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A B S T R A C T  
This paper describes the status of the MIT ATIS system 

as of February 1992, focusing especially on the changes made 
to the SUMMIT recognizer. These include context-dependent 
phonetic modelling, the use of a bigram language model in 
conjunction with a probabilistic LR parser, and refinements 
made to the lexicon. Together with the use of a larger training 
set, these modifications combined to reduce the speech recog- 
nition word and sentence error rates by a factor of 2.5 and 1.6, 
respectively, on the October '91 test set. The weighted error 
for the entire spoken language system on the same test set is 
49.3%. Similar results were also obtained on the February '92 
benchmark evaluation. 

I N T R O D U C T I O N  
This paper  presents an update  on the MIT ATIS sys- 

tem, which has been under development since 1990. We 
will describe several changes made to our system since 
the last official common evaluation in February, 1991 [8], 
with particular emphasis on the speech recognition com- 
ponent.. We will also present our evaluation results for 
the October '91 "dry-run" test set and the February '92 
test set. We have also modified our natural  language 
component  to include a robust parsing strategy. This 
change is described in detail in a companion paper  [9]. 

S P E E C H  R E C O G N I T I O N  
In this section we will describe the changes we have 

made over the past year to the speech recognition com- 
ponent (SUMMIT) of our ATIS system. These include im- 
provements to both  the phonetic and language models, 
and refinements on the lexicon. We have also imple- 
mented the acoustic models on a set of DSP boards to 
allow near real-time evaluation and demonstration. 

The baseline SUMMIT system uses a mixture of up to 
16 diagonal Gaussian models for each lexical unit. In 
recent months,  we have been able to simplify the input 
representation of the models significantly with no loss in 
performance. The current representation consists of 39 

1This research was supported by i)ARPA under Contract 
N00014-89-J-1332, monitored through the Office of Naval Research. 
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segmental measurements  for each hypothesized segment. 
This vector is rotated via principal component  analysis 
prior to mixture Gaussian modelling. Segment duration 
is modelled separately, in the log domain, using a mixture 
of Gaussians. At the moment ,  spontaneous disfluencies 
are represented by one model, and are required to be one 
segment long. 

Training and Testing Corpora 
The multi-site ATIS data  collection effort has resulted 

in a significant increase in the amount  of speech data  
available to the community [6]. For speech recognition 
system development, we star ted with all the MA D CO W  
data  released by NIST, and augmented them with ATIS 
da ta  collected earlier at MIT. Some 9,711 utterances in 
this pool were designated as training material,  and an ad- 
ditional 1,595 utterances were set aside as a development 
set for independent evaluation. 

To facilitate a meaningful comparison, all the exper- 
iments described in this section are performed on the 
October '91 "dry-run" test set, containing some 362 ut- 
terances collected at BBN, CMU, MIT,  and SRI. The 
experiments that  we conducted are summarized in Ta- 
ble 1, and will be described in this section. 

In order to monitor  progress internally, we also ran 
the same test set through our system as reported a year 
ago [8]. Our February '91 system had a vocabulary of 
577 words. Tha t  system constrained the N-bes t  search 
with the use of a word-pair g rammar  with a perplexity of 
92. The N-bes t  outputs  were subsequently resorted using 
our natural  language component  TINA. It  was trained 
on some 2400 utterances collected at T I  and MIT. The 
recognition performance of tha t  sys tem on the October 
'91 "dry-run" test set, with and without the word-pair 
language model, is shown in the first two rows of Table 1 
(labelled as AW and WP, respectively). 

Lexicon 
With the availability of a larger amount  of training 

da ta  we enlarged our vocabulary to contain 841 words. 
This was done by examining word frequency counts in 



the training data and adding all reasonable words that  
occurred more than once. Examples of words that  were 
not added included misspellings or people's names. 

