
INFORMATION RETRIEVAL USING
ROBUST NATURAL LANGUAGE PROCESSING

Tomek Strzalkowski

Courant Institute o f Mathemat ica l Sciences
New York Universi ty

715 Broadway, rm. 704
New York, NY 10003

tomek@cs .nyu .edu

A B S T R A C T

We developed a fully automated Information Retrieval System which uses
advanced natural language processing techniques to enhance the effective-
ness of traditional key-word based document retrieval. In early experiments
with the standard CACM-3204 collection of abstracts, the augmented sys-
tem has displayed capabilities that made it clearly superior to the purely
statistical base system.

1. O V E R A L L D E S I G N

Our information retrieval system consists of a traditional
statistical backbone (Harman and Candela, 1989) aug-
mented with various natural language processing com-
ponents that assist the system in database processing (stem-
ming, indexing, word and phrase clustering, selectional res-
trictions), and translate a user's information request into an
effective query. This design is a careful compromise
between purely statistical non-linguistic approaches and
those requiring rather accomplished (and expensive)
semantic analysis of data, often referred to as 'conceptual
retrieval'. The conceptual retrieval systems, though quite
effective, are not yet mature enough to be considered in
serious information retrieval applications, the major prob-
lems being their extreme inefficiency and the need for
manual encoding of domain knowledge (Mauldin, 1991).

In our system the database text is first processed with a fast
syntactic parser. Subsequently certain types of phrases are
extracted from the parse lxees and used as compound index-
ing terms in addition to single-word terms. The extracted
phrases are statistically analyzed as syntactic contexts in
order to discover a variety of similarity links between
smaller subphrases and words occurring in them. A further
filtering process maps these similarity links onto semantic
relations (generalization, specialization, synonymy, etc.)
after which they are used to transform user's request into a
search query.

The user's natural language request is also parsed, and all
indexing terms occurring in them are identified. Next, cer-
tain highly ambiguous (usually single-word) terms are
dropped, provided that they also occur as elements in some
compound terms. For example, "natural" is deleted from a
query already containing "natural language" because

206

"natural" occurs in many unrelated contexts: "natural
number", "natural logarithm", "natural approach", etc. At
the same time, other terms may be added, namely those
which are linked to some query term through admissible
similarity relations. For example, "fortran" is added to a
query containing the compound term "program language"
via a specification link. After the final query is constructed,
the database search follows, and a ranked list of documents
is returned.

It should be noted that all the processing steps, those per-
formed by the backbone system, and these performed by
the natural language processing components, are fully
automated, and no human intervention or manual encoding
is required.

2. F A S T P A R S I N G W I T H T T P

TIP (Tagged Text Parser) is based on the Linguistic String
Grammar developed by Sager (1981). Written in Quintus
Prolog, the parser currently encompasses more than 400
grammar productions. It produces regularized parse tree
representations for each sentence that reflect the sentence's
logical structure. The parser is equipped with a powerful
skip-and-fit recovery mechanism that allows it to operate
effectively in the face of ill-formed input or under a severe
time pressure. In the recent experiments with approximately
6 million words of English texts, 1 the parser's speed aver-
aged between 0.45 and 0.5 seconds per sentence, or up to
2600 words per minute, on a 21 MIPS SparcStation ELC.
Some details of the parser are discussed below. 2

TIP is a full grammar parser, and initially, it attempts to
generate a complete analysis for each sentence. However,
unlike an ordinary parser, it has a built-in timer which regu-
lates the amount of time allowed for parsing any one sen-
tence. If a parse is not returned before the allotted time

I These include CACM-3204, MUC-3, and a selection of nearly
6,000 technical articles extracted from Computer Library database (a Zfff
Communications Inc. CD-ROM).

