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A B S T R A C T  
This paper describes a new algorithm for building rapid 
match models for use in Dragon's continuous speech recog- 
nizer. Rather than working from a single representative token 
for each word, the new procedure works directly from a se t  

of trained hidden Markov models. By simulated traversals 
of the HMMs, we generate a collection of sample tokens for 
each word which are then averaged together to build new 
rapid match models. This method enables us to construct 
models which better reflect the true variation in word occur- 
rences and which no longer require the extensive adaptation 
needed in our original method. In this preliminary report, 
we outline this new procedure for building rapid match mod- 
els and report results from initial testing on the Wall Street 
Journal recognition task. 

1. I N T R O D U C T I O N  
In this paper,  we report  on a new algorithm for build- 
ing rapid match (prefiltering) models for Dragon's con- 
tinuous speech recognizer. The rapid match module is 
intended to supply the recognizer with a relatively short 
list of word candidates at every point where the recog- 
nizer hypothesizes a new word may begin. To accomplish 
this, the rapid match module performs a quick but  very 
approximate  calculation using a short interval of acoustic 
d a t a -  usually no more than 240 milliseconds of speech - 
and passes on to the recognizer a list of word candidates 
which can then be analyzed in detail. 

When the rapid match module for Dragon's continuous 
speech recognizer was first presented nearly two years 
ago [1], we evaluated its performance on a test corpus of 
mammography  reports  involving a vocabulary of under 
1,000 words. At that  time, the performance of the mod- 
ule was more than adequate to meet the demands of this 
recognition task. But as we move to larger vocabularies, 
the demands on rapid match have become greater at the 
same t ime tha t  its role in recognition has become more 
crucial: if we hope to approach anything like real-time 
recognition on a large-vocabulary task using moderately 
priced personal computers,  the recognizer can entertain 
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word hypotheses for only a tiny fraction of its complete 
vocabulary. Thus, not only must prefiltering provide 
models for more words, but those models must be capa- 
ble of making finer distinctions. 

Until now, we had been generating rapid match models 
based on a single artificially constructed token represent- 
ing the "average" behavior of each word. But working 
from a single token made it impossible to adequately 
model potential variability, and extensive adaptat ion of 
the models was necessary both to est imate variances and 
to adjust model parameters  to new speakers. In our 
new training procedure, we instead build word models 
directly from hidden Markov models for each speaker 's  
vocabulary. As reported below, these new models have 
allowed us to significantly improve prefiltering perfor- 
mance. 

After a brief review of the rapid match module in the 
next section, we go on to describe in detail our new pro- 
cedure for building rapid match models. Results from 
preliminary testing of these models using the Wall Street 
Journal recognition task are reported in section 4. We 
close with a discussion of the future directions we hope 
to explore. 

2. R E V I E W  OF T H E  
R A P I D  M A T C H  M O D U L E  

The main job of the rapid match module is to provide 
the recognizer with a short list of words that  may be- 
gin at any particular time by looking at speech data  
beginning at that  time and extending only a brief pe- 
riod into the future. To accomplish this, we first con- 
struct "smooth frames" of speech by taking a (possibly 
weighted) average of several frames of acoustic data. For 
our continuous speech recognition, we have been using 
three smooth frames of information, each obtained by 
averaging together four successive 20-millisecond frames 
of speech. Such smooth frames have the dual benefit of 
condensing the acoustic information into a much smaller 
number of parameters  and doing so in a way that  re- 
duces the sensitivity to potential variation in phoneme 
duration. The number of speech frames used in calcu- 
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lating a smooth frame, the number of smooth frames, 
and the offset from one smooth frame to the next are all 
adjustable parameters in the rapid match module. 

As the smooth frames are computed, they are scored 
against models for word start  clusters, which are groups 
of words whose beginnings are acoustically similar. 
These word start  groups are formed automatically using 
a specialized clustering algorithm starting from smooth 
models for the words in the vocabulary. Clearly, this 
clustering of words into acoustically-similar groupings - 
a step performed during the rapid match training - re- 
sults in further efficiencies at recognition time. Each 
word start  cluster is represented by a sequence of prob- 
ability distributions, one for each smooth frame of the 
model. We currently assume that  each probability den- 
sity is a product  of double exponential distributions, one 
corresponding to each of the smoothed acoustic param- 
eters. Thus each smooth frame of a word start model 
is determined by a collection of (mean, deviation)-pairs. 
We reduce run-time calculations still further by allowing 
several word start  clusters to share the same probability 
densities for some of their smooth frames. This second 
level of clustering, like the first, is performed automat- 
ically as part  of the training process and results in a 
collection of "position clusters" used for the spelling of 
all word start  groups. 

