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A B S T R A C T  

A probabilistic approach to lexieal access from a recognized phone 
sequence is presented. Lexical access is seen as finding the word se- 
quence that maximizes the lexical likelihood of a sequence of phones 
and durations as recognized by a phone recognizer. This is theoretically 
correct for minimum error rate recognition within the model presented 
and is intuitively pleasing since it means that the "confusion matrix" of 
the phone recognizer will be learned and its regularities exploited. The 
lexical likelihoods are estimated from training data provided by the 
phone recognizer using statistical decision trees. Classification trees 
are used to estimate the phone realiziation distributions and regression 
trees are used to estimate the phone duration distributions, We find 
they can capture effectively allophonic variation, alternative pronun- 
ciation, word co-articulation and segmental durations. We describe a 
simpified, but efficient implementation of these models to lexical access 
in the DARPA resource management recognitiion task. 

1. I N T R O D U C T I O N  

We describe a new approach to lexical access in a phone- 

based speech recognition system. By "lexical access" we mean 
taking a sequence (or, more generally, a lattice) of phones and 

durations that  is output by a phone recognizer and mapping it 
onto a word sequence (or, more generally, a lattice). 

In conventional word-based speech recognizers, segmental 
durations, word co-articulation and alternative pronunciations 

are usually poorly modelled if at all since the architecture is not 

convenient or efficient for exploiting these constraints. 

Phone-based recognition offers an attractive alternative from 

this point of view. Our approach will be to create a probabilistic 

model that  provides the likelihood that a particular word se- 

quence gives rise to a particular phone sequence. This model will 

take into account allophonic variation, alternative pronunciation, 
word co-articulation and segmental durations. 

We then combine these lexical likelihoods with the acoustic 
likelihoods generated by the phone recognizer and priors from 
our language model to get an overall recognition model whose 
error rate we seek to minimize. 

We have taken this stochastic approach for two reasons. 

First, it provides a principled way to combine seemingly disparate 

information: (a) acoustic likelihoods, (b) segmental durations, 

(c) alternative pronunciations, and (d) the language model. Sec- 
ond, the availability of large speech corpora now allow the sta- 

tistical estimation of these probabilities. 

2. P R O B A B I L I S T I C  M O D E L  

We form the probabilistic model as follows. Let w be a 

sequence of words, let y be a sequence of phones, let d be a 

sequence of durations, and let s be a (fixed) speech signal. Then 

P(wis )  ~x Z P ( s l y , d )  P ( y , d [ w )  P(w).  (2.1) 
y,d 

The lefthand side of this relation is the probability that a 

given speech signal corresponds to a particular word sequence. 

The word sequence that maximizes this term gives the minimum 

sentence error rate. The first factor on the righthand side gives 

the acoustic likelihoods provided by the phone recognizer. The 

second factor gives the lexical likelihoods to be provided by the 
lexlcal access stage describe here. The third factor represents 

whatever language model we use. 
In this paper, we have used the output of the current Bell 

Labs phone recognizer as input to the lexical access component 

[1]. At present, this recognizer outputs a single sequence of 

phones and durations per utterance, which represents its best 

estimate of the true sequence. As such, y and d are fixed in 
Eq. 2.1 for a given speech signal. A more general approach, 

which would consider alternative sequences - phone lattices - is 

currently under investigation, but not reported here. 
Also in this paper, in which we present results on the DARPA 

resource management task, we consider only the the simple word- 

pair language model. Thus, for a given utterance, the best scoring 

word sequence, w,  will be the one that maximizes the lexical like- 
lihood, P(y ,  d[w) for a given phone recognizer output y and d, 
and which is a legal sequence in the word-pair grammar. In this 

model, finding the word sequence that  maximizes this likelihood 
is the goal of lexical access and estimating this likelihood is the 

goal of this paper. 
A crucial factor for this estimation is that y and d are not 

the true sequence of phones and durations, but the output of a 

phone recognizer. As such, we must train our estimator on the 
output of the phone recognizer. This is theoretically correct for 

minimum error rate recognition in tnis model and is intuitively 

pleasing since it means that the model will learn the "confusion 
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matrix" of the phone recognizer and thus exploit its regularities. 

This combined with our probabilistic model differeniates us from 

other approaches to lexical access [2,3]. 

