
S T O C H A S T I C T R E E - A D J O I N I N G G R A M M A R S *

Yves Schabes

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389

A B S T R A C T
The notion of stochastic lexicalized tree-adjoining grammar
(SLTAG) is defined and basic algorithms for SLTAG are de-
signed. The parameters of a SLTAG correspond to the probabil-
ity of combining two structures each one associated with a word.
The characteristics of SLTAG are unique and novel since it is
lexically sensitive (as N-gram models or Hidden Markov Mod-
els) and yet hierarchical (as stochastic context-free grammars).
An algorithm for computing the probability of a sentence gener-
ated by a SLTAG is presented. Then, an iterative algorithm for
estimating the parameters of a SLTAG given a training corpus
is introduced.

1. MOTIVATIONS
Although stochastic techniques applied to syntax modeling
have recently regained popularity, current language models
suffer from obvious inherent inadequacies. Early proposals
such as Markov Models, N-gram models [1, 2, 3] and Hid-
den Markov Models were very quickly shown to be linguis-
tically not appropriate for natural language (e.g. [4]) since
they are unable to capture long distance dependencies or
to describe hierarchically the syntax of natural languages.
Stochastic context-free grammar [5] is a hierarchical model
more appropriate for natural languages, however none of
such proposals [6, 7] perform as well as the simpler Markov
Models because of the difficulty of capturing lexical infor-
mation. The parameters of a stochastic context-free gram-
mar do not correspond directly to a distribution over words
since distributional phenomena over words that are embod-
ied by the application of more than one context-free rule
cannot be captured under the context-freeness assumption.
This leads to the difficulty of maintaining a standard hier-
archical model while capturing lexical dependencies.

This fact prompted researchers in natural language process-
ing to give up hierarchical language models in the favor of
non-hierarchical statistical models over words (such as word
N-grams models). Probably for lack of a bet ter language
model, it has also been argued that the phenomena that
such devices cannot capture occur relatively infrequently.

*This work was partially supported by DARPA Grant N0014-90-
31863, ARO Grant DAAL03-89-C-0031 and NSF Grant IRI90-16592.
We thank Aravind Joshi for suggesting the use of TAGs for statistical
analysis during a private discussion that followed a presentation by
Fred Jelinek du.ring the June 1990 meeting of the DARPA Speech and
Natural Language Workshop. We are also grateful to Peter Braun,
Fred 3elinek, Mark Liberman, Mitch Marcus, Robert Mercer, Fer-
nando Pereira and Stuart Shieber for providing valuable comments.

Such argumentation is linguistically not sound.

Lexicalized tree-adjoining grammars (LTAG) 1 combine hi-
erarchical structures while being lexically sensitive and are
therefore more appropriate for statistical analysis of lan-
guage. In fact, LTAGs are the simplest hierarchical formal-
ism which can serve as the basis for lexicalizing context-free
grammar [10, 11].

LTAG is a tree-rewriting system that combines trees of
large domain with adjoining and substitulion. The trees
found in a TAG take advantage of the available extended
domain of locality by localizing syntactic dependencies
(such as filler-gap, subject-verb, verb-object) and most se-
mantic dependencies (such as predicate-argument relation-
ship). For example, the following trees can be found in a
LTAG lexicon:

S

A
NP$ VP VP

A
V NP$ NP NP VP* ADV

I I I I
eats John peanuts hungrily

Since the elementary trees of a LTAG are minimal syntactic
and semantic units, distributional analysis of the combina-
tion of these elementary trees based on a training corpus
will inform us about relevant statistical aspects of the lan-
guage such as the classes of words appearing as arguments
of a predicative element, the distribution of the adverbs li-
censed by a specific verb, or the adjectives licensed by a
specific noun.

This kind of statistical analysis as independently suggested
in [12] can be made with LTAGs because of their extended
domain of locality but also because of their lexicalized prop-
erty.

In this paper, this intuition is made formally precise by
defining the notion of a stochastic lexicalized tree-adjoining
grammar (SLTAG). We present an algorithm for computing
the probability of a sentence generated by a SLTAG, and
finally we introduce an iterative algorithm for estimating
the parameters of a SLTAG given a training corpus of text.
This algorithm can either be used for refining the parame-

1 We assume familiarity throughout the paper with TAGs and its
lexicalized variant. See, for instance, [S], [9], [10] or [111.

