- 
formed at three different locations, MIT, SRI and TI. At all 
three locations the same close speaking, noise canceling 
microphone was used however envkonmental conditions 
vary from a sound both to a laboratory environment. At 
CMU we used a subset of the 7240 utterances, excluding 
89 of the 7240 utterances because they contained cross talk 
or over-laying noise events as indicated by the detailed 
orthographic transcription (DOT) of the utterance. 

Lexicon Size 
5k 20k 

dosed open closed open 

vp 80 72 158 135 
nvp 118 105 236 198 

Table 2: Perplexity of the eight standard language models on the 
development test set. VP - verbalized pronunciation. NVP - non- 
verbalized pronunciation. 

3One of the speakers in the training data set was recorded twice but at  

different sites and so this person is counted as two different speakers. 

The speaker independent evaluation data set consisted of 
eight data sets containing a total of 1200 utterances from 
10 speakers. Again each data set was equally divided 
among male and female speakers. For further details on the 
evaluation test sets see [14]. 

4.3 Acoustic Configuration 

The configuration of SPHINX-II for WSJ-CSR consists of 
16,713 phonetic models that share 6255 semi-continuous 
distributions. For between word modeling only the left 
context is considered. There is no speaker normalization 
component or vocabulary adaptation component. The dic- 
tionary provided by Dragon Systems was programaticaUy 
converted into the CMU style phonetic baseforms with 
some additional manual post processing to fix problems 
with the transcription of flaps/dx/. 

4.4 Results 

The official NIST results are given in the following table. 
Each line of the table gives results for a particular test from 
the si_evl test suite. The test sets are 5 (5000 word closed), 
20 (20000 word closed), sp (spontaneous) and rs (read 
spontaneous). These four test sets are further subdivided to 
vp and nvp conditions. The final condition for each test is 
the language model used. For these tests only two models, 
5c (5000 word closed) and 50 (5000 word open) were 
used. For further details on the testing datasets see [14]. 
The table is largely self explanatory other than the column 
labeled 2or. This column is simply two times the standard 
deviation of the average word error rate computed from 
word error rates on a sentence by sentence basis. As 
expected the vp tests out perform the nvp tests and the the 
open language model out performs the closed language 
model when the test data set contains words from outside 
the language models lexicon. It should be noted however 
that the vp portion of the test is probably the more difficult 
set since when we remove the highly reliable punctuation 
words words from the scoring, the error rate for the 
remaining words is actually higher than the one obtained in 
the nvp case. We attribute this to the increased number of 
disfluencies caused by verbalized pronunciation and to the 
detrimental effect on the bigram language model. 

5. Summary 

The successful application of SPHINX-II to the WSJ-CSR 
task demonstrates the utility of distribution sharing for 
training a large number of triphones with a relatively small 
amount of data. We also have demonstrated the utility of 
the Viterbi-beam search for decoding in the context of a 
much larger task. Beyond the algorithmic improvements 
made to the decoder a major factor in reducing decoding 
time to just under 50 times real-time, is the availability of 
crisp acoustic models. 

397 



Sphinx H WSJ CSR Performance 

Test 
Condition Insertion Error 20 

si_ev15.nvp-5c 2.1% 19.5% ± 2.38 

si_evl5.vp-5c 3.0% 18.4% ± 2.47 

si_evl5.5c 2.7% 18.9% ± 1.72 

si_evl20mvp-5o 7.5% 37.9% ± 3.30 

si evl20.vp-5o 6.6% 32.7% 5:3.34 

si ev120.5o 7.1% 35.2% ± 2.37 

si evl20.nvp-5c 7.6% 43.6% ± 3.56 

si_evl20.vp-5c 6.9% 36.1% 5:3.43 

si_evl20.5e 7.2% 39.6% 5:2.46 
i 
i 

sievlrs.nvp-5o 10.3% I 50.4% ± 5.86 

si_evks.vp-5o 7.7% 41.4% ± 4.29 

si_evks.5o 8.9% 45.4% ± 3.46 

si_evlsp.nvp-5o 11.7% 56.0% ± 5.64 

si_evlsp.vp-5o 9.2% 45.5% ± 4.42 

si_evlsp.vp 10.3% 50.2% 5:3.47 

Future plans include introducing our speaker normalization 
and vocabulary adaptation technology as well as ex- 
perimenting with longer range language models. 
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