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ABSTRACT 
We present a new search algorithm for very large vocabulary contin- 
uous speech recognition. Continuous speech recognition with this 
algorithm is only about 10 times more computationally expensive 
than isolated word recognition. We report preliminary recognition 
results obtained by testing our recognizer on "books on tape" using 
a 60,000 word dictionary. 

1. Introduction 
In this paper we will give a preliminary report on our efforts 
to extend our earlier work on very large vocabulary isolated 
word recognition [16, 17, 19] to continuous speech tasks. We 
are aiming to perform speaker-dependent continuous speech 
recognition using a trigram language model and a vocabulary 
of 50,000-100,000 words. 

Although the problem of very large vocabulary isolated word 
recognition has largely been solved [I, 19], no experiments 
have yet been conducted in continuous speech recognition 
with comparably large vocabularies because the search prob- 
lem is so formidable. The best known approach to the search 
problem uses the word as the fundamental search unit and 
a stack decoding algorithm [II ,  20] (also known as an A* 
search [14]). The effectiveness of this approach depends on 
having a good fast match strategy to identify candidate words 
whenever a word boundary is hypothesized. Many different 
fast match algorithms have been proposed [3, 4, 5, 15] but 
they have yet to be shown to perform satisfactorily on con- 
tinuous speech tasks having a vocabulary larger than 5,000 
words [2]. 

An alternative approach developped by Phillips [6] (on a 
103300 word vocabulary in German) uses the phoneme as 
the fundamental search unit and consists o fa  Viterbi search of 
the hidden Markov model obtained by combining phoneme 
HMMs with a Markovian language model (such as a trigram 
model). Aggressive pruning is necessary since the search 
space is very large. (For instance, if a trigram language 
model is used then one copy of the lexical tree is needed 
for every possible bigram.) The phoneme inventory is surf- 
icently small that exact matches can be calculated whenever 
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they are needed. However, it remains to be seen whether the 
phoneme unit is capable of attaining respectable accuracies 
on very large-scale recognition tasks. 

A new type of bi-directional search strategy has emerged re- 
cently. The basic idea is to guide the search by means of a 
heuristic obtained by first carrying out an inexpensive search 
in the reverse time direction (subject to relatively weak lin- 
guistic and/or lexical constraints). This type of approach 
appears to have been discovered independently by several 
groups and has been shown to work effectively on a variety of 
applications [8, 9, 16]. In [16] we presented a very efficient 
algorithm for very large vocabulary isolated word recogni- 
tion using this paradigm and the phoneme as the fundamental 
search unit. Our current efforts are devoted to extending this 
algorithm to continuous speech. 

This isolated word recognition algorithm is an A* algorithm 
which uses a heuristic obtained by searching a phonetic 
graph [16] which imposes triphone phonotactic constraints 
on phoneme strings. This search is conducted using the stan- 
dard Viterbi algorithm in the reverse time direction (starting 
from the end of the utterance). In addition to providing a very 
efficient heuristic, a major advantage in using triphone phono- 
tactic constraints is that it enables us to identify the endpoint 
of the third-to-last phoneme in each partial recognition hy- 
pothesis with a high degree of accuracy, thereby substantially 
reducing the size of the search space. Another innovative fea- 
ture of this algorithm is that it computes the acoustic matches 
of every segment of data with each of the phoneme models 
('the point scores') before carrying out the A* search. (The 
principal reason for doing so is that this approach enables 
segment-level features such as phoneme durations to be mod- 
elled in an optimal way [16, 18, 7].) 

The effectiveness of the triphone heuristic depends more on 
the quality of the phoneme models than on the size of the 
search space. Thus we have found that, even without any 
pruning, the isolated word recognition algorithm runs more 
quickly on a 60,000-word recognition task with clean speech 
and speaker-dependent models than on a 1,600-word task with 
telephone speech and speaker-independent models [16]. In 
the speaker-dependent case most of the computaion is taken 
up by the pre-processing (the calculation of the point scores 
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and the Viterbi search) and the A* search itself accounts for 
only about 1% of the total. In extending the algorithm to 
continuous speech (also with a 60,000 word vocabulary and 
speaker dependent models), we have found that the amount of 
pre-processing per unit time remains essentially the same, but 
the amount of computation needed for the A* search increases 
by three orders of magnitude. Hence, the total computational 
demands of the algorithm only increase by a factor of about 
10. 

The experiments reported here have been conducted using 
phoneme models, but the search algorithm can be extended 
to accommodate allophone models (including cross-word al- 
lophones) fairly easily. 