2 A complete description can be found in (Strzalkowski, 1991).

elapses, the parser enters the skip-and-fit mode in which it
will try to "fit" the parse. While in the skip-and-fit mode,
the parser will attempt to forcibly reduce incomplete consti-
tuents, possibly skipping portions of input in order to restart
processing at a next unattempted constituent. In other
words, the parser will favor reduction to backtracking while
in the skip-and-fit mode. The result of this strategy is an
approximate parse, partially fitted using top-down predic-
tions. The fragments skipped in the first pass are not thrown
out, instead they are analyzed by a simple phrasal parser
that looks for noun phrases and relative clauses and then
attaches the recovered material to the main parse structure.
As an illustration, consider the following sentence taken
from the CACM-3204 corpus:

The method is i l lustrated by the automatic construct ion
o f both recursive and iterative programs operating on
natural numbers , lists, and trees, in order to construct a
program satisfying certain specifications a theorem in-
duced by those specifications is proved, and the desired
program is extracted f rom the proof.

The italicized fragment is likely to cause additional compli-
cations in parsing this lengthy string, and the parser may be
better off ignoring this fragment altogether. To do so suc-
cessfully, the parser must close the currently open consti-
tuent (i.e., reduce a program satisfying certain
specifications to NP), and possibly a few of its parent con-
stituents, removing corresponding productions from further
consideration, until an appropriate production is reac-
tivated. In this case, T IP may force the following reduc-
tions: SI --> to V NP; SA ----> SI; S ---> NP V NP SA, until the
production S --> S and S is reached. Next, the parser skips
input to find and, and resumes normal processing.

As may be expected, the skip-and-fit strategy will only be
effective if the input skipping can be performed with a
degree of determinism. This means that most of the lexical
level ambiguity must be removed from the input text, prior
to parsing. We achieve this using a stochastic parts of
speech tagger 3 to preprocess the text.

3. WORD SUFFIX TRIMMER

Word stemming has been an effective way of improving
document recall since it reduces words to their common
morphological root, thus allowing more successful matches.
On the other hand, stemming tends to decrease retrieval
precision, if care is not taken to prevent situations where
otherwise unrelated words are reduced to the same stem. In
our system we replaced a traditional morphological stem-
mer with a conservative dictionary-assisted suffix trimmer. 4
The suffix trimmer performs essentially two tasks: (1) it
reduces inflected word forms to their root forms as specified
in the dictionary, and (2) it converts nominalized verb

3 Courtesy of Bolt Beranek and Newman.

4 We use Oxford Advanced Leamer's Dictionary (OALD) MRD.

forms (eg. "implementation", "storage") to the root forms of
corresponding verbs (i.e., "implement", "store"). This is
accomplished by removing a standard suffix, eg.
"stor+age", replacing it with a standard root ending ("+e"),
and checking the newly created word against the dictionary,
i.e., we check whether the original root ("storage") is
defined using the new root ("store"). This allows reducing
"diversion" to "diverse" while preventing "version" to be
replaced by "verse". Experiments with CACM-3204 collec-
tion show an improvement in retrieval precision by 6% to
8% over the base system equipped with a standard morpho-
logical stemmer (the SMART stemmer).

4. HEAD-MODIFIER STRUCTURES

Syntactic phrases extracted from TTP parse trees are head-
modifier pairs: from simple word pairs to complex nested
structures. The head in such a pair is a central element of a
phrase (verb, main noun, etc.) while the modifier is one of
the adjunct arguments of the head. 5 For example, the phrase
fast algorithm for parsing context-free languages yields the
following pairs: algorithm+fast, algorithm+parse,
parse+language, language+context_free. The following
types of pairs were considered: (1) a head noun and its left
adjective or noun adjunct, (2) a head noun and the head of
its right adjunct, (3) the main verb of a clause and the head
of its object phrase, and (4) the head of the subject phrase
and the main verb, These types of pairs account for most of
the syntactic variants for relating two words (or simple
phrases) into pairs carrying compatible semantic content.
For example, the pair [retrieve,information] is extracted
from any of the following fragments: information retrieval
system; retrieval of information from databases; and infor-
mation that can be retrieved by a user-controlled interac-
tive search process. 6 An example is shown in the appen-
dix .7

5. TERM CORRELATIONS FROM TEXT

Head-modifier pairs form compound terms used in database
indexing. They also serve as occurrence contexts for
smaller terms, including single-word terms. In order to
determine whether such pairs signify any important associa-
tion between terms, we calculate the value of the

5 In the experiments reported here we extracted head-modifier word
pairs only. CACM collection is too small to warrant generation of larger
compounds, because of their low frequencies.