Each word of the vocabulary may belong to several dif- 
ferent word start  clusters, depending on the context 
in which the word finds itself. We currently generate 
four models for each word, based on whether the word 
emerges from silence or speech and whether it is followed 
by silence or speech. The number of smooth frames rep- 
resenting a word start  group is determined by the lengths 
of its members. In our current implementation, most 
words have models filling all three smooth frames, but 
some very short words (most commonly function words 
like "the", "to", and "of '  when embedded in continuous 
speech) receive models with fewer frames. 

During recognition, as smooth frames are generated from 
incoming acoustic data, they are scored against the var- 
ious word start  clusters using the negative log likelihood 
for the probability models for each group. The score for 
a word start  group is computed as an average over the 
scores from each of the smooth frames in its model. For 
every word start  group scoring within a certain thresh- 
old, the words belonging to the group are looked up, 
possible duplicates are removed, and a language model 
score for each word is added to its word start  score. The 
list of all words whose combined score falls within a sec- 
ond threshold is then passed on to the recognizer for a 
more complete analysis. 

For more detaiis on the rapid match module, consult [1]. 

3. B U I L D I N G  B E T T E R  M O D E L S  
The process of creating word start  groups begins from 
sample tokens for the words in the recognizer's vocab- 
ulary. The speech frames are averaged together into 
smooth frames, just  as in the rapid match recognition 
process, and these smoothed versions are then clustered 
into word start  groups. 

Until now, this process began from a single token repre- 
senting the "average" behavior of each word. Dragon's 
word models are built up from basic building blocks 
called phonemes-in-context, or PICs. The representa- 
tive tokens used by the rapid matcher were constructed 
by concatenating PIC tokens built by means of a lin- 
ear alignment routine. Through linear stretching and 
shrinking operations, examples of the desired phoneme 
were normalized to a common length and then the acous- 
tic parameters averaged together on a frame-by-frame 
basis. (See [2] for a more detailed description of PIC 
models and the construction of aligned tokens.) Unfor- 
tunately, in the course of alignment, any usable informa- 
tion about the variability of frame parameters is lost. 

Although the models formed in this way were sufficient 
for a task like the marnrnography study, the strategy 
suffers from three main deficiencies: 

Because each word 
there is no way to 
parameters. Such 
during adaptation 

model is based on a single token, 
measure the variability of model 
estimates must be incorporated 
of the models. 

Because the token is constructed from a linear align- 
ment of phonemic units, the model rigidly expects a 
particular phoneme in a particular frame and so is 
relatively intolerant of variation in phoneme dura- 
tion. While the alignment process involves blending 
different behaviors within the phonemic unit, the 
representation does not allow for mixing frames in- 
volving different PICs. Averaging together several 
successive acoustic frames to create the "smooth 
frames" used in rapid match softens this effect, but 
cannot eliminate it. 

Finally, because the token is based on the reference 
speaker's models, extensive adaptation is necessary 
to adjust the model parameters to other speakers. 
And while adaptation can successfully modify values 
for the (mean, deviation)-pairs representing word 
start  clusters, it cannot alter the spelling of word 
start clusters by position clusters nor the assignment 
of words to word start  groups. Both of these steps 
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are performed once and for all based On the reference 
speaker's models. 

Our new method for building rapid match models over- 
comes these difficulties by working directly from HMMs 
representing the words for each speaker's vocabulary. 
In the new rapid match training, we begin from the 
phonemic spelling of each word and, using the speaker's 
own models, unpack the sequence of nodes representing 
each PIC. We then generate a collection of sample to- 
kens by simulated traversals of this node sequence. At 
each node, we determine the duration of the stay by a 
random draw from a double exponential duration dis- 
tribution and then, for each of the resulting number of 
frames, generate parameter values by independent draws 
from the output  distribution for the node. The result- 
ing collection of sample tokens exhibits all the variabil- 
ity one would expect to see in actual occurrences of the 
word. These tokens are then converted to their smoothed 
forms, the smoothed versions averaged together smooth 
frame by smooth frame to obtain both means and devi- 
ations for the new word model, and the usual clustering 
algorithm can then be followed. 