2. Block Process ing 
In developping our algorithms, we have decided to work with 
commercially distributed books on tape (analog recordings 
of well known novels). Half of each recording is used as 
training data and the other half for testing and we use an optical 
character recognizer to read the accompanying texts. Since 
this data is not segmented into sentences we have designed 
our training and recogniton algorithms to work with chunks 
of data of arbitrary size. This means that the data has to be 
processed in blocks which can fit comfortably into memory. 

Our approach is to use an A* search in each block which 
is similar to the isolated word recognition algorithm except 
insofar as word boundaries are not known in advance and a 
trigram language model is used in the scoring procedure. As 
in the isolated word case, an admissible heuristic is obtained 
by means of an initial Viterbi search through a graph which 
imposes triphone phonotactic constraints on phone strings. 
The A* search generates a list of theories (partial phonemic 
transcriptions together with word histories) for the speech data 
up to the end of the block 3 As soon as the list of theories for 
the current block has been obtained, the block is swapped out 
of memory and the search of the next block begins using this 
list to initialize the stack. 

This list of theories plays the same role as the beam used in 
a time synchronous Viterbi search. The Markov property of 
the trigram language model allows us to merge theories that 
have identical recent pasts but different remote pasts so the 
number of theories that have to be generated at the end of each 
block (the 'beam width') can held fixed without running the 
risk of losing the optimal theory. In order to pursue the search 
in subsequent blocks, the only information needed concerns 
the recent pasts of these theories. By logging the information 
concerning the remote pasts to disk we are able to ensure that 
the memory required to recognize a file is independent of its 

3More precisely, each of the theories generated has the property that 
all of the hypothesized end points for the third-to-last phoneme in the partial 
phonemic transcription are beyond the end of the block. 'nae partial phonemic 
transcription need not  end  at a word boundary. 

length (instead of increasing exponentially with the length 
of the file as would be necessary without merging and block 
processing). 

For the last block in a file it is only necessary to generate 
a single recognition hypothesis and, once the last block has 
been processed, the transcription of the entire utterance can 
be obtained by back-tracking. The recognition algorithm can 
therefore be viewed globally as a beam search and locally as 
an A* search. 

3. The  Heuris t ic  

Broadly speaking, an A* search of the data in a block pro- 
ceeds as follows. At each iteration of the algorithm, there 
is a sorted list (or 'stack') of theories each with a heuristic 
score. This heuristic score is calculated by combining the 
exact likelihood score of the speech data accounted for by 
the theory (using phoneme HMMs and the language model) 
with an overestimate of the score of the remaining data on 
the optimal extension of the theory permitted by the lexicon 
and the language model. The theory with the highest heuristic 
score is expanded, meaning that for each of the one-phoneme 
extensions permitted by the lexicon the heuristic score of the 
extended theory is calculated and the extended theory is in- 
serted into the stack at the appropriate position. This process 
is iterated until sufficiently many theories satisfying a suitable 
termination criterion have been generated. 

For the time being, we have decided to ignore the issue of over- 
estimating language model scores altogether in constructing 
the heuristic (that is, we use an estimate of 1 for the language 
model probability of any extension of a given theory). Our 
strategy for overestimating acoustic scores is essentially the 
same as in the isolated word case, that is, we conduct an ex- 
haustive search backwards in time through a phonetic graph 
which imposes triphone phonotactic constraints on phoneme 
strings rather than full lexical constraints and enables the third- 
to-last phoneme in a given partial phonemic transcription to 
be accurately endpointed. Naturally, the triphone phonotac- 
tic constraints must take account of triphones which occur at 
word boundaries. The simplest graph with these properties is 
specified as follows: 

. 

2. 

. 

Nodes: there is one node for every possible diphone fg  

Branches: for every legitimate triphone fgh (that is, 
a triphone that can be obtained by concatenating the 
phonemic transcriptions of words in the dictionary) there 
is a branch from the node corresponding to the diphone 
fg to the node corresponding to the diphone gh 

Branch Labels: if fgh is a legitimate triphone then the 
branch from the node fg  to the node g h carries the label 
f. 
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Denote this graph by G*. It is easy to see that this graph 
imposes triphone constraints on phoneme strings, that is, if 
9~, g2, 93 • • • is the sequence of phoneme labels encountered 
on a given path through G* then every triple gtgt  +t gt +2 (k = 
1 ,2 , . . . )  is a legitimate triphone. The labelling scheme (3) is 
chosen so that the endpointing condition is satisfied (see the 
next section). 

