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In this paper, baseline speech recognition performance is determined 
both for a single remote microphone and for a signal derived from a 
delay-and-sum beamformer using an eight-microphone linear array. 
An HMM-based, connected-speech, 38-word vocabulary (alphabet, 
digits, 'space', 'period'), talker-independent speech recognition 
system is used for testing performance. Normal performance, with 
no language model, i.e., raw word-level performance, is currently 
about 81% for a set of talkers not in the training set and about 
91% for training set data. The system has been trained and 
tested using a close-talking bead-mounted microphone. Since a 
meaningful comparison requires using the same speech, the existing 
speech database was appropriately pre-filtered, played out through 
a transducer (speaker) in the room environment, picked-up by the 
microphone array, and re-stored as a digital file. The resulting 
file was post-processed and used as input to the recognizer; the 
recognition performance indicates the effect of the input device. The 
baseline experiment showed that both a single remote microphone 
and the beamformed signal reduced performance by 12% in a room 
with no other talkers. For the array tested, the error is generally 
attributable to reverberation off the floor and ceiling. 

1 .  I n t r o d u c t i o n  

It is widely accepted that appropriate data-acquisition tech- 
nology must be available in order to make speech-recognition 
a viable computer input mode [1, 2, 3]. While work has 
been done in the area of signal conditioning [4], for the 
last three years, research at Brown University has been in 
progress to develop hardware, software and algorithms as a 
means to make non-intrusive speech acquisition a practical 
reality [5, 6] Principal focus to date has been to use the 
phase relationships among a group of microphones spaced 
in a line - hence a linear array - for the remote, real-time 
acquisition of a talker's data. Various beamforming and talker 
location/tracking algorithms have been studied, reported, and 
evaluated relative to listening quality [7, 8, 9, 10, 11, 12] 

The quality of a speech data acquisition system may be 
assessed in several ways. For many applications, evaluation 
is usually given, quantitatively, in terms of some signal- 
to-noise measure or human-listening experiment score, or 
qualitatively in terms of human evaluation. However, for 
a system whose output is fed to a speech recognizer, the 
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recognition performance is an excellent, quantifiable measure; 
this approach and its results make up the body of this paper. 

A key problem for such systems to overcome is that of rever- 
beration. Acoustic reflections in a normal room environment 
make the output of a remote microphone quite different from 
that taken from the normal, close-talking, recognizer micro- 
phone. Several ways have been suggested to alleviate this 
problem: 

• A more focused array system will attenuate reflections 
coming from a wider off-axis volume[13]. Many mi- 
crophones are required to do this, and a system with 
beana-width control over a broad spectrum and in two or 
three directions is essential. This is the spatial-filtering 
approach to solving the problem. 

. The acoustic environment near the microphones is very 
critical. New ways of mounting the microphones in 
an appropriately sound absorbent material substantially 
improve performance, without necessarily limiting the 
practicality of the array. More directional elements can 
also be used. This is an acoustical approach to helping 
to resolve the problem. 

• One form or another of deconvolution can be used 
to undo the effects of reverberations [3, 14, 15, 16, 
17, 18, 19]. Either directly or indirectly, some char- 
acterization of the room is obtained, usually as some 
spatially-dependent impulse response. After this non- 
trivial problem is solved, some processing "art" is often 
essential to overcome nulls in the spectrum and perform 
inverse filtering. 

This project investigates all of the above methods. It might 
be added that, when working with real acoustic systems, 
mechanisms for reducing reverberations must be carefully 
applied; it is a hard problem. However, the purpose of 
this paper is not to deal with the improvements achieved by 
employing various means to dereverberate the output signal of 
the array; rather, it is to set a baseline standard against which 
to compare future developments. The problem is posed: how 
badly does recognizer performance degrade when the input 
signal is from 1) a single remote omnidirectional microphone, 
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or from 2) the beam:formed output from a linear microphone 
array? This experiment quantifies the acceptability (or lack 
thereof) of using relatively straightforward implementations 
of remote microphone technology for speech recognition. 

2. The LEMS Speech Recognizer 
An HMM-based, connected-speech, 38-word vocabulary (al- 
phabet, digits, 'space', 'period'), talker-independent speech 
recognition system has been running for two years in the 
LEMS facility [20, 21]. This small, but very difficult vocab- 
ulary has many of the problems associated with a phoneme 
recognizer. 

Speech, sampled at 16kHz from a close-talking microphone, 
is tnmcated through a 40ms Hamming window every 10ms. 
Twelve cepstral coefficients, twelve delta cepstral coeffi- 
cients, overall energy and delta overall energy comprise the 
26 element feature vector. Three 256-entry codebooks are 
used to vector quantize the data from cepstral, delta cepstral, 
and energy/delta energy features respectively 1. The recog- 
nizer differs from standard HMM models in that durational 
probabilities are handled explicitly [22]. For each state, self 
transitions are disallowed. During training, nonparametric 
statistics are gathered for each of 30 potential durations in 
the state, i.e., 10ms to 300ms. In the base system used for 
this experiment, a gamma distribution was fitted to the non- 
parametric statistics. The models used are word-level models 
having from five to twelve states. Only forward transitions 
and skips of a single state were allowed. 

