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We present results from the February '92 evaluation on the ATIS 
travel planning domain for HARC, the BBN spoken language sys- 
tem (SLS). In addition, we discuss in detail the individual perfor- 2. 
mance of BYBLOS, the speech recognition (SPREC) component. 

In the official scoring, conducted by NIST, BBN's HARC system 3. 
produced a weighted SLS score of 43.7 on all 687 evaluable utter- 
ances in the test set. This was the lowest error achieved by any of 
the 7 systems evaluated. 

4. 
For the SPREC evaluation BBN's BYBLOS system achieved a 
word error rate of 6.2% on the same 687 utterances and 9.4% on 
the entire test set of 971 utterances. These results were significantly 
better than any other speech system evaluated. 

1. O V E R V I E W  

The BBN HARC spoken language system consists of BY- 
BLOS, the speech recognition component, and DELPHI, 
the natural language processing component. In this paper, 
we concentrate on BYBLOS and its interaction with DEL- 
PHI through the N-best interface. Results are presented for 
speech recognition alone and for the overall spoken language 
system. A detailed discussion of DELPHI is presented in 
[2,3] elsewhere in these proceedings. 

2. B Y B L O S  - S P E E C H  R E C O G N I T I O N  

The BYBLOS speech recognition system produces an or- 
dered list of  the N top-scoring hypotheses which is then 
reordered by several detailed knowledge sources. The N- 
best strategy [4,8] permits the use of  computationally pro- 
hibitive models by greatly reducing the search space to a 
few dozen word sequences. It has enabled us to use cross- 
word-boundary triphone models and trigram language mod- 
els with ease. The N-best list is also a robust interface 
between speech and natural language that provides a way to 
recover from speech errors in the top choice word sequence. 

The overall system architecture for this evaluation is similar 
to that used in the February '91 tests [6]. Specifically, we 
use a 4-pass approach to produce the N-best lists for natural 
language processing. 

1. A forward pass with a bigram grammar and discrete 

HMM phonetic models saves the top word-ending 
scores and times. 

A backward pass with a bigram produces an inital N- 
best list. 

Rescofing each of the N sentence hypotheses with 
cross-word-boundary triphones and semi-continuous 
density HMMs reorders the N-best list. 

Resconng with a trigram grammar reorders the N-best 
list again. 

Each utterance is quantized and decoded twice, once with 
each gender-dependent codebook and model. For each utter- 
ance, the N-best list with the higher top-1 hypothesis score 
is chosen. Then they are passed to DELPHI for further re- 
ordering and interpretation while the top choices in the lists 
constitute the SPREC results reported here. 

2.1 Training and Deve lopment  Test Data 

We used speech data from the ATIS2 subcorpus exclusively 
to train the parameters of the acoustic model. This subcorpus 
consists of 10411 spontaneous utterances from 286 subjects. 
The data originated from 5 collection sites using a variety 
of strategies for eliciting and capturing spontaneous queries 
from the subjects [7]. The training data was not balanced 
across the five sites, however. MIT was represented by 
3-4 times as much data as any other site. Overall, MIT 
data accounted for nearly half of  the ATIS2 subcorpus (4600 
utterances). 

The evaluation test data was drawn from this same pool of 
data so we decided to ignore the earlier batches of ATIS 
data that were collected under still different circumstances 
(most of it was read speech) and would not be represented 
in the new test (dialects were predominantly southern in the 
ATIS0 subcorpus). 

We filtered the training data for quality in several ways. 
All utterances that were marked as truncated in the SRO 
(speech recognition output) transcription were ignored. Sim- 
ilarly, we omitted from the training all utterances that con- 
tained a word fragment, We also ignored any utterances 
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that contained rare nonspeech events. Finally, our forward- 
backward training program rejected any input that failed to 
align properly. These steps removed about 1200 utterances 
from consideration. 

Another 600 utterances were removed due to name conflicts 
between a number of subjects from AT&T and MIT that 
were given identical speaker codes, thus making it difficult 
to match the speech utterances with the transcriptions. 

We held another 890 utterances out of  the training as a devel- 
opment test set. We included 2 male and 2 female subjects 
from each of the 5 collection sites in this set. Each speaker 
had roughly 40 utterances. 

This left a total of  7670 utterances from 237 speakers for 
training the HMMs. Since we train gender-dependent mod- 
els, the training was further divided into 3317 utterances for 
the female speakers and 4349 for the males. 

For statistical language model training we used all available 
sentence texts from ATIS0, ATIS1, and ATIS2. During the 
development phase, we excluded the 890 sentences from 
the held-out test set. For the final evaluation this data was 
included, resulting in a total of 14500 sentences for training 
the language models. 