4. Searching a block 
In order to search a block extending from times T1 to T2, we 
first construct the hidden Markov model corresponding to the 
graph G* [16] and, for a suitably chosen positive integer A, 
we perform a Viterbi search backwards in time through this 
HMM from time T2 + A to time T1. (The condition used to 
determine the parameter A is given below.) The boundary 
condition used to initialize the search is that the backward 
probability at every state in the model at time T2 + A is 1. 
For each node n in G* and each t = T1 - 1 , . . . ,  T2 + A - 1 
we thus obtain the Viterbi score of the data in the interval 
It + 1, T2 + A] on the best path in G* which leaves n at time 
t and is subject to no constraints on the state in the model 
occupied at time T + A; denote this quantity by/3~ (n). 

Suppose we are given a partial phonemic transcription 
fl . . .  f t .  Let n be the node corresponding to the diphone 
A-~A and for each time t, let c~,(fl . . .  fk-2) denote the 
Viterbi score of all of the data up to time t (starting from 
the beginning of the utterance) for the truncated transcription 
fl . . .  f t -2 .  Since fl~ (n) is the Viterbi score of the data in the 
interval [t + 1, T + A] on the best path in G* which leaves 
n at time t and the construction of G* constrains this path to 
pass first through a branch labelled f t -1  and then through a 
branch labelled f t ,  it is reasonable to estimate the endpoint 
of the phoneme f t - 2  as 

argmax o~,(fl....~-2)fl~ (n). 
t 

In the case of clean speech and speaker-dependent models, 
this estimate turns out to be exact almost all of the time [16] 
but it is safer to hypothesize several end points (for instance 
by taking the five values of t for which 

+ , ( Y l  . . .  

is largest). 

A stack entry (theory) 0 is a septuple (w, f ,  m, n, o', {o~}, S) 
where 

1. w = w l . . .  w,~ is a word history. 

2. f = f~ . . .  f t  is a partial phonemic transcription which 
may extend into a word following w,  (but there are no 
complete words after w,  in the partial transcription f) 

. rn is a node in the lexical tree [16] corresponding to the 
part f which extends beyond Wn, if any; m is the root 
node of the lexical tree otherwise 

4. n is the node in the graph G* which corresponds to the 
diphone fk -  1 fA 

. o- is the current state of the trigram language model; 
there are three possibilities depending on whether the 
word following wn is predicted using a trigram distribu- 
tion P( . Iw ,_ lw , ) ,  a bigram distribution P(. lw,0 or a 
unigram distribution P( . )  

. for each endpoint hypothesis t, at  is the Viterbi score of 
the data up to time t against the model for the truncated 
transcription fl . . .  f t - 2  

7. S is the heuristic score which is given by 

* r t  S = P ( w )  m~lx at(f1 . . .  f k - 2 ) ~  ( ) 

where P (w )  is the probability of the word string w 
calculated using the trigram language model. 

The reason why both w and f have to be specified is that 
different words may have the same transcription and different 
transcriptions may correspond to the same word. Obviously 
it is redundant to specify m, n and~  in addition to w and f 
but it is convenient to do so. 

A stack entry is said to be complete if all of its hypothesized 
endpoints are to the right of T2. The parameter A is deter- 
mined empirically by the condition that the exact endpoint 
of a complete stack entry should always be included among 
the hypothesized endpoints. (Since it is not actually possi- 
ble because of memory limitations to carry around sufficient 
information with each theory to be able to generate its seg- 
mentation, we test this condition by verifying that the acoustic 
score of the global transcription found by the recognizer of the 
data in each file is the same as the score found by the training 
program when it is run with this transcription.) 

At the start of the search, the stack is initialized using the 
list of theories generated by searching the previous block 
(ending at time T1). Each of these has the property that all 
of its hypothesised endpoints are to the right of T~, so the 
speech data prior to the beginning of the current block is no 
longer needed. The search terminates when sufficiently many 
complete theories have been generated at which point the next 
block is swapped into memory and a new search begins. 