140

ters of a SLTAG or for inferring a tree-adjoining grammar
from a training corpus.

Due to the lack of space, in this paper the algorithms are
described succinctly without proofs of correctness and more
attention is given to the concepts and techniques used for
SLTAG.

2. S L T A G

Informally speaking, SLTAGs are defined by assigning a
probability to the event tha t an elementary tree is com-
bined (by adjunction or substitution) on a specific node of
another elementary tree. These events of combination are
the stochastic processes considered.

For sake of mathematical precision and elegance, we use a
stochastic linear rewriting system, stochastic linear indexed
grammars (SLIG), as a notation for SLTAGs. A linear in-
dexed grammar is constructed following the method given
in [13]. However, in addition, each rule is associated with
a probability.

Linear Indexed grammar (LIG) [14, 15] is a rewriting sys-
tem in which the non-terminal symbols are augmented with
a stack. In addition to rewriting non-terminals, the rules
of the grammar can have the effect of pushing or popping
symbols on top of the stacks that are associated with each
non-terminal symbol. A specific rule is triggered by the
non-terminal on the left hand side of the rule and the top
element of its associated stack. LIGs [15] restrict

The productions of a LIG are restricted to copy the stack
corresponding to the non-terminal being rewritten to at
most one stack associated with a non-terminal symbol on
the right hand side of the production. 2

In the following, [..p] refers to a possibly unbounded stack
whose top element is p and whose remaining part is
schematically written as '..'. [$] represents a stack whose
only element is the bot tom of the stack. While it is possible
to define SLIGs in general, we define them for the partic-
ular case where the rules are binary branching and where
the left hand sides are always incomparable.

A stochastic linear indexed grammar, G, is denoted by
(VN, VT, Vt, S, Prod), where VN is a finite set of non-
terminal symbols; VT is a finite set of terminal symbols;
Vi is a finite set of stack symbols; S E VN is the start sym-
bol; Prod is a finite set of productions of the form:

x0[$p0] a
Xo[..po] Xl[..pd
x0[..p0] xl[$pl]
z0[$p0] Xl[$pl] x2[$p2]

where Xk E VN, a G VT and Po E Vi, Pl,P2 G V~;

2 LIGs have been shown to be weakly equivalent to Tree-Adjoining
Grammars [16].

P, a probability distribution which assigns a probability,
0 < P(X[. .z] ~ A) < 1, to a rule, X[..x] -+ A E Prod
such that the sum of the probabilities of all the rules that
can be applied to any non-terminal annotated with a stack
is equal to one. More precisely if, VX G VN, Vp E Vi:

E P(X[..p] --+ A) = 1
A

P(X[..p] ~ A) should be interpreted as the probability
that X[..p] is rewritten as A.

A derivation starts from S associated with the empty stack
(S[$]) and each level of the derivation must be validated
by a production rule. The language of a SLIG is defined as
follows: n = {w E V~ I S[$]:~w}.

The probability of a derivation is defined as the product of
the probabilities of all individual rules involved (counting
repetition) in the derivation, the derivation being validated
by a correct configuration of the stack at each level. The
probability of a sentence is then computed as the sum of
the probabilities of all derivations of the sentence.

Following the construction described in [13], given a LTAG,
Gtag, we construct an equivalent 3 LIG, G, ug. In addition,
a probability is assigned to each production of the LIG. For
simplicity of explanation and without loss of generality we
assume that each node in an elementary tree found in a tree-
adjoining grammar is either a leaf node (i.e. either a foot
node or a non-empty terminal node) or binary branching. 4
The construction of the equivalent SLIG follows.

The non-terminal symbols of Gstia are the two symbols
' top' (t) and 'bot tom' (b), the set of terminal symbols is
the same as the one of Gtag, the set of stack symbols is the
set of nodes (not node labels) found in the elementary trees
of Gta9 augmented with the bo t tom of the stack ($), and
the start symbol is ' top' (t).

For all root nodes N0 of an initial tree whose root is labeled
by S, the following starting rules are added:

t[$] .E+ t[$r}0] (1)

These rules state that a derivation must start from the top
of the root node of some initial tree. P is the probability
that a derivation starts from the initial tree associated with
a lexical i tem and rooted by No.

Then, for all node ~1 in an elementary tree, the following
rules are generated.