The best available recognizer at the time was used for the 
experiment, except that the amount of speech normally used 
to develop the vector quantizafion codebooks was reduced 
from one and one-half hours to 15 minutes. This made it 
feasible to do several full k-means re-trainings of the system; 
VQ training took but two days (elapsed time) on a SUN 
SPARCstation 2 while VQ training for the one and one-half 
hour case would have taken an unacceptable twelve days2! 
The change to the VQ training degraded performance for 
the close-talking microphone data by 1.5%, i.e., the 79% 
performance of the system for 1) new talkers and 2) no 
grammar was reduced to 77.5%. 

About four hours of speech (2400 connected strings, or 
nearly 40,000 vocabulary items) from 80 talkers, half male, 
half female, were used to train the hidden Markov models. 
Currently, the training procedure requires 60 hours of CPU 
time from each of eight SPARC 1+/2 workstations linked 
in a loosely-coupled fashion through sockets. Well-known 
mechanisms for speeding up the process, such as doing the 

eat the time this experiment was initiated, semi-continuous modeling 
of output probabilities and better word models  were not yet a part of the 
system. Current improvements have increased overall performance for the 
head-mounted microphone input by about 3%. 

2We are optimizing this program now. 
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Figure 1: Acoustical Geometry of Array/Sources 

computation in the logarithm domain using integers and a 
lookup table [23], as well as some detailed new programming 
speedups [24] are being used to reduce the training time. 

3. Data Development 
The original speech data were recorded in a large, generally 
not-too-noisy room through an Audio Technica ATM73a 
head-mounted, close-talking microphone. The speech was 
sampled through a Sony DAT- 16 bits at 48kHz sampling 
rate. It was then digitally decimated to 16kHz and fed directly 
to a SUN workstation to build a high-fidelity database [25]. 
The signal-to-noise ratio is about 50dB. 

It would not have been possible, let alone feasible, to record 
another large dataset from the same talkers using the micro- 
phone array system for acquisition. Thus, a mechanism had 
to be developed to use the high-fidelity database as input to 
the array recording system. A high-quality transducer was 
used to play out the speech; the geometry is shown in Figure 
1. The resulting real-time system for the data conversion 
is schematically shown in Figure 2. Three SPARC 1+/2 
workstations are used. The first converts the digital speech 
data in speech recognition format into digital data acceptable 
for playback through the microphone array hardware. This 
involves changing the sampling rate from 16kHz to 20kHz 
and then applying an FIR inverse filter to undo the coloring 
that will come from the output transducer. This filter was 
obtained by running digital, band-limited white noise with 
DFr spectrum W(r) through the transducer and recording 
the output through an ultra-flat frequency response Briiel 
& Kjaer (B&K) condenser microphone system placed a few 
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Figure 2: The Data Conversion System Figure 3: Spectra of the Output Transducer System and 
Inverse Filter 

centimeters in front of the middle of the output transducer. 
After accumulating an average magnitude spectrum of the 
B&K's output via multiple 128-point DFT's, the spectrum 
S(r) was inverted, i.e., Y(r) = W ( r ) / S ( r ) ,  and inverse 
transformed to produce a zero-phase FIR filter 3. Any spectral 
energy attenuated by the anti-aliasing filter i.e., frequencies 
above 7kHz, were forced to unity gain. S(r) and Y(r) are 
shown in Figure 3. The subjective audible effects as well 
as the flattened white-noise response indicate that this proce- 
dure was successful in removing the 'boominess' potentially 
introduced by the transducer system• 

Initially, small, omnidirectional electret microphones were 
mounted at the edge of a 5cmx 10cm board containing am- 
plifier/filter electronics and the board was plugged vertically 
into a (2.5m) horizontal cage• Recent work disclosed that 
this system formed resonant cavities that impacted the per- 
formance of the linear microphone array. When the same 
microphones with the same spacing (18•4 cm) were inserted 
into a (180cmx 30cmx 15cm) block of six pound ester foam, 
the degradations due to the cavities disappeared as may be 
seen in Figure 4. Note that the data shown are for the 
transducer output after the noise has been inverse filtered. 

The remainder of the data conversion system is straightfor- 
ward. Twenty kilohertz sampling interrupts are used both 
to produce the speech output(s) and to digitize the analog 
signals from the eight microphones. Sufficient memory is 
available for about 10 second utterances. Upon comple- 
tion of an utterance, the microphone data are sent to a third 

3Non-zero-pha~zinverse filters are also being investigated. 