2.2 Recognition Lexicon and Grammars 

The lexicon used for recognition was initialized by includ- 
ing all words observed in the complete grammar ~aining 
texts. This had the side-effect of including the entire de- 
velopment test set within the vocabulary. Common closed- 
classes of words such as days of  the week, months, numbers, 
plane types, etc. were completed by hand. Similarly, we in- 
cluded derivations (mostly plurals and possessives) of many 
open-class words in the domain. We also added about 400 
concatenated word tokens for the commonly occurring se- 
quences such as WASHINGTON_D_C, SAN_FRANCISCO, 
or D_C_TEN. The final size of  the lexicon was 1881 words. 
For the February '92 evaluation test set only 35 words, oc- 
curring 42 times, were out-of-vocabulary (OOV) for this 
lexicon. This is only a 0.4% OOV word occurrence rate 
over the whole test set. 

We estimated the parameters of our statistical bigram and 
trigram grammars using a backing-off procedure similar to 
Katz [5]. The N-grams were computed on word classes in 
order to share the very sparse training. A total of 1054 
semantic classes were defined (most words remained sin- 
gletons in their class). The perplexity of these grammars 
as measured on the evaluation test set (ignoring out-of- 
vocabulary words) is summarized in Table 1. The perplex- 
ities have been measured separately on each of the three 
sentence classes in the test. The trigram language model 
consistently, but rather modestly, reduced perplexity across 

Sen t ence  Bigram Trigram 
Class Perplexity Perplexity 

A+D 
A+D+X 

A 
D 
X 

17 
20 

15 
20 
35 

12 
15 

10 
14 
28 

Table 1: N-gram perplexities on the February '92 test set. 

all three classes. We did observe that recognition perfor- 
mance consistently improved with the trigrarn model. 

More striking are the differences between the perplexities of 
the three sentence classes and the large values for the Class X 
sentences (those which are unevaluable with respect to the 
database). We observed that our recognition performance 
was well correlated with these measured perplexities. 

2.3 Automatic Endpointing 

We estimated that 35% of the entire corpus is ambient noise. 
Part of the high ambient-to-speech ratio is due to the various 
ways in which the data was collected. 

Several different strategies were employed by the collect- 
ing sites for endpointing the waveforms, including subject- 
initiated push-to-talk and push-and-hold, as well as auto- 
matic endpointing, and wizard-initiated manual endpointing. 
This led to highly variable and often very long leaders of 
ambient noise on both ends of the waveforms. In addition, 
these segments frequently contained a variety of nonspeech 
events. 

We employed the speech-detector that we use in our real- 
time recognizer front-end to remove most of  the long du- 
ration intervals of  ambient noise from the input. This step 
makes all subsequent processing faster and avoids many spu- 
rious word insertions in the results. The parameters of the 
detector were set on a small sample of ATIS data from 4 col- 
lection sites in October '91. These same parameters were 
used for all data processed thereafter, including all of the 
data from AT&T, none of which was included in the pa- 
rameter tuning sample. Although we have carefully verified 
that the detector is working properly on only very small 
samples of  data, we believe it is quite accurate since we do 
not observe many errors at the ends of utterances. 

2.4 Automatic Location of Silence 

Another reason for the prevalence of ambient noise is due to 
the subjects having difficulty satisfying the simulated travel 
planning problem given them to elicit spontaneous utter- 
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ances. Hence, the ATIS2 corpus is marked with a great 
number of  hesitations and pauses in the speech - many of 
which are quite long in duration. 

We observed that the marking of such pauses in the SRO 
transcriptions was highly inconsistent. Some transcribers 
simply neglected to make detailed markings altogether, 
while others marked only the extremely long pauses. Since 
we do not allow silence to appear optionally between words 
in our training algorithm, we believed that the large num- 
ber of  unmarked pauses could degrade our phonetic models. 
Therefore, we devised a procedure to automatically locate 
the remaining pauses in the training data and thereby correct 
the corresponding transcriptions. 

1. Train an initial model as usual, ignoring unmarked 
pauses. 

2. Run the recognizer constrained to the correct answer 
on the training data, but allow optional silence between 
every word. 

