
An A* algorithm for very large vocabulary continuous speech
recognition I

P. Kenny, R. Hollan 2, G. Boulianne, H. Garudadri, M. Lennig 2 and D. O'Shaughnessy

INRS-T616communications
3 Place du Commerce

Montreal, Quebec, Canada H3E 1H6

ABSTRACT
We present a new search algorithm for very large vocabulary contin-
uous speech recognition. Continuous speech recognition with this
algorithm is only about 10 times more computationally expensive
than isolated word recognition. We report preliminary recognition
results obtained by testing our recognizer on "books on tape" using
a 60,000 word dictionary.

1. Introduction
In this paper we will give a preliminary report on our efforts
to extend our earlier work on very large vocabulary isolated
word recognition [16, 17, 19] to continuous speech tasks. We
are aiming to perform speaker-dependent continuous speech
recognition using a trigram language model and a vocabulary
of 50,000-100,000 words.

Although the problem of very large vocabulary isolated word
recognition has largely been solved [I, 19], no experiments
have yet been conducted in continuous speech recognition
with comparably large vocabularies because the search prob-
lem is so formidable. The best known approach to the search
problem uses the word as the fundamental search unit and
a stack decoding algorithm [II , 20] (also known as an A*
search [14]). The effectiveness of this approach depends on
having a good fast match strategy to identify candidate words
whenever a word boundary is hypothesized. Many different
fast match algorithms have been proposed [3, 4, 5, 15] but
they have yet to be shown to perform satisfactorily on con-
tinuous speech tasks having a vocabulary larger than 5,000
words [2].

An alternative approach developped by Phillips [6] (on a
103300 word vocabulary in German) uses the phoneme as
the fundamental search unit and consists o fa Viterbi search of
the hidden Markov model obtained by combining phoneme
HMMs with a Markovian language model (such as a trigram
model). Aggressive pruning is necessary since the search
space is very large. (For instance, if a trigram language
model is used then one copy of the lexical tree is needed
for every possible bigram.) The phoneme inventory is surf-
icently small that exact matches can be calculated whenever

1This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada

2Also with Bell-Northern Research, Montreal, Canada

they are needed. However, it remains to be seen whether the
phoneme unit is capable of attaining respectable accuracies
on very large-scale recognition tasks.

A new type of bi-directional search strategy has emerged re-
cently. The basic idea is to guide the search by means of a
heuristic obtained by first carrying out an inexpensive search
in the reverse time direction (subject to relatively weak lin-
guistic and/or lexical constraints). This type of approach
appears to have been discovered independently by several
groups and has been shown to work effectively on a variety of
applications [8, 9, 16]. In [16] we presented a very efficient
algorithm for very large vocabulary isolated word recogni-
tion using this paradigm and the phoneme as the fundamental
search unit. Our current efforts are devoted to extending this
algorithm to continuous speech.

This isolated word recognition algorithm is an A* algorithm
which uses a heuristic obtained by searching a phonetic
graph [16] which imposes triphone phonotactic constraints
on phoneme strings. This search is conducted using the stan-
dard Viterbi algorithm in the reverse time direction (starting
from the end of the utterance). In addition to providing a very
efficient heuristic, a major advantage in using triphone phono-
tactic constraints is that it enables us to identify the endpoint
of the third-to-last phoneme in each partial recognition hy-
pothesis with a high degree of accuracy, thereby substantially
reducing the size of the search space. Another innovative fea-
ture of this algorithm is that it computes the acoustic matches
of every segment of data with each of the phoneme models
('the point scores') before carrying out the A* search. (The
principal reason for doing so is that this approach enables
segment-level features such as phoneme durations to be mod-
elled in an optimal way [16, 18, 7].)

The effectiveness of the triphone heuristic depends more on
the quality of the phoneme models than on the size of the
search space. Thus we have found that, even without any
pruning, the isolated word recognition algorithm runs more
quickly on a 60,000-word recognition task with clean speech
and speaker-dependent models than on a 1,600-word task with
telephone speech and speaker-independent models [16]. In
the speaker-dependent case most of the computaion is taken
up by the pre-processing (the calculation of the point scores

333

and the Viterbi search) and the A* search itself accounts for
only about 1% of the total. In extending the algorithm to
continuous speech (also with a 60,000 word vocabulary and
speaker dependent models), we have found that the amount of
pre-processing per unit time remains essentially the same, but
the amount of computation needed for the A* search increases
by three orders of magnitude. Hence, the total computational
demands of the algorithm only increase by a factor of about
10.