Of course, the sample tokens generated by independent 
draws from the output  distributions are probably not 
themselves accurate representations of actual word oc- 
currences; we would expect a high degree of correlation 
between successive frames in actual speech. But because 
these samples are processed through two rounds of aver- 
aging - the first combining successive acoustic frames 
into a single smooth frame and the second averaging 
smooth frames from the many sample tokens - we expect 
the resulting means to be fairly well estimated. On the 
other hand, our assumption of independence of frames 
probably leads to an underestimate of the true frame 
deviations. For example, in the extreme (and purely hy- 
pothetical) case that  the four successive acoustic frames 
were in fact identical in actual speech, our random draws 
would underestimate the deviations by a factor of two. 
In general, we expect to be off by a considerably smaller 
factor, but we have found that  performance of our new 
models is improved if we scale up all our estimated de- 
viations by a factor in the range 1.3-1.5. 

4. I N I T I A L  R E S U L T S  O N  T H E  
W A L L  S T R E E T  J O U R N A L  T A S K  

Our goal is to ensure that  the correct word candidate 
is returned by the rapid matcher in the list of the top 
100-200 words. We do not require that  it be the highest 
ranked - the recognizer will do the hard work of analyz- 
ing the top candidates in detail - but it is essential that  
the correct candidate not be excluded from this analysis. 
Therefore, our evaluation of the new rapid match train- 

ing program concentrates on performance in this range. 

In order to assess how close we've come to meeting 
our goal, we have been using an evaluation package 
which ranks the word candidates nominated by the rapid 
matcher in any given speech frame. By running the rec- 
ognizer in a mode where it knows the correct transcrip- 
tion for a text,  we can obtain a segmentation of each ut- 
terance, marking the frame in which each word is most 
likely to begin. We then use the evaluation package to 
look at what rank the correct word has in the list of 
candidates passed on to the recognizer in that frame. 

To provide an initial reading on the new rapid match 
training and to help set clustering thresholds, we first 
looked at its performance on the mammography task. 
While we did not expect the new routine to improve 
noticeably on our earlier performance - it was, after all, 
a relatively easy task involving a limited vocabulary and 
recorded by our reference speaker - it was reassuring 
to find that the new routine, like the old, returned the 
correct word in the list of the top 100 candidates over 
99% of the time for a test set roughly 4300 words long, 
and by the top 200 words, the correct candidate failed 
to appear on the list only about 1 time in 1000. 

We then moved on to the more challenging Wall Street 
Journal task. Here we built new rapid match models for 
the 5K verbalized punctuation vocabulary for 5 of our 
12 speakers, ranging from our worst performer to our 
best, and compared them to the original models which 
had already been adapted to each speaker. (For a de- 
scription of our overall performance on the Wall Street 
Journal task, see the companion article [3].) The results 
are summarized in Table 1, which reports what percent 
of the time the correct word was included in the word 
candidate list returned by rapid match, as a function of 
the length of the list. The test sets involved about 40 
sentences totaling somewhat over 700 words per speaker. 
They were drawn from the 5K verbalized punctuation 
speaker-dependent Wall Street Journal corpus. In all 
cases the new models improved significantly over the old, 
usually cutting the error rate by 25-50%. 

Although the new training method obviates the need for 
adaptation of models, we were curious about whether 
adaptation would further improve the performance of 
the rapid match system. We therefore have begun ex- 
perimenting with adapting our new rapid match models. 
Preliminary results indicate that we can expect to gain 
about another percentage point improvement even after 
a single round of adaptation. A sample is given in Table 
2, for speaker 00A. 

We have also begun building new rapid match models for 
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s p e a k e r [ l i s t [  
I.D. length 

100 
00A 150 

200 
250 
100 

00C 150 
2OO 
250 
100 

001 150 
200 
25O 
100 

203 150 
2OO 
25O 
100 

432 150 
2O0 
250 

old new 
models models 

75.3 82.1 
82.4 86.9 
84.5 90.5 
87.2 91.9 
79.3 83.2 
85.6 88.4 
88.5 90.4 
89.8 91.9 
88.2 92.8 
90.8 94.2 
93.0 95.2 
94.5 95.9 
85.4 91.8 
89.3 93.9 
91.0 95.2 
92.1 95.9 
87.6 92.4 
91.5 94.8 
93.5 96.7 
94.6 97.5 

Table 1: Percentage of time correct word returned by 
rapid match, by list length, for Wall Street Journal 5K 
task. 

the 20K vocabulary. Results for a sampling of speakers 
on the 20K task are given in Table 3. Clearly the dif- 
ficulty of the rapid match task grows significantly with 
vocabulary size. However, it should be noted that while 
the job of creating sufficiently good models grows enor- 
mously as the vocabulary grows, the burden at recogni- 
tion time does not: the number of word start clusters 
grows much more slowly than the vocabulary size both 
because we allow the clustering thresholds to increase 
gradually with vocabulary size and because large vocab- 
ularies permit more sharing of cluster models. For ex- 
ample, the number of word start clusters for the mam- 
mography task (with a vocabulary of 860 words) was 
about 1500, for the 5K Wall Street Journal task about 
5000 clusters, and for the 20K vocabulary about 6000 
clusters. (Recall that each word is given four context- 
determined models, so the actual number of word models 
is four times the vocabulary size.) 