The Markov property of the trigram language model en- 
ables us to merge theories that have identical recent pasts 
but different remote pasts. Specifically, suppose we 
have two theories 0 = ( w , f ,  rn, n,~r,{~t},S) and O' = 
(w ' , f ' ,m ' ,n ' ,o" ,  {a~}, S')  such that m = m', n = n'  and 
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or = o-'. (In this case we will say that 0 and 0' are equivalent.) 
The future extensions of both theories which best account for 
the data starting at any given time (subject to lexical and lan- 
guage model constraints) will be identical. Thus if it happens 
that t is on the list of hypothesized endpoints for both theories 
and 

P(w')ct~ < P(w)oLt 

then we can remove t from the hypothesis list for the second 
theory without running the risk of losing the optimal path. In 
practice, the condition n = n'  means that the list of hypoth- 
esized endpoints for both theories will be the same (except 
in very rare cases). Furthermore, if this inequality holds for 
one such t then it is typically because the first theory gives a 
better fit to the remote past than the second theory; hence it 
will usually be the case that if the inequality holds for one t 
then it will hold for all t and the second theory can be pruned 
away completely. 

We can take advantage of this fact to speed up the A* search 
by maintaining a list of 'merge buckets' consisting of all the 
equivalence classes of theories encountered in the course of 
the search. Associated with each equivalence class we have 
an array of forward scores {At } which is updated throughout 
the search. For each t, At is defined to be 

max P(w)o~t 
0 

where 0 extends over all theories (w, f ,  m, n, o', {oct}, S) in 
the given equivalence class that have been encountered so far 
(in the course of searching the current block). When a new 
theory 0' = (w',  f ' ,  m', n', a ' ,  {o~}, S') in this equivalence 
class comes to be inserted into the stack we can test to see if 
the inequality 

P(w')ogt < At 

holds for each hypothesized endpoint t. If it does, then we 
can prune this endpoint hypothesis before entering the theory 
into the stack; if not, then At is updated and the endpoint 
hypothesis has to be retained. 

We have not been able to implement this scheme fully because 
of memory limitations. In practice, we only invoke merging 
when a word boundary is hypothesized so the only merge 
buckets generated in the course of the search are those which 
correspond to theories for which m is the root node of the 
lexical tree. (However, before starting the search we prune 
the list of hypotheses generated by searching the previous 
block by merging at arbitrary phoneme boundaries and we 
use this pruned list to initialize the stack.) 

5. Experimental Results 
Our first experimental results obtained from two books on tape 
(analog recordings) appear in Table 1. The first book "White 
Fang" by Jack London was recorded by a male speaker; 

the second book "Washington Square" by Henry James was 
recorded by a female. 

Training Test 
Book Set Set Accuracy 

Size Size % 
WF 18,012 730 51A 
WS 16,257 786 73.2 

Table 1: Preliminary recognition results. 

The second and third columns in this table give the training 
and test set sizes in words; the third column gives the accuracy 
which is calculated as 

N -  (Substitutions + ½[Deletions + Insertions]) 

N 

where N is the size of the test set. 

These experiments were run using 41 phonemic mixture 
HMMs for each speaker, a 60,000 word dictionary which 
was edited to include all of the words in both books (1.5% of 
the words in each of the books had to be added) and a trigram 
language model which was trained on 60,000,000 words of 
newspaper texts. No attempt was made to tailor the language 
model to the task domains. The test set perplexity was 1,743 
in the case of "White Fang" and 749 in the case of "Washing- 
ton Sqaure". These perplexities can be reduced to 576 and 
347 respectively by smoothing the language model statistics 
using word frequencies collected from the training set but we 
did not take advantage of this in running our experiments. 

The CPU time required to run the "Washington Square" ex- 
periment was 120 times real time on a HP 720 workstation. 
We had to use a block advance of only 10 frames (1 frame 
= 10 ms) in order to keep the stack size within reasonable 
bounds. The parameter A was set at 140 frames. The stack 
was implemented as a heap and the maximum number of stack 
entries was set to 60,000. (When this figure is reached, the 
size of the stack is cut back to 30,000). The number of theo- 
ries passed from one block to the next was 3,000. In the case 
of "'White Fang" a larger stack was needed to prevent search 
errors and the execution time was longer. We will have to run 
the recognizer on several more speakers before attempting to 
optimize these parameters. 

6. Future W o r k  

There is obviously a substantial amount of work to be done 
to improve both the accuracy and speed of our recognition 
algorithm. These problems are not independent of each other: 
we expect that the search algorithm will run faster with a better 
language model and better acoustic models and conversely 
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improvements in the search algorithm will lead to fewer search 
errors and hence higher recognition rates. 