The experiments reported here have been conducted using
phoneme models, but the search algorithm can be extended
to accommodate allophone models (including cross-word al-
lophones) fairly easily.

2. Block Process ing
In developping our algorithms, we have decided to work with
commercially distributed books on tape (analog recordings
of well known novels). Half of each recording is used as
training data and the other half for testing and we use an optical
character recognizer to read the accompanying texts. Since
this data is not segmented into sentences we have designed
our training and recogniton algorithms to work with chunks
of data of arbitrary size. This means that the data has to be
processed in blocks which can fit comfortably into memory.

Our approach is to use an A* search in each block which
is similar to the isolated word recognition algorithm except
insofar as word boundaries are not known in advance and a
trigram language model is used in the scoring procedure. As
in the isolated word case, an admissible heuristic is obtained
by means of an initial Viterbi search through a graph which
imposes triphone phonotactic constraints on phone strings.
The A* search generates a list of theories (partial phonemic
transcriptions together with word histories) for the speech data
up to the end of the block 3 As soon as the list of theories for
the current block has been obtained, the block is swapped out
of memory and the search of the next block begins using this
list to initialize the stack.

This list of theories plays the same role as the beam used in
a time synchronous Viterbi search. The Markov property of
the trigram language model allows us to merge theories that
have identical recent pasts but different remote pasts so the
number of theories that have to be generated at the end of each
block (the 'beam width') can held fixed without running the
risk of losing the optimal theory. In order to pursue the search
in subsequent blocks, the only information needed concerns
the recent pasts of these theories. By logging the information
concerning the remote pasts to disk we are able to ensure that
the memory required to recognize a file is independent of its

3More precisely, each of the theories generated has the property that
all of the hypothesized end points for the third-to-last phoneme in the partial
phonemic transcription are beyond the end of the block. 'nae partial phonemic
transcription need not end at a word boundary.

length (instead of increasing exponentially with the length
of the file as would be necessary without merging and block
processing).

For the last block in a file it is only necessary to generate
a single recognition hypothesis and, once the last block has
been processed, the transcription of the entire utterance can
be obtained by back-tracking. The recognition algorithm can
therefore be viewed globally as a beam search and locally as
an A* search.

3. The Heuris t ic

Broadly speaking, an A* search of the data in a block pro-
ceeds as follows. At each iteration of the algorithm, there
is a sorted list (or 'stack') of theories each with a heuristic
score. This heuristic score is calculated by combining the
exact likelihood score of the speech data accounted for by
the theory (using phoneme HMMs and the language model)
with an overestimate of the score of the remaining data on
the optimal extension of the theory permitted by the lexicon
and the language model. The theory with the highest heuristic
score is expanded, meaning that for each of the one-phoneme
extensions permitted by the lexicon the heuristic score of the
extended theory is calculated and the extended theory is in-
serted into the stack at the appropriate position. This process
is iterated until sufficiently many theories satisfying a suitable
termination criterion have been generated.

For the time being, we have decided to ignore the issue of over-
estimating language model scores altogether in constructing
the heuristic (that is, we use an estimate of 1 for the language
model probability of any extension of a given theory). Our
strategy for overestimating acoustic scores is essentially the
same as in the isolated word case, that is, we conduct an ex-
haustive search backwards in time through a phonetic graph
which imposes triphone phonotactic constraints on phoneme
strings rather than full lexical constraints and enables the third-
to-last phoneme in a given partial phonemic transcription to
be accurately endpointed. Naturally, the triphone phonotac-
tic constraints must take account of triphones which occur at
word boundaries. The simplest graph with these properties is
specified as follows:

.

2.

.

Nodes: there is one node for every possible diphone fg

Branches: for every legitimate triphone fgh (that is,
a triphone that can be obtained by concatenating the
phonemic transcriptions of words in the dictionary) there
is a branch from the node corresponding to the diphone
fg to the node corresponding to the diphone gh

Branch Labels: if fgh is a legitimate triphone then the
branch from the node fg to the node g h carries the label
f.