A word should be said about the relationship between 
results on these evaluation tests and actual recognition 
performance. We have found that even if a word has a 
poor rank in the frame in which the recognizer ideally 
expects the word to begin, a good score in a neighbor- 
ing frame will often allow the recognizer to get the word 

list I before 
length adaptation 

100 82.1 
150 86.9 
200 90.5 
250 91.9 

after 
adaptation 

83.9 
88.3 
90.8 
92.7 

Table 2: Effect of one round of adaptation on rapid 
match models for 00A. 

right. On the other hand, if a word fails to be passed on 
to the recognizer within a small window around the opti- 
mal word start, performance will suffer. Being deprived 
of the correct word, the recognizer is forced to follow a 
false path through the web of sentence hypotheses, usu- 
ally resulting in two or three word errors. Thus, even 
small improvements to the rapid match module can have 
a significant impact at recognition time. As an example 
of the relationship between the rapid match evaluation 
results and actual recognition performance, Table 4 gives 
rapid match results for both old and new training models 
for our in-house speaker SAL on the Wall Street Journal 
5K test set, along with word error rates in the related 
recognition tests. 

list I speaker 
length 00A [ 203 [ 432 

200 77.5 90.2 90.1 
400 84.0 93.7 93.0 
600 87.2 95 .0  94.5 
800 89.5 96.0 95.5 
1000 91.4 96 .8  96.6 

Table 3: Percentage of time correct word returned by 
rapid match, for Wall Street Journal 20K task. 

5. F U T U R E  P L A N S  

The work described above is only the beginning of a long- 
term project to improve the performance of Dragon's 
rapid match algorithm for continuous speech recogni- 
tion. Most immediately, we plan to work at tuning the 
many parameters involved in rapid match training. In 
the results cited above, we deliberately chose parameter 
settings as close as possible to those used in our original 
training routine, using, for example, three smooth frames 
of length four with each of the four acoustic frames given 
equal weight. But there is no reason to believe that these 
values optimize performance. In our isolated word rec- 
ognizer, in contrast, rapid match uses five smooth frames 
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Rapid Match Perrorrnance 
list old 

length models 

100 83.1 
200 90.0 
300 92.0 
400 93.3 
500 94.1 

new 
models 

91.1 
94.9 
96.6 
97.4 
98.1 

Recognition Results 

OLD MODELS 
a v g # w o r d s  word error a v g # w o r d s  

returned rate returned 
122 17.1 106 
161 13.2 140 
236 11.4 207 
348 10.6 305 
458 9.4 400 

NEW MODELS 
word error 

rate 
10.5 
9.4 
7.8 
7.2 
7.0 

Table 4: Comparison of rapid match performance and 
recognition results. 
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computed from overlapping windows of length six with 
weighting coefficients 1, 4, 6, 6, 4, 1. We plan to ex- 
periment with different window sizes and weights, with 
special attention to the benefits of reading more deeply 
into a word. 

In the past year, Dragon has moved from its original set 
of 8 signal-processing parameters to a set of 32, adding 
12 cepstral and 12 difference cepstral parameters. The 
rapid match models described above used only the origi- 
nal 8 parameters, but we should be able to improve per- 
formance by using information from all 32. To keep the 
recognition-time computation low, we plan to explore 
ways of distilling the 32 parameters down to a small 
but effective collection of smooth parameters, possibly 
by means of principal component techniques. We have 
also begun using tied mixture models for our continu- 
ous speech recognition (see [3]) and the token generation 
which forms the heart  of our new training strategy must 
be modified to work for these distributions. We also hope 
to move from the naive hypothesis of the independence 
of adjacent speech frames to a token generation system 
capable of incorporating trends across frames. 

We are encouraged by the significant gains produced by 
the first stages of our new rapid match training program 
and look forward to further improvements as these ad- 
ditional features are incorporated. 
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