To deal with nominal compounds we use frequency information
about the pairs generated from the entire corpus to form preferences in am-
biguous situations, such as natural language processing vs. dynamic infor-
mation processing.

7 Note that working with the parsed text ensures a high degree of
precision in capturing the meaningful phrases, which is especially evident
when compared with the results usually obtained from either unprocessed
or only partially processed text (Lewis and Croft, 1990).

207

Informational Contribution (IC) function for each element
in a pair. Higher values indicate stronger association, and
the element having the largest value is considered semanti-
cally dominant. IC function is a derivative of Fano's mutual
information formula recently used by Church and Hanks
(1990) to compute word co-occurrence patterns in a 44 mil-
lion word corpus of Associated Press news stories. They
noted that while generally satisfactory, the mutual informa-
tion formula often produces counterintuitive results for
low-frequency data. This is particularly worrisome for rela-
tively smaller IR collections since many important indexing
terms would be eliminated from consideration. Therefore,
following suggestions in Wilks et al. (1990), we adopted a
revised formula that displays a more stable behavior even
on very low counts. This new formula IC (x ,[x,y]) is'based
on (an estimate o0 the conditional probability of seeing a
word y to the right of the word x, modified with a disper-
sion parameter for x .

fx~r
lC (x,[x,y]) -

n,, + d,, - 1

where fx~, is the frequency of [x ,y] in the corpus, n x is the
number of pairs in which x occurs at the same position as in
Ix,y], and d(x) is the dispersion parameter understood as
the number of distinct words with which x is paired. When
IC(x,[x,y])=O, x and y never occur together (i.e.,
fx,y = 0); when IC(x,[x,y]) = 1, x occurs only with y (i.e.,
fx,y = n , and d~ = 1). Selected examples generated from
CACM-3204 corpus are given in Table 2 at the end of the
paper. IC values for terms become the basis for calculating
term-to-term similarity coefficients. If two terms tend to be
modified with a number of common modifiers and other-
wise appear in few distinct contexts, we assign them a simi-
larity coefficient, a real number between 0 and 1. The simi-
larity is determined by comparing distribution characteris-
tics for both terms within the corpus: how much informa-
tion contents do they carry, do their information contribu-
tion over contexts vary greatly, are the common contexts in
which these terms occur specific enough? In general we
will credit high-contents terms appearing in identical con-
texts, especially if these contexts are not too common-
place. 8 The relative similarity between two words xl and x z
is obtained using the following formula (a is a large con-
stant):

SIM (x 1 ,x 2) = log (a ~ sim~ (x 1,x 9)

where

simy (x l ,x z) = MIN (I C (x 1,[x l ,y]) j C (x 2,[x 2,y]))
* MIN(IC(y,[xl,y])JC(y,[x2,y]))

The similarity function is further normalized with respect to

8 It would not be appropriate to predict similari ty between language
and logarithm on the basis of their co-occurrence with natural.

SIM(xl,xl). It may be worth pointing out that the similari-
ties are calculated using term co-occurrences in syntactic
rather than in document-size contexts, the latter being the
usual practice in non-linguistic clustering (eg. Sparck Jones
and Barber, 1971; Crouch, 1988; Lewis and Croft, 1990).
Although the two methods of term clustering may be con-
sidered mutually complementary in certain situations, we
befieve that more and slxonger associations can be obtained
through syntactic-context clustering, given sufficient
amount of data and a reasonably accurate syntactic parser. 9

6. Q U E R Y E X P A N S I O N

Similarity relations are used to expand user queries with
new terms, in an attempt to make the final search query
more comprehensive (adding synonyms) and/or more
pointed (adding specializations). 1° It follows that not all
similarity relations will be equally useful in query expan-
sion, for instance, complementary relations like the one
between algol and fortran may actually harm system's per-
formance, since we may end up retrieving many irrelevant
documents. Similarly, the effectiveness of a query contain-
ing fortran is likely to diminish if we add a similar but far
more general term such as language. On the other hand,
database search is likely to miss relevant documents if we
overlook the fact that fortran is a programming language,
or that interpolate is a specification of approximate. We
noted that an average set of similarities generated from a
text corpus contains about as many "good" relations
(synonymy, speciafization) as "bad" relations (antonymy,
complementation, generalization), as seen from the query
expansion viewpoint. Therefore any attempt to separate
these two classes and to increase the proportion of "good"
relations should result in improved retrieval. This has
indeed been confirmed in our experiments where a rela-
tively crude filter has visibly increased retrieval precision.