334

Denote this graph by G*. It is easy to see that this graph
imposes triphone constraints on phoneme strings, that is, if
9~, g2, 93 • • • is the sequence of phoneme labels encountered
on a given path through G* then every triple gtgt +t gt +2 (k =
1 ,2 , . . .) is a legitimate triphone. The labelling scheme (3) is
chosen so that the endpointing condition is satisfied (see the
next section).

4. Searching a block
In order to search a block extending from times T1 to T2, we
first construct the hidden Markov model corresponding to the
graph G* [16] and, for a suitably chosen positive integer A,
we perform a Viterbi search backwards in time through this
HMM from time T2 + A to time T1. (The condition used to
determine the parameter A is given below.) The boundary
condition used to initialize the search is that the backward
probability at every state in the model at time T2 + A is 1.
For each node n in G* and each t = T1 - 1 , . . . , T2 + A - 1
we thus obtain the Viterbi score of the data in the interval
It + 1, T2 + A] on the best path in G* which leaves n at time
t and is subject to no constraints on the state in the model
occupied at time T + A; denote this quantity by/3~ (n).

Suppose we are given a partial phonemic transcription
fl . . . f t . Let n be the node corresponding to the diphone
A-~A and for each time t, let c~,(fl . . . fk-2) denote the
Viterbi score of all of the data up to time t (starting from
the beginning of the utterance) for the truncated transcription
fl . . . f t -2 . Since fl~ (n) is the Viterbi score of the data in the
interval [t + 1, T + A] on the best path in G* which leaves
n at time t and the construction of G* constrains this path to
pass first through a branch labelled f t -1 and then through a
branch labelled f t , it is reasonable to estimate the endpoint
of the phoneme f t - 2 as

argmax o~,(fl....~-2)fl~ (n).
t

In the case of clean speech and speaker-dependent models,
this estimate turns out to be exact almost all of the time [16]
but it is safer to hypothesize several end points (for instance
by taking the five values of t for which

+ , (Y l . . .

is largest).

A stack entry (theory) 0 is a septuple (w, f , m, n, o', {o~}, S)
where

1. w = w l . . . w,~ is a word history.

2. f = f~ . . . f t is a partial phonemic transcription which
may extend into a word following w, (but there are no
complete words after w, in the partial transcription f)

. rn is a node in the lexical tree [16] corresponding to the
part f which extends beyond Wn, if any; m is the root
node of the lexical tree otherwise

4. n is the node in the graph G* which corresponds to the
diphone fk - 1 fA

. o- is the current state of the trigram language model;
there are three possibilities depending on whether the
word following wn is predicted using a trigram distribu-
tion P(. Iw ,_ lw ,) , a bigram distribution P(. lw,0 or a
unigram distribution P(.)

. for each endpoint hypothesis t, at is the Viterbi score of
the data up to time t against the model for the truncated
transcription fl . . . f t - 2

7. S is the heuristic score which is given by

* r t S = P (w) m~lx at(f1 . . . f k - 2) ~ ()

where P (w) is the probability of the word string w
calculated using the trigram language model.

The reason why both w and f have to be specified is that
different words may have the same transcription and different
transcriptions may correspond to the same word. Obviously
it is redundant to specify m, n and~ in addition to w and f
but it is convenient to do so.

A stack entry is said to be complete if all of its hypothesized
endpoints are to the right of T2. The parameter A is deter-
mined empirically by the condition that the exact endpoint
of a complete stack entry should always be included among
the hypothesized endpoints. (Since it is not actually possi-
ble because of memory limitations to carry around sufficient
information with each theory to be able to generate its seg-
mentation, we test this condition by verifying that the acoustic
score of the global transcription found by the recognizer of the
data in each file is the same as the score found by the training
program when it is run with this transcription.)

At the start of the search, the stack is initialized using the
list of theories generated by searching the previous block
(ending at time T1). Each of these has the property that all
of its hypothesised endpoints are to the right of T~, so the
speech data prior to the beginning of the current block is no
longer needed. The search terminates when sufficiently many
complete theories have been generated at which point the next
block is swapped into memory and a new search begins.

