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A B S T R A C T  

For speaker-independent speech recognition, speaker variation is one 
of the major error sources. In this paper, a speaker-independentnor- 
malization network is constructed such that speaker variation effects 
can be minimized. To achieve this goal, multiple speaker clusters 
are constructed from the speaker-independent training database. A 
codeword-dependent neural network is associated with each speaker 
cluster. The cluster that contains the largest number of speakers 
is designated as the golden cluster. The objective function is to 
minimize distortions between acoustic data in each cluster and the 
golden speakercluster. Performanceevaluation showedthat speaker- 
normalized front-end reduced the error rate by 15% for the DARPA 
resource management speaker-independent speech recognition task. 

1. I N T R O D U C T I O N  

For speaker-independent speech recognition, speaker varia- 
tion is one of the major error sources. As a typical ex- 
ample, the error rate of a well-trained speaker-dependent 
speech recognition system is three times less than that of 
a speaker-independent speech recognition system [11]. To 
minimize speaker variation effects, we can use either speaker- 
clustered models [28, 11] or speaker normalization techniques 
[2, 24, 3, 25, 7]. Speaker normalization is interesting since its 
application is not restricted to a specific type of speech recog- 
nition systems. In comparison with speaker normalization 
techniques, speaker-clustered models will not only fragment 
data, but also increase the computational complexity sub- 
stantially, since multiple models have to be maintained and 
compared during recognition. 

Recently, nonlinear mapping based on neural networks has 
attracted considerable attention because of the ability of these 
networks to optimally adjust the parameters from the train- 
ing data to approximate the nonlinear relationship between 
two observed spaces (see [22, 23] for a review), albeit much 
remains to be clarified regarding practical applications. Non- 
linear mapping of two different observation spaces is of great 
interest for both theoretical and practical purposes. In the area 
of speech processing, nonlinear mapping has been applied to 
noise enhancement [1, 32], articulatory motion estimation 
[29, 18], and speech recognition [16]. Neural networks have 
been used successfully to transform data of a new speaker to 
a reference speaker for speaker-adaptive speech recognition 
[11]. In this paper, we will study how neural networks can be 

employed to minimize speaker variation effects for speaker- 
independent speech recognition. The network is used as a 
nonlinear mapping function to transform speech data between 
two speaker clusters. The mapping function we used is char- 
acterized by three important properties. First, the assembly 
of mapping functions enhances overall mapping quality. Sec- 
ond, multiple input vectors are used simultaneously in the 
transformation. Finally, the mapping function is derived from 
training data and the quality will dependent on the available 
amount of training data. 

We used the DARPA Resource Management (RM) task [271 
as our domain to investigate the performance of speaker nor- 
malization. The 997-word RM task is a database query 
task designed from 900 sentence templates [271. We used 
word-pair grammar that has a test-set perplexity of about 60. 
The speaker-independent training speech database consists of 
3990 training sentences from 109 speakers [26]). The test set 
comprises of a total of 600 sentences from 20 speakers. We 
used all training sentences to create multiple speaker clusters. 
A codeword-dependent neural network is associated with each 
speaker cluster. The cluster that contains the largest number 
of speakers is designated as the golden cluster. The objec- 
tive function is to minimize distortions between acoustic data 
in each cluster and the golden speaker cluster. Performance 
evaluation showed that speaker-normalized front-end reduced 
the error rate by 15% for the DARPA resource management 
speaker-independent speech recognition task. 

This paper is organized as follows. In Section 2, the 
speech recognition system SPHINX-II is reviewed. Section 3 
presents neural network architecture. Section 4 discusses its 
applications to speaker-independent speech recognition. Our 
findings are summarized in Section 5. 

2. R E V I E W  O F  T H E  S P H I N X - H  S Y S T E M  

In comparison with the SPHINX system [20], the SPHINX-II 
system [6] reduced the word error rate by more than 50% 
through incorporating between-word coarticulation model- 
ing [13], high-order dynamics [9], sex-dependent shared- 
distribution semi-continuous hidden Markov models [9, 15]. 
This section will review SPHINX-II, which will be used as 
our baseline system for this study [6]. 
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2.1. Signal Processing 