In order to create an appropriate filter, we expanded the IC
function into a global specificity measure called the cumu-
lative informational contribution function (ICW). ICW is
calculated for each term across all contexts in which it
occurs. The general philosophy here is that a more specific
word/phrase would have a more limited use, i.e., would
appear in fewer distinct contexts. ICW is similar to the stan-
dard inverted document frequency (idj) measure except that
term frequency is measured over syntactic units rather than

9 Non-syntactic contexts cross sentence boundaries with no fuss,
which is helpful with short, succinct documents (such a s CACM abstracts),
but less so with longer texts.

to Query expansion (in the sense considered here, though not quite in
the same way) has been used in information retfeval research before (eg.
Sparek Jones and Tait, 1984; Harman, 1988), usually with mixed results.
An alternative is to use term clusters to create new terms, "metaterms", and
use them to index the database instead (eg. Crouch, 1988; Lewis and Croft,
1990). We found that the query expansion approach gives the system more
flexibiUty, for instance, by making room for hypertext-style topic explora-
tion via user feedback.

208

document size units. 11 Terms with higher ICW values are
generally considered more specific, but the specificity com-
parison is only meaningful for terms which are already
known to be similar. The new function is calculated accord-
ing to the following formula: 12

ICW(w) =ICL(w) * ICR (w)

where (with nw, dw > 0):

ICL (W) = Ic ([w , _]) =
n~

aw(nw+aw-1)

and analogously for IC R (w).

For any two terms w 1 and w 2, and a constant ~i > 1, if
ICW(w2)>_~* ICW(wl) then w 2 is considered more
specific than w 1. In addition, if SIM,~,~(Wl,Wz)=~> O,
where 0 is an empirically established threshold, then w 2 can
be added to the query containing term w 1 with weight o. 13
In the CACM-3204 collection:

ICW (algol) = 0.0020923
ICW (language) = 0.0000145
ICW (approximate) = 0.0000218
ICW (interpolate) = 0.0042410

Therefore interpolate can be used to specialize approxi-
mate, while language cannot be used to expand algol. Note
that if 8 is well chosen (we used 5=10), then the above filter
will also help to reject antonymous and complementary
relations, such as SIM~orm (pl_i,cobol)=0.685 with
ICW (pl_i)=O.O 175 and ICW (cobol)=0.0289. We continue
working to develop more effective filters. Examples of
filtered similarity relations obtained from CACM-3204
corpus are given in Table 3.

7. SUMMARY OF RESULTS

The preliminary series of experiments with the CACM-
3204 collection of computer science abstracts showed a
consistent improvement in performance: the average preci-
sion increased from 32.8% to 37.1% (a 13% increase),
while the normalized recall went from 74.3% to 84.5% (a
14% increase), in comparison with the statistics of the base
system. This improvement is a combined effect of the new
stemmer, compound terms, term selection in queries, and
query expansion using filtered similarity relations. The
choice of similarity relation filter has beeen found critical in
improving retrieval precision through query expansion. It
should also be pointed out that only about 1.5% of all

" We believe that measuring term specificity over document-size
contexts (eg. Sparck Jones, 1972) may not be appropriate in this case. In
particular, syntax-based contexts a l low for processing texts without any
intemal document structure.

m Slightly simplified here.

13 The filter was most effective at cr = 0.57.

similarity relations originally generated from CACM-3204
were found admissible after filtering, contributing only 1.2
expansion on average per query. It is quite evident
significantly larger corpora are required to produce more
dramatic results. 14 15 A detailed summary is given in Table
1 below.