The Markov property of the trigram language model en-
ables us to merge theories that have identical recent pasts
but different remote pasts. Specifically, suppose we
have two theories 0 = (w , f , rn, n,~r,{~t},S) and O' =
(w ' , f ' ,m ' ,n ' ,o" , {a~}, S') such that m = m', n = n' and

335

or = o-'. (In this case we will say that 0 and 0' are equivalent.)
The future extensions of both theories which best account for
the data starting at any given time (subject to lexical and lan-
guage model constraints) will be identical. Thus if it happens
that t is on the list of hypothesized endpoints for both theories
and

P(w')ct~ < P(w)oLt

then we can remove t from the hypothesis list for the second
theory without running the risk of losing the optimal path. In
practice, the condition n = n' means that the list of hypoth-
esized endpoints for both theories will be the same (except
in very rare cases). Furthermore, if this inequality holds for
one such t then it is typically because the first theory gives a
better fit to the remote past than the second theory; hence it
will usually be the case that if the inequality holds for one t
then it will hold for all t and the second theory can be pruned
away completely.

We can take advantage of this fact to speed up the A* search
by maintaining a list of 'merge buckets' consisting of all the
equivalence classes of theories encountered in the course of
the search. Associated with each equivalence class we have
an array of forward scores {At } which is updated throughout
the search. For each t, At is defined to be

max P(w)o~t
0

where 0 extends over all theories (w, f , m, n, o', {oct}, S) in
the given equivalence class that have been encountered so far
(in the course of searching the current block). When a new
theory 0' = (w', f ' , m', n', a ' , {o~}, S') in this equivalence
class comes to be inserted into the stack we can test to see if
the inequality

P(w')ogt < At

holds for each hypothesized endpoint t. If it does, then we
can prune this endpoint hypothesis before entering the theory
into the stack; if not, then At is updated and the endpoint
hypothesis has to be retained.

We have not been able to implement this scheme fully because
of memory limitations. In practice, we only invoke merging
when a word boundary is hypothesized so the only merge
buckets generated in the course of the search are those which
correspond to theories for which m is the root node of the
lexical tree. (However, before starting the search we prune
the list of hypotheses generated by searching the previous
block by merging at arbitrary phoneme boundaries and we
use this pruned list to initialize the stack.)

5. Experimental Results
Our first experimental results obtained from two books on tape
(analog recordings) appear in Table 1. The first book "White
Fang" by Jack London was recorded by a male speaker;

the second book "Washington Square" by Henry James was
recorded by a female.

Training Test
Book Set Set Accuracy

Size Size %
WF 18,012 730 51A
WS 16,257 786 73.2

Table 1: Preliminary recognition results.

The second and third columns in this table give the training
and test set sizes in words; the third column gives the accuracy
which is calculated as

N - (Substitutions + ½[Deletions + Insertions])

N

where N is the size of the test set.

These experiments were run using 41 phonemic mixture
HMMs for each speaker, a 60,000 word dictionary which
was edited to include all of the words in both books (1.5% of
the words in each of the books had to be added) and a trigram
language model which was trained on 60,000,000 words of
newspaper texts. No attempt was made to tailor the language
model to the task domains. The test set perplexity was 1,743
in the case of "White Fang" and 749 in the case of "Washing-
ton Sqaure". These perplexities can be reduced to 576 and
347 respectively by smoothing the language model statistics
using word frequencies collected from the training set but we
did not take advantage of this in running our experiments.

The CPU time required to run the "Washington Square" ex-
periment was 120 times real time on a HP 720 workstation.
We had to use a block advance of only 10 frames (1 frame
= 10 ms) in order to keep the stack size within reasonable
bounds. The parameter A was set at 140 frames. The stack
was implemented as a heap and the maximum number of stack
entries was set to 60,000. (When this figure is reached, the
size of the stack is cut back to 30,000). The number of theo-
ries passed from one block to the next was 3,000. In the case
of "'White Fang" a larger stack was needed to prevent search
errors and the execution time was longer. We will have to run
the recognizer on several more speakers before attempting to
optimize these parameters.

6. Future W o r k

There is obviously a substantial amount of work to be done
to improve both the accuracy and speed of our recognition
algorithm. These problems are not independent of each other:
we expect that the search algorithm will run faster with a better
language model and better acoustic models and conversely

336

improvements in the search algorithm will lead to fewer search
errors and hence higher recognition rates.