3. Retrain using the recognized output from (2) as the 
corrected transcriptions. 

We found that a large positive bias was needed in step 2 
above to induce the recognizer to hypothesize inter-word 
silences. Since the initial model was trained disallowing 
many real pauses, the corrupted phonetic models easily ab- 
sorb many frames of silence. We adjusted the bias by com- 
paring the recognizer's output on a sample of speech with 
known pause locations. Although the hypothesized pause 
locations never matched the truth exactly, we did observe a 
15% reduction in word error rate on a very early develop- 
ment condition. Specifically, it improved the performance of 
the cross-word-boundary rescoring stage, whereas the non- 
cross-word N-best stage did not change. This is entirely 
consistent with the correction we made; only the cross-word- 
boundary models were corrupted by unlabeled inter-word 
pauses. 

2.5 Nonspeech Events 

This corpus is also notable for its large number and variety 
of nonspeech events audible in the waveforms. The phe- 
nomena run the gamut from common filled pauses (um's 
and uh's), throat clearings, coughing, and laughter, to un- 
intelligible mutterings of 20 seconds duration. There were 
over 175 different markings for nonspeech events in the SRO 
transcriptions. While these events are typical of casual con- 
versational speech between people, their high frequency and 
severity in this corpus are likely a consequence of the fact 
that nearly all subjects were completely new to speech and 
natural language technologies and had little or no training in 

how to speak or specific feedback about their speech quality 
from the system. 

To handle the nonspeech events, we first identified those that 
appeared to have enough training samples to make a robust 
estimate of the HMM paraameters. We then mapped a wide 
variety of marked events into a set of generic nonspeech to- 
kens: [AMB_NOISE], [BREATH_NOISE], [MIC_NOISE], 
and [MOUTH_NOISE]. In all, we attempted to model only 
11 unique nonspeech events. All nonspeech tokens were 
assigned to the same class in the grammar. 

We tried 3 different ways to use nonspeech models in the 
system: 

1. Treat nonspeech as normal words, including estimating 
N-gram probabilities for them. 

2. Treat nonspeech as normal words in acoustic train- 
ing, but do not include them in the grammar training, 
thereby making them very unlikely. 

3. Treat nonspeech like silence, allowing them optionally 
between any words with fixed grammar transition prob- 
abilities. 

Although method 3 was intuitively more appealing and 
known to work rather well for silence, it was the least effec- 
tive of the three approaches for nonspeech. As was the case 
last year [6], when we try to recognize nonspeech events 
accurately the false alarm rate is high enough to offset any 
potential gain. The most successful was method 2 which 
effectively disallowed nonspeech in the decoder output. 

Modeling nonspeech events carefully may not be important 
for another reason - there are not enough errors due to non- 
speech events. There are only about 120 actual nonspeech 
events in the test SROs. There are 184 marked, but 66 of 
them are [POP]s at the beginnings of utterances that aren't 
really in the dam! Apparently the transcriber was marking 
pops caused by the D/A system during playback. 

If  these markings do not greatly underestimate the true fre- 
quency of occurrence, then there is relatively little to be 
gained by modeling nonspeech accurately. Moreover, of the 
remaining 118 nonspeech events, half are breath noise or 
ambient noise at levels that do not interfere with our recog- 
nition. 

We have indeed noticed that we make errors around most 
of the long or loud filled-pauses. But there are only 55 
filled pauses (as indicated by the SRO) in the 971 utterance 
evaluation test set. These are primarily from 2-3 speakers. 
Given that we have nearly 1000 word errors across the entire 
test set, modeling filled-pauses well will have a very small 
impact on overall performance at this point. 

74 



2.6 February '92 Evaluation Conditions 

The February '92 evaluation test set has data from 37 speak- 
ers. 20 subjects were female and 17 were male. The number 
of utterances per speaker varied from 5 to 64, but the num- 
ber of utterances from each of the 5 data-collection sites was 
carefully balanced. All results given are for the Sennheiser 
channel (same as the training data). The recognition mode 
was speaker-independent - the test speakers were not in the 
training set. 

By committee decision there was no common baseline con- 
trol condition for the February '92 ATIS tests. The only 
constraint was that the single common test set must be used. 
Under these circumstances, there is a strong temptation to 
try to train on as much material as one can. We have resisted 
this temptation for two reasons. First, we feel that the sim- 
ple addition of training data for incremental improvements 
is scientifically uninteresting. Secondly, in our experience 
with the current definition of ATIS, we have seen very little 
improvement for increasing the training data beyond about 
4000 utterances. 

Last year, we attempted to improve on the February '91 
common baseline by augmenting the 3700 common acous- 
tic training utterances with 9000 more collected from 15 
speakers at BBN. The resulting performance improvement 
was statistically insignificant. Since the test subjects were 
collected at TI and had predominantly southern dialects, our 
conclusion was that the additional training we collected at 
BBN did not match the test data sufficiently to be of much 
use. When the training data does match the test, we normally 
expect a quadrupling of the training data to yield a halving 
of the error rate. This result made it clear to us that simply 
increasing the amount of training has limited scientific and 
practical value. 