• If r/if/2 are the 2 children of a node N such that N2 is on

3The constructed LIG generates the same language as the given
tree-adjoining grammar.

4The algorithms explained in this paper can be generalized to lexi-
calized tree-adjoining grammars tha t need not be in Chomsky Normal
Form using techniques similar the one found in [17].

141

the spine (i.e. subsumes the foot node), include:

bE-0] P -I (2)
Since (2) encodes an immediate domination link defined
by t]he tree-adjoining grammar, its associated probability
is one.

• Similarly, if ~7102 are the 2 children of a node r/such that
r/1 is on the spine (i.e. subsumes the foot node), include:

bi l l (3)
Since (3) encodes an immediate domination link defined
by the tree-adjoining grammar, its associated probability
is one.

• If ~71~72 are the 2 children of a node r/such that none of
them is on the spine, include:

b[$q] p~l t[$rh]t[$r/2] (4)
Since (4) also encodes an immediate domination link de-
fined by the tree-adjoining grammar, its associated prob-
ability is one.

• If 77 is a node labeled by a non-terminal symbol and if
it does not have an obligatory adjoining constraint, then
we need to consider the case that adjunction might not
take place. In this case, include:

t[..~] ~ b[..~] (5)
The probability of rule (5) corresponds to the probability
that no adjunction takes place at node 77.

• If 77 is an node on which the auxiliary tree fl can be ad-
joined, the adjunction of fl can be predicted, therefore
(assuming that Yr is the root node of fl) include:

(6)
The probability of rule (6) corresponds to the probability
of adjoining the auxiliary tree whose root node is ~Tr, say
~, on the node ~7 belonging to some elementary tree, say
Or. 5

• If r7! is the foot node of an auxiliary tree/9 that has been
adjoined, then the derivation of the node below O! must
resume. In this case, include:

b[..~!] ~-~ b[..] (7)
The above stochastic production is included with prob-
ability one since the decision of adjunction has already
been made in rules of the form (6).

• Finally, if 7/1 is the root node of an initial tree that can be
substi tuted on a node marked for substi tution ~/, include:

(8)
Here, p is the probability tha t the initial tree rooted by r/1
is substi tuted at node r I. It corresponds to the probability
of substi tut ing the lexicalized initial tree whose root node

5 Since the g r a m m a r is lexicalized, b o t h t rees c~ and/~ are associa ted
wi th lexical i tems, and the si te node for ad junct ion rl corresponds to
some syntac t ic modif icat ion. Such rule encapsula tes S modifiers (e.g.
sentent ia l adverbs as in "apparently J o h n left") , V P modifiers (e.g.
verb phrase adverbs as in " John left abruptly)", N P modifiers (e.g.
relative clauses as in "The m a n who left was happy") , N modif iers
(e.g. adject ives as in "?relty woman") , or even sentent ia l complements
(e.g. John ~hlnks ~hat Harry is sick).

is 01, say 6, at the node r / o f a lexicalized elementary tree,
say o~. 6

The SLIG constructed as above is well defined if the fol-
lowing equalities hold for all nodes r/:

P(t[-.y] ~ b[..T/]) + ~ P(t[..y] ---~ t[..0Th]) = 1 (9)

P(t[$y] ~ t[$yl]) = 1 (10)

rh

P(t[$] ~ t[$y0]) = 1 (11)

Yo

A grammar satisfying (12) is called consistent. 7

E P(t[$]=~w) = 1 (12)
wE~*

Beside the distributional phenomena that we mentioned
earlier, SLTAG also captures the effect of adjoining con-
straints (selective, obligatory or null adjoining) which are
required for tree-adjoining grammar, s

3. P R O B A B I L I T Y O F A S E N T E N C E
We now define an bot tom-up algorithm for SLTAG which
computes the probability of an input string. The algorithm
is an extension of the CKY-type parser for tree-adjoining
grammar [18]. The extended algorithm parses all spans of
the input string and also computes their probability in a
bot tom-up fashion.

Since the string on the frontier of an auxiliary is broken
up into two substrings by the foot node, for the purpose of
computing the probability of the sentence, we will consider
the probability that a node derives two substrings of the in-
put string. This entity will be called the inside probability.
Its exact definition is given below.