At present, the only types of pruning that have been im-
plemented are the merging of theories having identical recent
pasts and the limitations on the size of the stack used in search-
ing a block as well as the length of the list of theories passed
from one block to the next. Several other possibilities remain
to be explored. We may be able to get away with a beam
search in the calculation of the ~/*'s. It may be possible to
prune hypotheses based on poor local acoustic matches (eval-
uated using the point scores or the/~* 's or a combination of the
two). Since the branching factor at the root node of the lexical
tree is 41, we would expect a big payoff if this type of pruning
can be made to work successfully whenever a word boundary
is hypothesized. Also the limitations on the stack size and
the length of the hypothesis lists passed from one block to
the next should probably be made threshold-dependent rather
than preset.

In our current implementation, we have not taken full advan-
tage of the sparseness of the language model statistics (the the
number of bigrams wl w2 for which we have trained trigram
distributions P (.]wx w2) is relatively small and these distribu-
tions are typically concentrated on very small subsets of the
dictionary). Our present implementation gets some mileage
out of this fact by using the notion of a language model state
(~r) to determine when theories can be merged, but more work
remains to be done. Adding a language model component to
the heuristic would probably help as well.

As for acoustic modelling, we can expect a major improve-
ment by using allophone models. From the way we have
presented the algorithm, it may appear that we have locked
ourselves into the choice of the phoneme as the modelling unit
so it may come as a surprise to learn that our algorithm can
accommodate allophone models in a natural way (without un-
duly increasing the amount of computation needed). The only
restriction is that the allophones of a given phoneme should be
defined by looking at contexts which extend no more than two
phonemes to the right (there is no restriction on left contexts).

Since this is an important issue, we take the time to explain
what is involved here. Certainly, we would encounter prob-
lems if we were to proceed in a straightforward manner and
recompile the lexicon in terms of allophonic transcriptions
rather than phonemic transcriptions. Firstly, the structure of
the lexical tree would have to be radically altered to acco-
modate allophones defined by contexts which extend across
word boundaries. Secondly, with a reasonably large allo-
phone inventory (say a few thousand), the size of the graph
G* would become so large as to make the computation of
the/~* 's practically infeasible. So the approach is to retain
the structure of the lexical tree and the graph G* determined
by the phonemic transcriptions and perform the translation to

allophonic transcriptions on-line. (The same method could be
used to incorporate phonological rules whose domain spans
word boundaries.)

Suppose we have a theory 0 whose partial phonemic tran-
scription is fl . . . fk. We have to explain how oct(f1 . . . fk-2)
and fl~ (n) are computed when allophone models are used.

In calculating o~t(ft . . . fk-2), we simply use the appropriate
allophonic models for each of the phonemes f l , . . - , fk-2.
(Note that sufficent information concerning the right contexts
is available to determine which allophones to use).

It is natural to organize the calculation of the t* 's in terms
of the point scores. To see how this goes, consider first the
case of phoneme models. The ~*'s can be calculated using
the block Viterbi algorithm [16]. Recall that, for a given node
n, the first two phoneme labels on any path in G* which starts
at node n are uniquely determined. Denote the first phoneme
by f and the second by g. The recursion formula is

~t~ (n) = max V([t + 1, t '] l f) max ~7,(n')
t t> t

where n' ranges over all nodes such that (n, f , n') is a branch
in G* and V([t + 1, t '] l f) denotes the Viterbi score of the data
in the interval It + 1, t'] calculated using the f model.

In the case of allophone models, we can calculate the back-
ward probabilities using the recursion formula

~/~(n) = max max V([t + 1,t']l~) m,ax/~,(n')
t~>t qb

where, as before, n' ranges over all nodes such that (n, f , n')
is a branch in G* and ~b ranges over all the allophones of f
determined by the condition that the phoneme immediately
following f is g. It is obvious that the backward probabilities
calculated in this way provide an overestimate of the acoustic
score of the data which has not yet been accounted for on
the optimal extension of the theory 0 so the admissibility
condition is satisfied. Of course, it is not possible to endpoint
the phoneme fk-2 exactly in this case since the allophone
models needed to score fk-~ and fk cannot be determined
until the theory has been extended. This does not present
a problem since we already have a mechanism in place for
handling multiple endpoint hypotheses.