The input speech signal is sampled at 16 kHz with a pre- 
emphasized filter, 1 - 0.9Z -1. A Hamming window with 
a width of 20 msec is applied to speech signal every 10 
msec. The 32-order LPC analysis is followed to compute 
the 12-order cepstral coefficients. Bilinear transformation of 
cepstral coefficients is employed to approximate reel-scale 
representation. In addition, relative power is also computed 
together with eepstral coefficients. Speech features used in 
SPHINX-II include (t is in units of 10 msec) LPC cepstral 
coefficients; 40-msec and 80-msec differenced LPC cepstral 
coefficients; second-order differenced cepstral coefficients; 
and power, 40-msec differenced power, second-order differ- 
enced power. These features are vector quantized into four 
independent codebooks by the Linde-Buzo-Gray algorithm 
[21], each of which has 256 entries. 

2.2. Training 

Training procedures are based on the forward-backward al- 
gorithm. Word models are formed by concatenating pho- 
netic models; sentence models by concatenating word models. 
There are two stages at training. The first stage is to gener- 
ate the shared output distribution mapping table. Forty-eight 
context-independent discrete phonetic models are initially es- 
timated from the uniform distribution. Deleted interpolation 
[17] is used to smooth the estimated parameters with the uni- 
form distribution. Then context-dependent models have to 
be estimated based on context-independent ones. There are 
7549 triphone models in the DARPA RM task when both 
within-word and between-word triphones are considered. To 
facilitate training, one codebook discrete models were used, 
where acoustic feature consists of the cepstrai coefficients, 40- 
msec differenced cepstrum, power and 40-msec differenced 
power. After the 7549 discrete models are obtained, the dis- 
tribution clustering procedure [14] is then applied to create 
4500 distributions (senones). The second stage is to train 4- 
codebook models. We first estimate 48 context independent, 
four-codebook discrete models with the uniform distribution. 
With these context independent models and the senone ta- 
ble, we then estimate the shared-distribution SCHMMs [9]. 
Because of substantial difference between male and female 
speakers, two sets of sex-dependent SCHMMs are are sepa- 
rately trained to enhance the performance. 

To summarize, the configuration of the SPHINX-II system 
has: 

• four codebooks of acoustic features, 

• shared-distribution between-word and within-word tri- 
phone models, 

• sex-dependent SCHMMs. 

2.3. Recognition 

In recognition, a language network is pre-compiled to repre- 
sent the search space. For each input utterance, the (artificial) 
sex is first determined automatically as follows [8, 31]. As- 
sume each codeword occurs equally and assume codeword i 
is represented by a Gaussian density function N(x, Pi, ~ i ) .  
Then given a segment of speech x~, Prsex, the probability that 
x~" is generated from codebook-sex is approximated by: 

~ log(N(x,, .,, .Z',)) 
t iE~e 

where r/t is a set that contains the top N codeword indices 
during quantization for cepstrum data xt at time t. If Prrnale 
> Pry~mat~, then x~ belongs to male speakers. Otherwise, x~ 
is female speech. After the sex is determined, only the models 
of the determined sex are activated during recognition. This 
saves both CPU time and memory requirement. For each 
input utterance, the Viterbi beam search algorithm is used to 
find out the optimal state sequence in the language network. 

3. NEURAL NETWORK ARCHITECTURE 

3.1. Codeword-Dependent Neural Networks 
(CDNN) 

When presented with a large amount of training data, a single 
network is often unable to produce satisfactory results dur- 
ing training as each network is only suitable to a relatively 
small task. To improve the mapping performance, breaking 
up a large task and modular construction are usually required 
[5, 7]. This is because the nonlinear relationship between two 
speakers is very complicated, a simple network may not be 
powerful enough. One solution is to partition the mapping 
spaces into smaller regions, and to construct a neural network 
for each region as shown in Figure 1. As each neural net- 
work is trained on a separate region in the acoustic space, the 
complexity of the mapping required of each network is thus 
reduced. In Figure 1, the switch can be used to select the most 
likely network or top N networks based on some probability 
measures of acoustic similarity [101. Functionally, the assem- 
bly of networks is similar to a huge neural network. However, 
each network in the assembly is learned independently with 
training data for the corresponding regions. This reduces 
the complexity of finding a good solution in a huge space of 
possible network configurations since strong constraints are 
introduced in performing complex constraint satisfaction in a 
massively interconnected network. 