We will refer to the subsequence of the input string w =
a l . . . aN from position i to j , w~. It is defined as follows:

"del f a i+l • "" aj , if i < j
w~= ~ ~ , i f i > j

Given a string w = a l . . "aN and a SLTAG rewritten as
in (1-8) the inside probability, IW(pos, O, i, j , k, i), is defined
for all nodes 77 contained in an elementary tree o~ and for
p o s e { t , b } , a n d f o r a l l i n d i c e s 0 < i < j < k < l < N a s
follows:

6 Among other cases, the probability of this rule corresponds to the
probability of filling some argument position by a lexicalized tree. It
will encapsulate the distribution for selectional restriction since the
position of substitution is taken into account.

rWe will not investigate the conditions under which (12) holds. We
conjecture that some of the techniques used for checking the consis-
tency of stochastic context-free grammars can be adapted to SLTAG.

SFor exaxnple, for a g iven n o d e r / s e t t i n g to zero the probability of
all rules of the form (6) has the effect of blocking adjunct ion .

142

(i) If the node t /does not subsume the foot node of
oL (if there is one), then j and k are unbound and:

I t° (pos, 71, i , - , - , l)ae=lP(pos[*71]~ w~)
(ii) If the node T/ subsumes the foot node ~/! of a,

then:
It°(pos, r h i,j, k, l)a=eY P(pos[$ol~ w~b[$ojlw~)

In (ii), only the top element of the stack matters since as a
consequence of the construction of the SLIG, we have that
if pos[$@=~ w~b[$r//]w~ then for all string 7 E V~ we also

have pos[*~]~ ~b[*~ lw~ .~

Initially, all inside probabilities are set to zero• Then, the
computation goes bot tom-up starting from the productions
introducing lexical items: if r/is a node such that b[$r/] ~ a,
then:

(1 i f l = i + l A a = w ~ + l (13)
IW(b'rh i ' - ' - ' l) = 0 otherwise.

Then, the inside probabilities of larger substrings are com-
puted bot tom-up relying on the recurrence equations stated
in Appendix A. This computation takes in the worst
case O(IG]2g6)-time and O([GIN4)-space for a sentence
of length N.

Once the inside probabilities computed, we obtain the prob-
ability of the sentence as follows:

P(W)de=/P(t[$]=~W) = I w (t, $, O,--,--, IWl) (14)

We now consider the problem of re-estimating a SLTAG.

4. R E - E S T I M A T I O N O F S L T A G
Given a set of positive example sentences, W =
{wl . . .WK}, assumed to have been generated by an un-
known SLTAG, we would like to compute the probability
of each rule of a given SLTAG in order to maximize the
probability that the corpus were generated by this SLTAG.
An algorithm solving this problem can be used in two dif-
ferent ways.

The first use is as a re-estimation algorithm. In this ap-
proach, the input SLTAG derives structures that are rea-
sonable according to some criteria (such as a linguistic the-
ory and some a priori knowledge of the corpus) and the
intended use of the algorithm is to refine the probability of
each rule•

The second use is as a learning algorithm. At the first
iteration, a SLTAG which generates all possible structures
over a given set of nodes and terminal symbols is used•

9This can be seen by observing tha t for any node on the p a t h f rom
the root node to the foot node of an auxiliary tree, the stack remains
unchanged.

Initially the probability of each rule is randomly assigned
and then the algorithm will re-estimate these probabilities•

Informally speaking, given a first estimate of the parame-
ters of a SLTAG, the algorithm re-estimates these parame-
ters on the basis of the parses of each sentence in a training
corpus obtained by a CKY-type parser. The algorithm de-
rives a new estimate such that the probability that the cor-
pus were generated by the grarnlnar is increased. By anal-
ogy to the inside-outside algorithm for stochastic context-
free grammars [19, 7], we believe that the following quantity
decreases after each iteration: 1°

log2(P(w))
He(W) = to¢w (15)

toEW

In order to derive a new estimate, the algorithm needs to
compute for all sentences in W the inside probabilities and
the outside probabilities. Given a string w = a l . . .aN,
the outside probability, Ot°(pos,~l,i,j,k,l), is defined for
all nodes r/contained in an elementary tree o~ and for pos E
i t ,b}, and for all indices 0 _< i _< j _< k < i < N as
follows:

(i) If the node 7/does not subsume the foot node of
o~ (if there is one), then j and k are unbound and:

o~ (poe, ,7, i, - , - , t)~*- -I
P(B7 e V~ s.t. t[$]:~ w~ pos[*Trl] wz N)

(ii) If the node 77 does subsume the foot node rll of a
then:

o ~ (pos, ,7, i, j , k, 0% I
P (3 7 e V~ s.t.