Recently we had another demonstration of the rather weak 
contribution of additional training data in the ATIS domain. 
As the ATIS2 data became available, we moved from a pi- 
lot development training set of 4100 utterances to our final 
set of 7700 utts. On a common development test set, we 
observed no significant gain for nearly doubling the training 
data, even though the additional data matched the test con- 
ditions[ Moreover, we observed that data originating from a 
particular site primarily improved performance only on test 
data from the same site. 

2.7 Speech Recognition Results 

Official results for BYBLOS on this evaluation are given 
in Table 2. The performance is shown for two composite 
results and as a function of utterance class type. The 6.2% 
word error rate on class A+D sentences and the combined 
A+D+X error rate of 9.4% were significantly better than any 
other speech system reporting on this data. The individual 

Sentence # Word % Word 
Class # Sentences Errors Errors 

A+D 
A+D+X 

A 
D 
X 

687 
971 

402 
285 
284 

501 
1015 

305 
196 
514 

6.2 
9.4 

5.8 
7.0 

17.2 

Table 2: BYBLOS Official SPREC results on the February 
'92 test set. 

speaker results varied widely from 0.0% word error to 30% 
error with the median at about 7.5% The female speakers 
got significantly better results than the male speakers. 

Performance on the class X utterances is markedly worse 
than either class A or D utterances. In fact, more than half 
of the speech errors occur on these utterances. The ratio of 
the error rate for class X utterances to other utterances is 
higher than we have ever seen. Since these utterances are 
not evaluable by the natural language component, it does not 
seem profitable to try to improve the speech performance on 
these utterances for a spoken language system. 

In Table 3 we observe a large variation in overall perfor- 
mance on the class A + D utterances for each segment of 
the test data originating at a given collection site, as shown in 
the righlmost column. We believe that most of this variation 
can be explained by two easily measured factors - amount 
of training data from the matching site, and the number of 
errors due to all spontaneous speech effects. The actual 

# Utts 
Site Training 

MIT 3700 
BBN 1400 
CMU 1000 
SRI i 800 
Ar ri 800 

% Word Error Due To: 
Modeling 

Deficiency 

2.7 
4.5 
5.3 
5.7 
6.4 

Spontaneous 
Effects 

0.5 
0.8 
0.5 
2.0 
4.0 

Overall 
% Word 

Error 

3.2 
5.3 
5.8 
7.7 

10.4 

Table 3: BYBLOS performance on February '92 test as a 
function of originating site (class A + D). 

number of training utterances that we used from each site is 
shown in Table 3. The next column shows the word error 
rate that we attribute to general modeling deficiencies after 
removing those errors that we judged were due to sponta- 
neous speech effects. The variation due to modeling seems 
well correlated to the amount of training data available from 
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each site. The numbers show the expected halving of the 
error :rate for a quadrupling of the training data. In partic- 
ular, we feel that the higher performance on the M1T data 
can be explained entirely by the increased amount of data 
from that particular site. 

The errors due to spontaneous speech effects in Table 3 
were counted by matching the output of  BYBLOS against 
the SRO transcriptions. The SROs contain specific markings 
for many spontaneous speech effects including: nonspeech 
events, word fragments, mispronunciations, emphatic stress, 
lengthening, and verbal deletions. Any error that occurred in 
the immediate vicinity of  such a marking was counted as an 
error due to spontaneous speech. The table shows that the 
noticably worse performance on data from SRI and AT&T 
can be explained by the larger proportion of errors due to 
spontaneous speech effects. It also shows that errors due to 
spontaneous speech effects account for only about 22% of 
the total. 

In order to calibrate our recent improvements, we retested 
on the October '91 dry-run test set. The current system 
gives a word error rate of  7.8% whereas our unofficial result 
in October was 14.4% word error. (Note that we did not 
use the ATIS2 speech to train the system for the October 
'91 dry-run test.) We attribute our improvement to several 
important factors: 

1. More appropriate training material - ATIS2 multi-site 
spontaneous data instead of read ATIS0 data from TI 
and BBN, 

2. A trigram language model - versus a bigram in October, 

3. Automatic location of silences in the training data. 

Note that the quantity of  ATIS2 training data used (7700 
utts) is only half the amount used to estimate the model 
used for the October '91 dry-run (about 13,500 utts). Clearly 
the quality of the training material is an important factor in 
performance. 