Other improvements to the lexicon included refine- 
ment of the pronunciation baseforms and the phonologi- 
cal rules used to generate the pronunciation networks. In 
part,  this involved improving pre-existing rules such as 
the flapping rule. We also introduced a number of spe- 
cific allophones for certain phonemes in certain contexts, 
such as a retroflexed / f /  or a stop closure following a 
fricative, and a number of new diphone units, allowing a 
sequence of two phonemes to be treated as a diphthong, 
such a s / e l / o r / a t / .  The inventory of phonetic units in 
the expanded lexicon contained 115 distinct labels. 

As shown in the third row of Table 1 (labelled as AW, 
Small Training), these changes combined to reduce the 
word error rate from 62.5% to 55.4% for the system a 
year ago using an all-word language model. The next 
row in the same figure (labelled as AW, Full Training) 
shows that  the word error rate is further reduced to 51% 
by using the full training set described earlier 2. This 
result is identical to the results of the February '91 system 
using a word-pair language model, although the latter 
achieved bet ter  sentence recognition accuracy. Unless 
otherwise specified, the remaining experiments described 
in this section all use the full training set. 

Bigram Language Model 
The current SUMMIT system uses significantly more 

language constraints than were used by its predecessor 
[8]. With the help of the available large training set, we 
constructed a smoothed bigram grammar. As has been 
done elsewhere, the bigram was smoothed by interpolat- 
ing the bigram estimates with the prior probabilities of 
each word [2,4]: 

where 
N(wa,wb) 

~ N(wa) 
N(wb) 

IS(Wb) ~ N(all words) 

The interpolation weights were set to vary with the num- 
ber of times we had observed the conditioning context: 

g(wa) 
=- i( a) + K 

where K is a single constant that  was opt!mized so as to 
minimize the measured perplexity on the development 
data  set. For the ATIS training data, we found that  the 

2Due to computa t ional  l imitations, we did not  use the entire 
designated training set for training. Instead, a subset  of about  
7,500 ut terances  were used. 
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perplexity had a broad minimum when K was around 
20. On our development data set this smoothed bigram 
had a perplexity of 20.1. The perplexity measures did 
not include out  of vocabulary words since our recognition 
system does not currently have the capability of detecting 
these words. Including out-of-vocabulary words in the 
perplexity measure increased the value slightly to 20.8. 

Recognition results using the bigram language model 
are shown in row 5 of Table 1 (labelled as BG). The bi- 
gram language model is the single most effective change 
we made to our system, reducing the word-error rate by 
more than twofold from the best results obtained previ- 
ously. 

P r o b a b i l i s t i c  L R  P a r s e r  

A probabilistic LR parser was used in addition to a 
bigram model to provide language constraints. The LR 
algorithm is a deterministic, table-driven, !eft-to-right 
parsing algorithm for a subset of context-free grammars 
[1]. The probabilistic LR (PLR) model extends this al- 
gorithm to assign a probability 

P(wo...w,) = I~ P(wilwo...wi-~) 
i = O  

to each word string, (rather than a binary value). In 
the PLR model the conditional word probabilities are 
approximated using the parser state. 

If P(Qj]wo...w~-l) is the probability that  the parser 
is in state Qj having just  parsed the substring Wo...wi-1 
(without making any moves based on the value of wi), 
then the conditional word probability can be re-written 
as:  

P(w, = P(w, Qj Iwo...wi-1 ). 
J 

Making the assumption that  the parser state captures 
much of the information in the substring wo...wi-1 rele- 
vant to the conditional probabilities, this can be approx- 
imated by: 

P(wi Iwo...wi-1) ~, ~ P(wilQ~)P(Qjlwo...wi-1). 
J 

The set of Qj for which P(Qj]wo...wi-1) is non-zero is 
determined by the grammar. In particular, if the gram- 
mar is deterministic, then P(Qj [w0...wi-1) = 1, for some 
j = j~, and 

P(wo...w,~) = H P(wilw°"'w~-~) ~ ~I  P(w~IQ~,). 
i i 

The probabilities P(wi[Qj) can be estimated from a 
corpus of training utterances using the ratio of the num- 
ber of times wi is the next word when the parser is in 
state Qj to the number of times the parser is in state Qj. 