• * k t[$]=~ w~ pos[$Trl] w~ v and b[$Tr//]=V-w3)

Once the inside probabilities computed, the outside
probabilities can be computed top-down by consider-
ing smaller spans of the input string starting with
OW(t,$, 0 , - , - , N) = 1 (by definition). This is done by
computing the recurrence equations stated in Appendix B.

Due to the lack of space, we only illustrate the re-estimation
of the rules corresponding to adjunction, rules of the form:
t[..r/] ~ t[..r/rF]. The other re-estimation formulae can be
derived in a similar manner.

In the following, we assume that r 7 subsumes the foot node
7/! within a same elementary tree, and also that r/I subsumes
the foot node r/tt (within a same elementary tree).

1°He is an es t imate of the entropy H of the unk n o wn language
being es t imated and it converges to the ent ropy of the language as
the size of the corpus grows.

143

Let:
Nto (t[..~}] --~ t[..zpl/], i, r, j, k, s, l)

]o () -P'(t ["~/ (w/t"~PT/]) x x IW(b, Tl, r , j , k , s)
x OW(t,z},i,j ,k,I)

and:
D~o(t,r/,i,j,k,l) = IW(t 'Tl ' i ' j 'k ' l) × OW(t'~}'i ' j 'k ' l)

P(w)

It can be shown that the rule t[..r}] --+ t[..yyl] is optimally
reestimated at each iteration as follows:

=

~ N~0(t[..r}] ~ t[..yrFl, i , r , j , k , s , l)
weW O<i<r_<j<k<s_<l<lw I

~ Dto(t,r},i,j ,k,l)
wew 0_<i_<j_<k_<l_<lwl

The denominator of the above reestimation formula esti-
mates the probability tha t a derivation will involve at least
one expansion of t[..r}]. The numerator estimates the proba-
bility that a derivation will involve the rule t[--r}] ---~ t[..r}r}t].

The probability of no adjunction on the node r/,
P(t[..r/] ~ b[-.z}] is reestimated using the equality (9) .

The algorithm reiterates until He(W) is unchanged (within
some epsilon) between two iterations. Each iteration of
the algorithm requires at most O([GI2N6)-time for each
sentence of length N.

5. C O N C L U S I O N

A novel statistical language model and fundamental algo-
ri thms for this model have been presented.

SLTAGs provide a stochastic model both hierarchical and
sensitive to lexical information. They combine the advan-
tages of purely lexical models such as N-gram distribu-
tions or Hidden Markov Models and the one of hierarchical
modes as stochastic context-free grammars without their
inherent limitations. The parameters of a SLTAG corre-
spond to the probability of combining two structures each
one associated with a word and therefore capture linguisti-
cally relevant distributions over words.

An algorithm for computing the probability of a sentence
generated by a SLTAG was presented as well as an iterative
algorithm for estimating the parameters of a SLTAG given
a training corpus of raw text. Similarly to its context-free
counterpart, the reestimation algorithm can be extended to
handle partially parsed corpora [20]. The worst case com-
plexity of the algorithm with respect to the length of the in-
put string (O(N6)) makes it impractical with a large corpus
on a single processor computer for grammars requiring the
worst case complexity. However, this complexity reduces to
O(N 3) or to O(N 2) for interesting subsets of SLTAGs. If
t ime permits, experiments in this direction will be reported

144

at the time of the meeting.

Furthermore, the techniques explained in this paper apply
to other grammatical formalisms such as combinatory cat-
egorial grammars and modified head grammars since they
have been proven to be equivalent to tree-adjoining gram-
mars and linear indexed grammars [21].

In collaboration with Aravind Joshi, Fernando Pereira and
Stuart Shieber, we are currently investigating additional
algorithms and applications for SLTAG, methods for lexical
clustering and automatic construction of a SLTAG from a
large training corpus.

R E F E R E N C E S
1. Pratt, F. Secret and urgent, the story of codes and ciphers.