Vector quantization (VQ) has been widely used for data com- 
pression in speech and image processing. Here, it can be 
used to to partition original acoustic space into different pro- 
totypes (codewords). This partition can be regarded as a 
procedure to perform broad-acoustic pattern classification. 
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Figure 1: Codeword-dependent neural networks (CDNN). 

The broad-acoustic patterns are automatically generated via a 
self-organization procedure based on the LBG algorithm [21]. 
When the codeword-dependent neural network (CDNN) was 
constructed from the data in the corresponding cell, it was 
found that learning for the CDNN converges very quickly 
in comparison with a huge neural network. The larger the 
codebook, the quicker it converges. However, the size of 
codebook relies on the number of available training data since 
codeword-dependent structure fragments training data. The 
size of codebook should be determined experimentally. 

Speaker normalization involves acoustic data transformation 
from one speaker cluster to another. In general, let X a = 
xl,xz,a a ...x[ be a sequence of observations (frames) at time 1, 
2, .. t of speaker a. Here, each observation at time k, x[, is 
a multidimensional vector, which usually characterizes some 
short-time spectral features. For the sequence of speech obser- 
vations X a produced by speaker-cluster a, our goal is to find a 
mapping function .Tt'(X a ) such that ~ ( X  a ) resembles the cor- 
responding sequence of observations produced by speakers in 
the golden speaker cluster. Speaker variations include many 
factors such as vocal tract, pitch, speaking speed, intensity, 
and cultural differences. Unfortunately, given two different 
speakers, there is no simple mapping function that can ac- 
count for all these variations. Consequently, we are mainly 
concerned with spectral normalization. For each frame x a, 
we want to find out a mapping function to transform it to x b, 
the corresponding phonetic realization produced by speaker 
b. We believe that x[ can represent most important features 
produced by the speaker. Thus, our objective functions is to 
minimize: 

a) - x b) ( I )  
corresponding pairs 

where ~D(x,y) denotes a predefined distortion measure be- 
tween frame x and y, and corresponding pairs are con- 

structed to approximate acoustic realizations of different 
speakers. Even if we are only interested in spectral nor- 
malization, there is no analytic mapping solution. Instead, 
stochastic approach has to be used to study the nonlinear re- 
lationship between the two observed spaces. We need to have 
a set of supervision data (corresponding pairs in Equation 1) 
to extract the nonlinear relationship. 

It has been found that dynamic information plays an impor- 
tant role in speech recognition [4, 20, 12]. As frame to frame 
normalization lacks use of dynamic information, the architec- 
ture of normalization network is thus chosen to incorporate 
multiple neighboring frames. One of such architectures is 
shown in Figure 2. Here, the current frame and its left and 
right neighboring frames are fed to the multi-layer neural net- 
work as inputs. The network output is a normalized frame 
corresponding to the current input frame. By using multiple 
input frames for the network, the important dynamic informa- 
tion can be effectively used in estimating network parameters 
and in normalization. In Figure 2, there are input layer, hid- 
den layer, and output layer. Each arc k is associated with 

normalized frame 

previous frame current frame next frame 

Figure 2: A basic neural network architecture. 

a weight wk. In the hidden and output layer, each node is 
characterized by an internal offset 0. The hidden node is also 
characterized by a nonlinear sigmoid function. The input to 
each hidden node and output node is a weighted sum of cor- 
responding inputs with the offset 0. Both the internal offset 
and arc weights are learned by the backpropagation algorithm 
[30], which uses a gradient search to minimize the objective 
function. If the dimension of observation space is d and the 
number of input frames is m, we will have dxm input units 
in the normalization network. If we want to incorporate more 
neighboring frames, this will definitely increase the number of 
free parameters in the network. Although the increase in the 
number of free parameters lead to quick convergence during 
training, this nevertheless may not lead to improved general- 

193 



ization capability. Since the network is designed to normalize 
new data from a given speaker to the reference speaker, good 
generalitzation capability will be the most important concern. 
Therefore, a compromise has to be made between generaliza- 
tion capability and the number of free parameters. 

3.2. Golden Speaker-Cluster Selection 

Speaker-dependent CDNNs have been used successfully for 
speaker-adaptive speech recognition [7] (speaker-dependent 
mapping). If we need to map multiple speakers to one golden 
speaker and simply construct a speaker-independent CDNN, it 
is unlikely that a single network will do the job. With the same 
rational as CDNN for speaker-adaptive speech recognition, 
we can partition multiple speakers into speaker-clusters and 
construct cluster-dependent CDNN. 