System 
Feb '91 

Feb '92 

Feb '92 

Characteristics Sub (%) 
AW 41.7 
WP 33.6 

AW, Small Training 39.7 
AW, Full Training 37.0 

BG 15.3 
B G ÷ P L R  13.2 
B G ÷ C D  12.4 
B G + C D ÷ P L R  11.7 
B G + C D ÷ P L R ÷ N L  11.6 

Del (%) Ins (%) 
10.5 10.4 
10.0 7.4 

7.5 8.2 
7.3 6.7 

5.4 3.5 
6.3 2.5 
5.5 2.7 
5.3 2.3 
5.1 2.1 

Wd. Error (%) Sent. Error(%) 
62.5 98.3 
51.0 93.9 

55.4 97.8 
51.0 98.1 

24.1 72.7 
22.0 66.9 
20.6 67.7 
19.3 61.6 
18.8 58.6 

Table 1: Speech recognition results on the October '91 test set for the various experiments described in this paper. In 
addition to the word and sentence error rates, errors due to substitution, insertion and deletion are also provided. Performance 
of the systems from a year ago on the same data set is included for reference. The symbols are: AW=all-word language 
model, WP----word-palr language model, BG=bigram language model, CD=context-dependent modelling, PLR=probabilistic 
LR parser, NL=NL filtering using TINA. 

In previous work using the PLR model for the vOY- 
aGER task [3], the language model implemented was strict, 
that  is, it assigned probability 0 to word strings not gen- 
erated by the input grammar. In order to apply this 
model to speech recognition (i.e., optimizing word accu- 
racy), the parse table was extended to "accept" all word 
strings. This was accomplished by adding explicit error 
states to the parse table, and computing recovery actions 
to allow normal parsing to resume in an appropriate state 
after an error 3. Other extensions to the model described 
previously [3] include various mechanisms for smoothing 
the probabilities by changing the conditioning state. 

The ATIS gramrnar contains 971 rules, the vast ma- 
jority of which introduce lexical items, and the resulting 
parse table contains about 1600 states. The lexicon of the 
parser is the same as that  used by the recognizer. The 
probabilities were trained on all 9,711 utterances in the 
training set. The perplexity measured on the October 
'91 test set was 17.6. 

Row 6 of Table 1 (labelled as BG+PLR)  shows that  
further reduction in error rate is possible by incorporat- 
ing the PLR. PLR is incorporated by using the parse 
score in place of the bigram score to reorder the 50 N- 
best outputs produced by the recognizer. The sentence 
error rate is reduced more than the word error rate, pre- 
sumably due to the fact that  PLR can deal with some of 
the long distance constraints bet ter  than the bigram. 

C o n t e x t - D e p e n d e n t  Modelling 
At the last DARPA meeting we first described our 

work towards accounting for contextual effects on the 
phonetic modelling component of S UM M IT  [5]. We pro- 
posed using regression tree analysis to find the contex- 

3Thi s  is rough ly  equiva lent  to pa r s ing  the  word s t r ing  as  a se- 
quence  of f r a g m e n t s  r a t he r  t h a n  as a comple te  sentence .  
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tual factors that  provided the greatest reduction in the 
distortion of our phonetic models. In an initial exper- 
iment, regression tree analysis was used to form a set 
of context-specific models for each phonetic unit. How- 
ever, we found that  we were able to obtain the best per- 
formance by using the regression trees to independently 
learn a context-normalization factor for each of the input 
dimensions of the model. The model for each phonetic 
unit is then trained using these context-normalized in- 
puts for all of the training samples in that  class. 