Blue Ribbon Books, 1942.
2. Shannon, C. E. A mathematical theory of communication.

The Bell System Technical Journal, 27(3):379-423, 1948.
3. Shannon, C. E. Prediction and entropy of printed english.

The Bell System Technical Journal, 30:50-64, 1951.
4. Chomsky, N. Syntactic Structures, chapter 2-3, pages 13-

18. Mouton, 1964.
5. Booth, T. Probabilistic representation of formal languages.

In Tenth Annual 1EEE Symposium on Switching and Au-
tomata Theory, October 1969.

6. Lari, K. and Young, S. J. The estimation of stochastic
context-free grammars using the Inside-Outside algorithm.
Computer Speech and Language, 4:35-56, 1990.

7. Jelinek, F., Lafferty, J. D., and Mercer, R. L. Basic meth-
ods of probabilistic context free grammars. Technical Re-
port RC 16374 (72684), IBM, Yorktown Heights, New York
10598, 1990.

8. Joshi, A. K. An Introduction to Tree Adjoining Grammars.
In Manaster-Ramer, A., editor, Mathematics of Language.
John Benjamins, Amsterdam, 1987.

9. Schabes, Y., Abeilld, A., and Joshi, A. K. Parsing strate-
gies with 'lexicalized' grammars: Application to tree ad-
joining grammars. In Proceedings of the 12 th International
Conference on Computational Linguistics (COLING'88),
Budapest, Hungary, August 1988.

10. Schabes, Y. Mathematical and Computational Aspects of
Lexicalized Grammars. PhD thesis, University of Pennsyl-
vania, Philadelphia, PA, August 1990. Available as tech-
nical report (MS-CIS-90-48, LINC LAB179) from the De-
partment of Computer Science.

11. Joshi, A. K. and Schabes, Y. Tree-adjoining grammars
and lexicalized grammars. In Nivat, M. and Podelski, A.,
editors, Definability and Recognizability of Sets of Trees.
Elsevier, 1991. Forthcoming.

12. Resnik, P. Lexicalized tree-adjoining grammar for distri-
butional analysis. In Penn Review of Linguistics, Spring
1991.

13. Vijay-Shanker, K. and Weir, D. J. Parsing constrained
grammar formalisms, 1991. In preparation.

14. Aho, A. V. Indexed grammars - - An extension to context
free grammars. J. ACM, 15:647-671, 1968.

15. Gazdar, G. Applicability of indexed grammars to natural
languages. Technical Report CSLI-85-34, Center for Study
of Language and Information, 1985.

16. Vijay-Shanker, K. A Study of Tree Adjoining Grammars.
PhD thesis, Depar tment of Computer and Information Sci-
ence, University of Pennsylvania, 1987.

17. Schabes, Y. An inside-outside algorithm for estimating
the parameters of a hidden stochastic context-free gram-
mar based on Earley's algorithm. Manuscript, 1991.

18. Vijay-Shanker, K. and Joshi, A. K. Some computat ional
propert ies of Tree Adjoining Grammars. In 23 ~a Meeting
of the Association for Computational Linguistics, pages 82-
93, Chicago, Illinois, July 1985.

19. Baker, J. Trainable grammars for speech recognition. In
Wolf, J. J. and Klat t , D. H., editors, Speech communica-
tion papers presentaed at the 97 th Meeting of the Acoustical
Society of America, MIT, Cambridge, MA, June 1979.

20. Pereira, F. and Schabes, Y. Inside-outisde reestimation
from part ial ly bracketed corpora. 1992. Also in these pro-
ceedings.

21. Joshi, A. K., Vijay-Shanker, K., and Weir, D. The conver-
gence of mildly context-sensitive grammatical formalisms.
In Sells, P., Shieber, S., and Wasow, T., editors, Founda-
tional Issues in Natural Language Processing. MIT Press,
Cambridge MA, 1991.