These results, while modest by IR standards, are significant
for another reason as well. They were obtained without any
manual intervention into the database or queries, and
without using any other information about the database
except for the text of the documents (i.e., not even the hand
generated keyword fields enclosed with most documents
were used). Lewis and Croft (1990), and Croft et al. (1991)
report results similar to ours but they take advantage of
Computer Reviews categories manually assigned to some
documents. The purpose of this research is to explore the
potential of automated NLP in dealing with large scale IR
problems, and not necessarily to obtain the best possible
results on any particular data collection. One of our goals is
to point a feasible direction for integrating NLP into the
traditional IR (Strzalkowski and Vauthey, 1991; Grishman

Tests org.system suf~trimmer query exp.

Recall Precision

0.00
0.10
0.20

0.30
0.40

0.50
0.60

0.70

0.80

0.90
1.00

Avg. Prec.
% change

Norm Rec.

Queries

0.764 0.775
0.674
0.547
0.449
0.387
0.329
0.273

0.198

0.146

0.093

0.079

0.328

0.743

50

0.793
0.688 0.700
0.547 0.573

0.479 0.486
0.421 0.421

0.356 0.372
0.280 0.304
0.222 0.226

0.170 0.174

0.112 0.114

0.087 0.090

0.356 0.371
8.3 13.1

0.841 0.842

50 50

Table 1. Recall/precision statistics for CACM-3204

14 KL Kwok (private communication) has suggested that the low
percentage of admissible relations might be similar to the phenomenon of
'tight dusters' which while meaningful are so few that their impact is
small.

15 A sufficiently large text corpus is 20 million words or more. This
has been partially confirmed by experiments performed at the University of
Massachussetts (B. Croft, private communication).

209

and Strzalkowski, 1991).

A C K N O W L E D G E M E N T S

We would like to thank Donna Harman of NIST for making
her IR system available to us. We would also like to thank
Ralph Weischedel and Marie Meteer of BBN for providing
and assisting in the use of the part of speech tagger. KL
Kwok has offered many helpful comments on an earlier
draft of this paper. In addition, ACM has generously pro-
vided us with text data from the Computer Library database
distributed by Ziff Communications Inc. This paper is
based upon work supported by the Defense Advanced
Research Project Agency under Contract N00014-90-J-
1851 from the Office of Naval Research, and the National
Science Foundation under Grant IRI-89-02304.

REFERENCES

1. Harman, Donna and Gerald Candela. 1989. "Retrieving
Records from a Gigabyte of text on a.Minicomputer Using
Statistical Ranking." Journal of the American Society for
Information Science, 41 (8), pp. 581-589.

2. Mauldin, Michael. 1991. "Retrieval Performance in Ferret: A
Conceptual Information Retrieval System." Proceedings of
ACM SIGIR-91, pp. 347-355.

3. Sager, Naomi. 1981. Natural Language Information Pro-
cessing. Addison-Wesley.

4. Strzalkowski, Tomek. 1991. "TI'P: A Fast and Robust Parser
for Natural Language." Proteus Project Memo #43, Courant
Institute of Mathematical Science, New York University.

5. Lewis, David D. and W. Bruce Croft. 1990. "Term Cluster-
ing of Syntactic Phrases". Proceedings of ACM SIGIR-90,
pp. 385-405.

6. Church, Kenneth Ward and Hanks, Patrick. 1990. "Word
association norms, mutual information, and lexicography."
ComputationalLinguistics, 16(1), MIT Press, pp. 22-29.

7. Wilks, Yorick A., Dan Fass, Cheng-Ming Guo, James E.
McDonald, Tony Plate, and Brian M. Slator. 1990. "Provid-
ing machine tractable dictionary tools." Machine Transla-
tion, 5, pp. 99-154.

8. Sparck Jones, K. and E. O. Barber. 1971. "What makes
automatic keyword classification effective?" Journal of the
American Society for Information Science, May-June, pp.
166-175.

9. Crouch, Carolyn J. 1988. "A cluster-based approach to
thesaurus construction." Proceedings of ACM SIGIR-88, pp.
309-320.

10. Sparck Jones, K. and J. I. Tait. 1984. "Automatic search
term variant generation." Journal of Documentation, 40(1),
pp. 50-66.