For speaker clustering, we first generated 48 phonetic HMM 
for each speaker in the speaker-independent training database. 
Thus, for each speaker, we have a set of output distributions. 
We then merge the two speaker-clusters iteratively that re- 
sulted in the least loss of information, and then move ele- 
ments from cluster to cluster to improve the overall quality. 
The clustering procedure used here is similar to the one used 
for generalized triphone clustering [19]. We can continue the 
clustering process until the specified speaker-clusters are ob- 
tained. The golden speaker-cluster is the one that contains the 
largest number of speakers. We generated two golden clusters 
for male and female respectively. 

4. EXPERIMENTAL EVALUATION 

4.1. Experiment conditions 

Through this study, only the cepstral vectors are considered 
for normalization. Once we have the normalized cepstral vec- 
tor, the first-order and second-order time derivatives can be 
computed. We first clustered all the speakers in the train- 
ing set into male and female clusters, and then generated 10 
speaker-clusters for male and 7 speaker-clusters for female. 
We selected two golden speaker-clusters for both male and 
female. There were 13 and 6 speakers in the male and female 
golden cluster respectively. To provide learning examples for 
network learning, we first segmented all the training utter- 
ances into triphones using Viterbi alignment and then used 
the DTW algorithm to warp the data to the corresponding tri- 
phone pairs in the golden speaker-cluster. Thus, for a given 
frame of each training speaker, the desired output frame for 
network learning is the golden speaker frame paired in the 
DTW optimal path. 

4.2. Benchmark Experiments 

As benchmark experiments, speaker-independent speech 
recognition using SPHINX-II was first evaluated. The word 
error rate we used here reflects all three types of errors and is 

computed as 

substitutions + deletions + insertions 
100 totaiwords + insertions (2) 

The average error rate was 3.8% for speaker-independent 
speech recognition. 

4.3. Normalization Results 

The input of the network consists of three frames from the 
new speaker. Here, 12 cepstral coefficients and energy are 
used together. Thus, there are 93 input units in the network. 
The output of the network has 13 units corresponding the nor- 
malized frame, which is made to approximate the frame of the 
desired reference speaker. The energy output is discarded as it 
is relative unstable. The objective function for network learn- 
ing is to minimize the distortion (mean squared error) between 
the network output and the desired reference speaker frame. 
The network has one hidden layer with 20 hidden units. Each 
hidden unit is associated with the generalized S I G M O I D  
function, where c~, /~ and 7 are predefined to be 4.0, 1.8, 
2.0 respectively. They are fixed for all the experiments con- 
ducted here. The weights and offsets in the network were 
initialized with small random values. The learning step and 
momentum are controlled dynamically. Experimental experi- 
ence indicates that 300 to 600 epochs are required to achieve 
acceptable distortion. We created two golden speaker clusters 
for male and female respectively. There were seven female 
clusters and ten male clusters, which are designed according 
to the available amount of male/female training data. For each 
speaker cluster, we built a cluster-dependent codebook (size 
16). For the input speech signal, joint VQ pdfs are used to se- 
lect the top 2-5 clusters for normalization. Thus, let Ai denote 
the probability that acoustic vector belong to cluster i, and ,t'i 
denote the normalized vector using the ith cluster-dependent 
CDNN. The normalized vector 32 can then be computed as 

X = ~ '  ~,x, (3) 

With the same training conditions as used in SPHINX-II, 
when the speaker-normalized front-end is used, we reduced 
the error rate from 3.8% to 3.3%, which represented 15% error 
reduction. The modest error reduction indicated the mapping 
quality still needs to be improved substantially. 

5. SUMMARY 
In this paper, the codeword-dependent neural network 
(CDNN) was presented for speaker-independent speech 
recognition. The network was used as a nonlinear mapping 
function to transform speech data between speakers in each 
cluster and the golden speaker cluster. Performance evalu- 
ation showed that speaker-normalized front-end reduced the 
error rate by 15%, as shown in Figure 3, for the DARPA 
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resource management speaker-independent speech recogni- 
tion. If we compare the error rate of speaker-dependent and 
speaker-independent systems, this 15 % error reduction is rela- 
tively small. We believe that the quality of mapping functions 
is extremely important if we want to bridge the gap between 
speaker-dependent and speaker-independent systems. 
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