We have extended this work by considering more con- 
textual effects, including phonetic labels two phones away 
and whether or not the current segment is in a syllable 
before a pause or at a sentence boundary. The new ef- 
fects were simply added to the list of questions that  could 
be asked at each node in the tree splitting algorithm. 

When we applied this context-normalization to the 
ATIS domain, we found that  the word error rate dropped 
from 24.1% to 20.6%, as shown in rows 5 and 7 in Ta- 
ble 1) (labelled as BG and BG+CD,  respectively). This 
represents a 15% reduction in error rate. In the Resource 
Management domain, we found a decrease in word error 
rate from 10.3% to 7%, or 32% [5]. We believe that  we 
are achieving a smaller reduction in error rate in the ATIS 
domain because a greater number of errors can be at- 
tr ibuted to problems other than phonetic modelling (e.g., 
out-of-vocabulary words, mismatch of language model, 
spontaneous speech effects, etc.). In fact, if we look at 
the performance of the phonetic models in terms of their 
ability to match the "forced-recognition" phonetic string 
(the string obtained during recognition allowing only the 
correct word string), we see a much larger reduction in 
error rate in the ATIS domain (37.5%) than in the Re- 
source Management domain (18.8%). This may not be 
surprising, since we are now considering more contextual 
effects. In addition, it is likely that  there are stronger 



II Input I Correct [ Incorrect No Answer I Error H 
Text 187.7(%)1 8.5(%) 3.9(%) 120.9(%) 
Speech 64.8(%) 14.1(%) 21.1(%) 49.3(~) 

Table 2: Overall system performance, for both text and 
speech input, on the October '91 test set. 

II Sub (%) I Del (%) I Ins (%) I Wd. Error (%) ] Sent. Error (%) II 
II 11"5 I 4.4 I 2.3 I 16.1 I 59.6 II 

Table S: Speech recognition results for the February '92 test 
set. 

contextual effects in a spontaneous speech corpus such 
as ATIS than in a more carefully spoken "read" corpus 
such as Resource Management. 

The combined effect of our improved phonetic and 
language modelling is shown in row 8 of Table 1 (labelled 
as B G + C D + P L R ) .  In this case, the PLR score is used in 
conjunction with the acoustic score to resort the N-best  
outputs. As expected, there is again a more significant 
improvement on the sentence error rate. 

Finally, we incorporated our natural language system 
TINA as a filter on the N-best  outputs produced by the 
recognizer (with N = 40), and the results are shown in 
the last row of Table 1 (labelled as B G + C D + P L R + N L ) .  
Not surprisingly, the natural language component is able 
to reduced the sentence error rate much more than the 
word error rate. 

O T H E R  I M P R O V E M E N T S  
The most significant improvement in the back-end, 

the augmentation of the system with a robust parsing ca- 
pability is described separately. However, in addition, we 
have continued to expand the capabilities of the back-end 
at all levels (syntactic coverage, concepts understood, 
discourse modelling, dialogue aspects, etc.) We continue 
to improve the level of sophistication of the booking dia- 
logue, towards the goal of a natural and effective mixed- 
initiative dialogue to achieve a successful booking. 

The performance of our current spoken language sys- 
tem on the October '91 test set is summarized in Ta- 
ble 2. The significant improvement in our NL result can 
be at tr ibuted to the robust parsing strategy that  we have 

• adopted. Discussion of these results can be found in a 
companion paper [9]. 

F E B R U A R Y  B E N C H M A R K  

The February '92 benchmark results were obtained 
by running the official test set released by NIST through 
our system once. This test set contains 971 utterances 
collected AT&T, BBN, CMU, MIT, and SRI. The speech 
recognition results are shown in Table 3. Comparing Ta- 
ble 3 with the last row of Table 1, we see that  the perfor- 
mance of our system on the two test sets is quite similar. 
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H Input Correct Incorrect No Answer I Error 11 
Text 80(%) 13(%) 7(%) ]32.5(%) 
Speech 61(%) 14(%) 25(%) I 52.8(%) 

Table 4: Overall system performance, for both text and 
speech input, on the February '92 test set. 