Finally, we have recently embarked on a project to parallelize
the search algorithm with a view to obtaining a real-time
response on a platform supplied by ALEX Informatique con-
taining 48 i860's and 48 'I'800 transputers.

References
1. Averbuch A., "Experiments with the Tangora 20,000 word

speech recognizer," Proc. ICASSP 87, pp. 701-704, 1987.
2. Bahl, L.R. et al. "Large Vocabulary Natural Language Con-

tinuous Speech Recognition", Proc. ICASSP 89, pp. 465.-.467,
1989.

337

3. Bahl, L.R., De Gennaro S.V., Oopalakrishnan, P.S., Mercer,
R.L., "A fast approximate acoustic match for large vocabulary
speech recognition", personal communication.

4. Bahl, L.R., Bakis, R., de Souza, P.V., Mercer, R.L., "Obtain-
ing candidate words by polling in a large vocabulary speech
recognition system", Proc. ICASSP 88, pp. 489-492, 1988.

5. Fissore, L., Laface, P., Micca, O., Pieraccini, R., "Lexical
access to large vocabularies for speech recognition", Proc.
ICASSP 89, pp. 1197-1213, 1989.

6. Steinbiss, V., "A 10 000-word continuous speech recognition
system", Proc. ICASSP 90, pp. 57-60, 1990.

7. Sagayama, S., "A matrix representation of HMM-based speech
recognition algorithms", Proc. Eurospeech 91, pp. 1225-1228,
1991.

8. Soong, EK., Huang, E.-E, "A tree-trellis based fast search for
finding the N best sentence hypotheses in continuous speech
recognition", Proc. ICASSP 91, pp. 705-708, 1991.

9. Zue, V. et al., "Integration of speech recognition and natural
language processing in the M1T VOYAGER system", Proc.
ICASSP 91, pp. 713-716, 1991.

10. Austin, S., Schwartz, R., Placeway, P., "The forward-backward
search algorithm", Proc. ICASSP 91, pp. 697-700, 1991.

11. Jelinek, F., "A fast sequential decoding algorithm using a
stack", IBM Journal of Research and Development, 13, pp.
675-685, 1969.

12. Jelinek, F., "Continuous Speech Recognition by Statistical
Methods", Proc. IEEE, 64, 1976.

13. Seitz, F., Gupta, V., Lennig, M., Kenny, P., Deng, L., and
Mermelstein, P. "Dictionary for a very large vocabulary word
recognition system," Computer, Speech and Language, 4, pp.
193-202, 1990.

14. Nilsson, N., "Principles of artificial intelligence," Tioga Pub-
lishing Company, 1982.

15. Gupta, V., Lennig, M., and Mermeistein, P., "Fast search strat-
egy in a large vocabulary word recognizer," J. Acoust. Soc.
Am. 84(6), 2007-2017, 1988

16. Kenny, P., Hollan, R., Gupta, V., Lennig, M., Mermeistein,
P., and O'Shaughnessy, D., "A* - admissible heuristics for
rapid lexical access", to appear in IEEE Transactions on Signal
Processing, November 1992.

17. Deng, L., Kenny, P., Lennig, M., Gupta, V., Seitz, F., and
Mermeistein, P., "Phonemic hidden Markov models with con-
finuous mixture output densities for large vocabulary word
recognition," IEEE Transactions on Signal Processing, 39, pp.
1677-1681, 1991.

18. Kenny, P., Parthasarathy, S., Gupta, V., Lennig, M., Mer-
melstein, P., and O'Shaughnessy, D., "Energy, Duration and
Markov models", Proc. Eurospeech91, pp. 655-658, 1991.

19. Lennig, M., Gupta, V., Kenny, P., Mermelstein, P.,
O'Shanghnessy, D., "An 86,000-Word Recognizer Based on
Phonemic Models", Proc. DARPA Speech and Natural Lan-
guage Workshop, pp. 391-396, 1990.

20. Paul, D., "Algorithms for an optimal A* search and linearizing
the search in the stack decoder", Proc. ICASSP 91, pp. 693-
696, 1991.

338