SPARCstation for sample-rate conversion, signal processing 
for recognition, and archiving on hard disk as feattwe vectors 
for the recognition system• 

4. E x p e r i m e n t  a n d  R e s u l t s  

The system was trained, both for VQ and for the hidden 
Markov model parameters, three different times: 1) for the 
high-fidelity data, 2) for the output of a single microphone 
of the array (a. central one), and 3) for the simple delay-and- 
sum beamfonned output of the 8 microphone array. The 
recognizer was tested using 20 new talkers, again half male 
and half female, for a total of an hour of speech, or about 4800 
vocabulary items. The data conversion system was run under 
'quiet' conditions. Not including noise due to reverberations, 
the signal-to-noise ratios were significantly degraded by the 
acoustical noise to 24dB for the single remote microphone 
and 26dB for the beamformed signal. The results as a function 
of talker number are plotted in Figure 5. From the Figure, 
one may deduce that: 

For all cases, variation with respect to talker is far greater 
than variations due to other effects. 

Recognition performance is approximately the same for 
the single microphone as it is for the beamformed case, 
given no other point 'noise' sources.. 

Performance for the high-fidelity signal is consistently 
about 12% better than for the acoustically degraded 
signal. 
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Figure 5: RecognitionPerformance for the Three Acquisition 
Systems 

For completeness, each of the test datasets was run against 
each of the three systems. The results are given in Table 1. 

Test Data J Model Trained from 
from I Hi-Fi Remote Mike Beamformed 

Hi-Fi 77.5% 50.0% 53.6% 
Remote Mike 38.8% 65.6% 64.6% 
Beam:formed 32.8% 57.6% 65.3% 

Table 1 

Averaged Results for Direct and Cross-Trained Systems 

5. Discussion 
Given the degraded acoustical environment, it was not sur- 
prising that performance for the converted data was reduced 
using remote-microphone input. However, it was somewhat 
surprising that this very carefully done experiment indicates 
no performance advantage when simple beamforming is used 
to generate the input. This could be due to the following: 

• Low-frequency background noise is not effectively elim- 
inated by an acoustic array of this type and size. Some 
filtering, perhaps combined with sub-band types of en- 
hancements, should help. 

• The major reverberations in the room come from the 
ceiling and floor. They have been measured as being 
as much as 25% of the original wavefront in intensity. 

Even if the reflections average 10%, implying a 14dB 
signal-to-noise ratio, 'quiet' room conditions no longer 
hold. A focused two or three dimensional array could 
attenuate these reflections and thus address the problem. 
Altematively, pressure gradient microphones could be 
used in a one-dimensional array as done in [13]. 

There is always some variability in an acoustical exper- 
iment regarding equipment positioning, overall ampli- 
tudes, microphone calibration etc. While great care was 
taken, certainly the beamformer output would be more 
susceptible to these variabilities than would be the single 
remote microphone. 

In order to determine the impact of beamforming, the testing 
d a t a  were run through the data conversion system (source at 
(1 m, 2m)) several additional times, each with a second trans- 
ducer located at (2m, 2m). This second transducer repeated 
a few seconds of speech at various, controlled levels as the 
testing data were being recorded. This procedure permits 
the assessment of the effects of beamforming with respect to 
spatial filtering of off-axis noise. The test datasets for both 
the single remote microphone and the beam:formed data were 
run through their respective quiet-room recognizers. As the 
purpose of this test was to check the simple beamformer, more 
elaborate beamformers were not used to generate the data of 
Figure 6. Also, note that no background noise processing 
(such as high-pass filtering the signals) was used to remove 
the low-frequency 'rumble' of the room. 
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Figure 6: Performance in a Noisy Environment 

As the graph indicates, there is an appreciable performance 
gain using the array for acoustic data collection in a noisy 
environment. The simple beamformer consistently scored 
10-15% higher than a single microphone for SNR's less than 
16dB. Note that in one case the recognition result is negative. 
This is a consequence of the method employed for calculating 
the performance score. 

6. Conclusion 

An intricate experiment has been developed to quantify 
the effects of alternative acoustic environments on speech- 
recognition systems. The performance of an HMM-based 
alphadigit recognizer was reduced about 12% when input was 
converted from high-fidelity, close-talking input to either a 
single remote microphone or the output of a delay-and-sum 
beamformer using an eight-microphone linear array under 
quiet conditions. Beamforming did significantly improve 
performance over that of a single microphone for low signal- 
to-noise ratios and is thus advantageous in the presence of 
acoustic interference. 

More importantly, though, the work establishes an automated 
procedure for reconstructing a given database in a new envi- 
ronment, permitting the evaluation of acoustic-input devices. 
Such a structured methodology has allowed the determination 
of baseline performance and now future improvements can 
be appropriately measured. 
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