11. Harrnan, Donna. 1988. "Towards interactive query expan-
sion." Proceedings ofACM SIGIR-88, pp. 321-331.

12. Sparck Jones, Karen. 1972. "Statistical interpretation of
term specificity and its application in retrieval." Journal of
Documentation, 28(1), pp. 11-20.

13. Croft, W. Bruce, Howard R. Turtle, and David D. Lewis.
1991. "The Use of Phrases and Structured Queries in Infor-
mation Retrieval." Proceedings of ACM SIGIR-91, pp. 32-
45.

14. Strzalkowski, Tomek and Barbara Vauthey. 1991. "Fast Text
Processing for Information Retrieval." Proceedings of the 4t.h
DARPA Speech and Natural Language Workshop, Morgan-
Kauffman, pp. 346-351.

15. Strzalkowski, Tomek and Barbara Vauthey. 1991. "Natural
Language Processing in Automated Information Retrieval."
Proteus Project Memo #42, Courant Institute of Mathematical
Science, New York University.

16. Grishman, Ralph and Tomek Strzalkowski. 1991. "Informa-
tion Retrieval and Natural Language Processing." Position
paper at the workshop on Future Dkections in Natural
Language Processing in Information Retrieval, Chicago.

A P P E N D I X : S A M P L E D A T A

DOCUMENT TEXT:

RECORD
F NO
2366
F TITLE
Complex gamma funcdon with error control
F TEXT
An algorithm to compute the gamma function and
log gamma function of a complex variable is presented.
The standard algorithm is modified in several respects
to insure the continuity of the function value
and to reduce accumulation of round-off errors. In
addition to computation of function values, this
algorithm includes an object-time estimation of round-off
errors. Experimental data with regard to the
effectiveness of this error control are presented.
a fortran program for the algorithm appears in the
algorithms section of this issue.

HEAD+MODIFIER PAIRS EXTRACTED:

function+gamma
present+algorithm
compute+function
function+log
gamma+log
variable+complex
algorithm+standard
reduce+accumulate
error+round off
include+estimate
estimate+error
present+data
effective+control
programme+fortran
algorithm+issue

control+error
algorithm+compute
function+function
gamma+function
gamma+variable
modify+algorithm,
insure+continue,
accumulate+error,
algorithm+include,
estimate+object_time,
error+round_off,
data+experimental
control+error
section+algorithm

210

word
-- -

theory
mathematical
distribute
normal
minimum
relative
retrieve
inform
size
medium
editor
text
system
parallel
read
character
discuss
panel
implicate
legal
system
distribute
make
recommend
infer
deductive
make
arrange
share
resource
comprehend
language
syntax
language
science
compute
maintain
cost

head+modifier pair

theory+mathematical
theory+mathematical
distribute+normal
distribute+normal
minimum+relative
minimum+relative
retrieve+inform
retrieve+inform
size+medium
size +medium
editor + text
editor+text
system+parallel
system+parallel
read+ character
read+character
discuss+panel
discuss+panel
implicate+legal
implicate+legal
system+distribute
system +distribute
make+recommend
make+recommend
infer+deductive
infer+deductive
make+arrange
make+arrange
share+resource
share +resource
comprehend+language
comprehend+language
syntax+ language
syntax+language
science +compute
science+compute
concept+maintain
cost+maintain

IC coeff.

Table 2. IC coefficients obtained from CACM-3204

word1

*aim
algorithm
algorithm
acquire
*adjacency
*algebraic
*american
assert
back-up
*buddy
committee
correct
babylonian
critical
best-jit
bound-context
*duplex
deletion
earlier
encase
give
imaginary
incomplete
input
lead
*marriage
mean
method
memory
match
lower
minor
progress
purdue
range
round-off
remote
pulse

purpose
technique
method
train
pair
symbol
standard
infer
mini-max
time-share
*symposium
theorem
old
final
first-fit
lr
reliable
insert
previous
minimum-area
present
real
miss
output
*trail
stable
*standard
technique
storage
recognize

upper
*woman
*trend
stanford
variety
trunca te
telerype
wave

Table 3. Filtered word similarities (* indicates the
more specific term).