A . I N S I D E P R O B A B I L I T I E S

In the following, the inside and outside probabilit ies are relative
to the input string w . . T stands for the the set of foot nodes,
S for the set of nodes on which substi tut ion can occur, ~ for
the set of root nodes of initial trees, and .A for the set of non-
terminal nodes of auxiliary trees. The inside probabil i ty can be
computed bot tom-up with the following recurrence equations.
For all node 7 found in an elementary tree, i t can be shown
that:

1. If b[$~} --. a, l(b, 7, i, - , - , l) = 1 if i = i + 1 and if
a = wi +a, 0 otherwise.

2. I f T ! E Y, I(b, Ty,i , j ,k , l) = 1 i f i = j and if
k = !, 0 otherwise.

3. If b[..7] -* t[--71]t[$72]: I(b, 7, i,j, k, 1) =
l--1

x(t, i, j, k, m) × I(t, 72, - , l)
rnml¢

4. If b[..7] ~ t[$nl]t[..721, I(b, n, i, j, k, l) =
i

I(t , 71, i, -, -, ~) x X(t, 7~, ~ , J, k, i)
r n = i + l

5. I f b[$7] - - t [$Tdt[$7~], I (b , 7, i, - , - , l) =
1--1

E I(t, 7~, i, - , - , m) x I(t, 72, m, - , - , l)
rnffii+l

6. For all node 7 on which adjunction can be performed:
I(t , 7, i, j, k, !) =

I(b, 7, i, j, k, l) x P(t [. .7] --+ b[.-7])

+ x I(b,7, r , j ,k ,s)
~=, ,=k ~1 x P(t[--7] ~ t [- .77d)

7. For all node 7 E S: I(t, 7, i, - , - , !) =
E l (t, 71, i, - , - , !) x P(t[$7] ~ t[$71])
71

8. I(t, 8, i, - , - , l) = E I(t, 7, i, - , - , 1) x P(t[$] --+ t[$7])

145

B . O U T S I D E P R O B A B I L I T I E S

The outside probabili t ies can be computed top-down recursively
over smaller spans of the input string once the inside prob-
abilities have been computed. First , by definition we have:
O(t, $, 0 , - , - , N) = 1. The following recurrence equations hold
for all node 7 found in an elementary tree.

1. If 7 e 7g, O(t, 7, 0 , - - , - , N) = P(t[$] -- tC$7]).
And for all (i,j) # (O,N), O(t, 7, i , - , - , j) =

o (t, 7o, i , - , - , j) x P (t[$7o] --, t[$7])

2. If 7 is an interior node which subsumes the foot node of
the elementary tree it belongs to, O(t, 7, i, j, k, I) =

x I(t , 72,1, - , - , q)
q=l+a x P(b[..%] --~ t[-'7]t[$72])

'-a (O (b ' 7 ° ' p ' j ' k ' l))
+ E × I(t, 71,p,--,--,i)

p=0 × P(b[-.%] --~ t[$71]t[..7])

3. If 7 is an interior node which does not subsume the
foot node of the elementary tree i t belongs to, we have:
O(t, 7, i, - , - , l) =

x I(t , 72,1, - , - , q)
q=l+l X P(b[$7/0] --~ t[$7]t[$72])

+ E x I(t, 7 1 , p , - , - , i)
p=o x e (b[$7o] --~ t[$7~]t[$71)
N N N (O (b ' 7 ° ' i ' j ' k ' q))

+ E E E × I.,72,l,i,k,.)
j f t k=3+1 q=~ × P(b["70] ---~ t[$7]t["72])

+ x I(t, 71,p,j,k,i)
p=o j_-p k=~ x P(b[..%] ~ t[.-71]t[$7])

4. If y E A, then: O(t, 7, i, j, k, l) =
k-1 ~ (O (t ' 7 ° ' i ' p ' q ' l))

× z (t ,7o , j ,p ,q ,k)
7o , = i q_-,+l × P(t [. .70] --, t[. .70~])

(o(t, no,i,-,-,l))
+ E x I(t, 70, J, - , - , k)

70 x P(t[$y0] -- t[$707])

5. If 7 is a node which subsumes the foot node of the elemen-
tary tree i t belongs to, we have: O(b, 7, i,j, k, !) =

O(t, 7, i,j, k, I) x P(t[--7] ~ b['-7])

+ x I(t, 7o,p,i,l,q)
70 p=0 q=, x P(t[..%]---~ t["70~/])

6. And finally, if 7 is a node which does not subsume
the foot node of the elementary tree it belongs to:
O(b, 7, i, - , - , i) =

O(t, 7, i , - , - , l) × P(t [$7] ~ b[$7])

+ E E E × ..,70,p,i,l,,)
70 p_-0 q_-~ x P(t [$70] ~ t[$707])