The performance of our current spoken language sys- 
tem on the February '92 test set is summarized in Ta- 
ble 4. Although the system's performance for speech in- 
put  is similar to that  on the October '91 test set, the 
NL results are not as good. This is a direct reflection 
of our research priority since October 1991. Tha t  is, we 
have focused our group's attention almost entirely on im- 
proving the speech recognition component, to the neglect 
of expanding our NL system capabilities to adequately 
conform to the principles of interpretation. Again, dis- 
cussion of these results can be found elsewhere in these 
proceedings [9]. 

S U M M A R Y  A N D  F U T U R E  

W O R K  
This paper describes the improvements that  we have 

made to the recognition component of our ATIS system. 
By incorporating more language constraints (using a bi- 
gram and a probabilistic LR parser) and performing con- 
text dependent phonetic modelling, a significant reduc- 
tion in recognition error rates is realized. This has led to 
a corresponding decrease in weighted error of the overall 
spoken language system. Much of the phonetic recogni- 
tion parts of our system has been ported to a set of off- 
the-shelf DSP boards. The complete system, using an 
IBM RS6000 for lexical access and a Sun SPARCstation- 
II for the rest of the processing, now runs in 2-3 times 
real-time. 

In the coming months, we plan to conduct research in 
several directions that will hopefully lead to further im- 
Provement in system performance. These areas include 
the introduction of gender-specific acoustic models, mod- 
elling out-of-vocabulary words, modelling, spontaneous 
speech effects such as pauses, increasing the size of the 
lexicon and training set size, and bet ter  language models. 

Our results show that  better  language modelling is 
crucial to improved performance. Our future research 



in this area falls in several categories. In addition to 
developing a bigram grammar, we have begun to explore 
the use of class bigram's as well as more general N-grams. 
The class bigrams we examined grouped similar words 
together in order to reduce the number of unseen word 
pairs. We investigated both grouping the conditioning 
context into classes: 

p( b I o) IC@o)) 

as well as the word itself: 

I o) 

where C(wb) is the general class of words that  wb belongs 
to. We explored a number of different classes and found 
that  we could reduce the development set perplexity by 
a small amount, to 19.5. 

We have also begun to explore the use of more gen- 
eral N-grams and class N-grams. The N-gram language 
model store all word sequences observed in the training 
data. In order to represent these grammars efficiently we 
store them in the form of a hierarchical tree, where each 
node deeper in the tree represents one word farther back 
in the past. Smoothing becomes extremely important  for 
the N-gram. Thus far we have used the generalization 
of the bigram interpolation procedure so that  N-gram 
smoothing is done recursively: 

= + ( 1  - 

po = 
so that  

p@, l o =pn 

Our initial experiments suggest that,  by incorporat- 
ing a class 4-gram directly into the N-best  search, we 
can reduce our sentence error rate from 62.5% to 56.3% 
(for N = 1) on the development set, although there is a 
corresponding increase in the amount of search required. 
We have also found that  by simply adding the class 4- 
gram scores into our N-best  resorting algorithm we can 
reduce our sentence error rate from 59.6% to 56.0%on 
the February '92 test set. 

Future work in language modelling will focus on appli- 
cation of this general model. In particular, conditioning 
the probabilities on the entire parse stack rather than 
on the current state (essentially the top of stack) should 
further reduce perplexity and bring long-distance con- 
stralnts to bear. 
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The PLR model implemented for the ATIS system and 
the N-gram models described above are both instances 
of a larger class of language models based on Stack Au- 
tomata.  A Probabilistic Stack Automata  language model 
approximates conditional word probabilities as: 

P(wi[wo...wi-1) .~ P(wi[stack after parsing Wo...wi-1) 

This model can also be considered as an extension to a 
class N-gram, in which the class members can be phrases 
as well as words. 
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