At present, the only types of pruning that have been im- 
plemented are the merging of theories having identical recent 
pasts and the limitations on the size of the stack used in search- 
ing a block as well as the length of the list of theories passed 
from one block to the next. Several other possibilities remain 
to be explored. We may be able to get away with a beam 
search in the calculation of the ~/*'s. It may be possible to 
prune hypotheses based on poor local acoustic matches (eval- 
uated using the point scores or the/~* 's or a combination of the 
two). Since the branching factor at the root node of the lexical 
tree is 41, we would expect a big payoff if this type of  pruning 
can be made to work successfully whenever a word boundary 
is hypothesized. Also the limitations on the stack size and 
the length of the hypothesis lists passed from one block to 
the next should probably be made threshold-dependent rather 
than preset. 

In our current implementation, we have not taken full advan- 
tage of the sparseness of the language model statistics (the the 
number of bigrams wl w2 for which we have trained trigram 
distributions P (. ]wx w2) is relatively small and these distribu- 
tions are typically concentrated on very small subsets of the 
dictionary). Our present implementation gets some mileage 
out of this fact by using the notion of a language model state 
(~r) to determine when theories can be merged, but more work 
remains to be done. Adding a language model component to 
the heuristic would probably help as well. 

As for acoustic modelling, we can expect a major improve- 
ment by using allophone models. From the way we have 
presented the algorithm, it may appear that we have locked 
ourselves into the choice of the phoneme as the modelling unit 
so it may come as a surprise to learn that our algorithm can 
accommodate allophone models in a natural way (without un- 
duly increasing the amount of computation needed). The only 
restriction is that the allophones of a given phoneme should be 
defined by looking at contexts which extend no more than two 
phonemes to the right (there is no restriction on left contexts). 

Since this is an important issue, we take the time to explain 
what is involved here. Certainly, we would encounter prob- 
lems if we were to proceed in a straightforward manner and 
recompile the lexicon in terms of allophonic transcriptions 
rather than phonemic transcriptions. Firstly, the structure of 
the lexical tree would have to be radically altered to acco- 
modate allophones defined by contexts which extend across 
word boundaries. Secondly, with a reasonably large allo- 
phone inventory (say a few thousand), the size of the graph 
G* would become so large as to make the computation of 
the/~* 's practically infeasible. So the approach is to retain 
the structure of the lexical tree and the graph G* determined 
by the phonemic transcriptions and perform the translation to 

allophonic transcriptions on-line. (The same method could be 
used to incorporate phonological rules whose domain spans 
word boundaries.) 

Suppose we have a theory 0 whose partial phonemic tran- 
scription is fl  . . .  fk. We have to explain how oct(f1 . . .  fk-2) 
and fl~ (n) are computed when allophone models are used. 

In calculating o~t(ft . . .  fk-2),  we simply use the appropriate 
allophonic models for each of the phonemes f l , . . - ,  fk-2. 
(Note that sufficent information concerning the right contexts 
is available to determine which allophones to use). 

It is natural to organize the calculation of the t*  's in terms 
of the point scores. To see how this goes, consider first the 
case of phoneme models. The ~*'s can be calculated using 
the block Viterbi algorithm [ 16]. Recall that, for a given node 
n, the first two phoneme labels on any path in G* which starts 
at node n are uniquely determined. Denote the first phoneme 
by f and the second by g. The recursion formula is 

~t~ (n) = max V([t + 1, t ' ] l f )  max ~7,(n') 
t t> t  

where n' ranges over all nodes such that (n, f ,  n') is a branch 
in G* and V([t + 1, t ' ] l f )  denotes the Viterbi score of the data 
in the interval It + 1, t'] calculated using the f model. 

In the case of allophone models, we can calculate the back- 
ward probabilities using the recursion formula 

~/~(n) = max max V([t + 1,t']l~) m,ax/~,(n' ) 
t~>t qb 

where, as before, n' ranges over all nodes such that (n, f ,  n') 
is a branch in G* and ~b ranges over all the allophones of f 
determined by the condition that the phoneme immediately 
following f is g. It is obvious that the backward probabilities 
calculated in this way provide an overestimate of the acoustic 
score of the data which has not yet been accounted for on 
the optimal extension of the theory 0 so the admissibility 
condition is satisfied. Of course, it is not possible to endpoint 
the phoneme fk-2 exactly in this case since the allophone 
models needed to score fk-~ and fk cannot be determined 
until the theory has been extended. This does not present 
a problem since we already have a mechanism in place for 
handling multiple endpoint hypotheses. 

Finally, we have recently embarked on a project to parallelize 
the search algorithm with a view to obtaining a real-time 
response on a platform supplied by ALEX Informatique con- 
taining 48 i860's and 48 'I'800 transputers. 
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