2 .  H A R C  - S P O K E N  L A N G U A G E  

U N D E R S T A N D I N G  

HARC, BBN's spoken language system, utilizes BYBLOS 
as its speech recognition component, and DELPHI as its 
natural language understanding component. DELPHI uses a 
definite clause grammar formalism, augmented by the use of  
constraint nodes [9] and a labelled argument formalism [3]. 
The parsing algorithm uses a statistically trained agenda to 
produce the single best parse for an input utterance [1]. 

We experimented with several conditions to optimize the 
connection of BYBLOS with DELPHI. The basic interface 

between speech and natural language in HARC is the N- 
best list. Previously, we had allowed the natural language 
component to search arbitrarily far down the N-best list until 
it either found a hypothesis that produced a database retrieval 
or reached the end of the N-best list. For this evaluation, we 
explored the nature of this connection in more detail. ' the 
parameters we varied were: 

• the depth of the search that NL performed on the N-best 
output of  speech 

• the processing strategy used by NL on the speech output 

In our earlier work in integrating speech and natural lan- 
guage, we had noticed that while it was beneficial for NL 
to look beyond the first hypothesis in an N-best list, the an- 
swers obtained by NL from speech output tended to degrade 
the further down in the N-best list they were obtained. Dur- 
ing this last period, we performed a number of experiments 
to determine the break-even point for NL search. We used 
an N of 1, 5, 10, and 20 in our experiments. 

During our recent development work, we utilized a number 
of fall-hack strategies for NL text processing [2]. In ap- 
plying these fall-hack strategies to speech output, we exam- 
ined the trade-off between processing speech output with a 
more restrictive scheme, and thereby potentially discarding 
meangingful utterances vs. processing speech output with 
a more forgiving strategy, and thereby potentially allowing 
in meaningless or misleading utterances. We experimented 
with three processing strategies: 

fallback processing turned off 

fallback processing turned on 

a combined strategy, in which an initial pass with made 
with fallback processing turned off. I f  no hypothesis 
produced a database retrieval, a second pass was made, 
with the fallback strategy engaged. 

We show the results of  one such experiment, utilizing the 
October '91 dry-run corpus as development test in Table 
4. The results of our experiments indicated that an N 
of 5 was optimal, and that the two-pass processing strategy 
was slightly better than either of the others. This was the 
configuration we used on the February '92 evaluation data. 

In Table 5 we show our Weighted Error on the February '92 
evaluation data for Combined Class A+D, and Classes A 
and D separately, as calculated by NIST. During the test run, 
we had neglected to include the date information provided 
for individual scenarios. We include the results of a re-run 
with the same system as ran the February '92 test set, with 
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Condition N WE 

Text (1) 47.9 
FaUback on 1 64.6 

" 5 58.0 
" 20 60.1 

Fallback off 1 64.2 
" 5 56.9 
" 20 59.0 

Two Pass 5 56.6 

Table 4: SLS weighted error (WE) on the October '91 dry- 
run test set with varying N-best list length (N). 

the only change being the inclusion of the date information. 
Interestingly, the lack of date information only affected 3 
utterances, which were given False answers without the date, 
and True answers with it. 

Corpus Official WE WE with date 
A+D 43.7 42.8 
A 35.8 34.8 
D 54.7 54.0 

Table 5: SLS weighted error (WE) on the February '92 test 
set. 

4. SUMMARY 

We have shown superior speech recognition performance 
with only a modest amount of training speech by aggres- 
sively handling the idiosyncrasies of this corpus. All utter- 
ances that are degraded due to severe disfluencies or prob- 
lems with data-capture are eliminated from the training set. 
The excessively long and numerous segments of ambient 
noise in the data are removed from consideration by a good 
speech detector in the front-end. The very numerous hesita- 
tion phenomena are automatically located and then explic- 
itly modeled where they occur in the training. Nonspeech 
events, such as filled-pauses, are made very unlikely in the 
grammar to clamp the false alarm rate. 

In addition, the trigram language model on word classes 
significantly improved recognition performance compared to 
a bigram model. 

With these improvements, the official BYBLOS speech 
recognition results for the February '92 DARPA evaluation 
were 6.2% word error for the Class A+D subset of  the test 
and 9.4% overall. Both of these results were significantly 
better than any other speech system tested. 

Finally, we have shown how the N-best interface between 
the speech and natural components reduces the error rate 
compared to considering the top choice only. This was 
shown to be true whether a robust fragment processor was 
used as a fall-back or not. 

The official SLS result for HARC was a weighted error of 
43.7. This was the best overall result for a spoken language 
system in the February '92 DARPA evaluation. 
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