We can further decompose this problem by breaking the lex- 
ical likelihoods into two factors: 

P (y ,  d[w) = P ( y l w )  P ( d ] w , y )  (2.2). 

The first factor is the pronunciation model, which gives the 

probability of a phone sequence given a word sequence and the 

second factor is the segmental duration model which gives the 

probability of a duration sequence given the phone and word 

sequences. 
Given a word sequence we can use a dictionary to look up 

the corresponding phoneme sequence [4]. We can then replace 
the word sequence w in Eq. 2.2 with the phoneme sequence aug- 

mented with word boundaries and lexical stress with little loss of 

information. 

It is important not to confuse phonemes and phones at this 

point. A phoneme is a coarse description of the pronunciation of 
a word as usually found in a dictionary. A phone gives a finer 

description indicating how the speaker uttered a word in context. 

For example, t h e / ' ~ / i n  ' b u t t e r '  may be pronounced as a flap, 
[dx], or as a released t, [ t c l  t ]  . In this paper, we use the 

T I M I T B E T  symbols, a superset of the ARPABET symbols, for 
specifying phones [5]. Which phone will be the realization of 

the p h o n e m e / t / i n  this word depends, in part, on the speaker's 

dialect and speaking rate. Nor is the phonetic realization of a 
phoneme always determinstic; only about 75% of the / t / ' s  in 
a similar context to ' b u t t o r '  are flapped, estimated from the 
TIMIT database. It is precisely the phoneme-to-phone mapping 

that comprises the pronunciation model that we are trying to 
generate. 

Let us make this idea precise. Let y = zlz~...zm be the string 
of phonemes of some sentence. So that  we can mark both word 

boundaries and stress we augment the phoneme set to include 

/ $ / a s  a word boundary marker and split each syllabic phoneme 
into an unstressed, a primary stressed, and a secondary stressed 

version. Further, let y = YlYz...Yn be the string of corresponding 

phones. We include the phone symbol [-J  to indicate that a 
phoneme may delete. 

The most general form of our predictor is J3(y[x), where 
P estimates the probability that the phone sequence y is the 

realization of the phoneme sequence x. 

This specifies the probalitity of an entire phone sequence 

y. For convenience, we want to decompose this into one phone 
prediction at a time. Since 

P ( y l x )  = Pn(Y,~Ixyl ...Yn-1 )Pn-1 (Yn-1 IXyl .'.Yn-2)...Pl(Yl Ix), 
(2.3) 

we can restate the problem as finding a suitable predictor, 

ISk(yklxyl...yk_l), that estimates the probability that  yk is the 
kth phone in the realization, given the phoneme sequence x and 
the previous k-1 phones Yl...Yk-1. 

Eq. 2.3 is more general than necessary since realistically the 
kth phone wiLl depend only on a few neighboring phonemes and 

phones. Suppose that we can place the phoneme and phone 

strings into alignment. In fact, forming a good alignment be- 

twen phonemes and phones is easy if deletions and insertions are 

permitted, using a phonetic feature distance measure and stan- 

dard string alignment techniques [6]. Since we have augmented 

the phone set to include a deletion symbol, the only stumbling 

block to such an alignment would be if phones insert. For the 
moment, assume that they don't;  we wiLl come back to insertions 

later. Thus, under this assumption we can talk about the kth 

phoneme and its corresponding phone. We assume 

pk(yklx Ya...Yk-O = p(yklxk . . . . .  Zk-lZkXk+l--.gk+rYl.--Yk-1)- 
(2.4) 

In other words, ptc is stationary and depends only on the ::t::r 

neighboring phonemes. 

If we assume the kth phone does not depend any of the pre- 

vious phones, we have 

P(yklxk . . . . .  Xk-lXk~k+l...;TkTrYl'..~tk-1) 
= p(vklz~ . . . . .  zk-lxkzk+l. . .z~+,)  (2.5) 

This is the assumption that phones are conditionally independent 

given the phonemic context. 
To handle phone insertions, we add a second model that 

predicts the phone insertions. Consider a phone sequence 

zoylzly2z2...y,~zn that is the reaLization of phoneme sequence 

xlx2...xn. We view phone Yi as the realization of phoneme xl 

and view phone zi as an insertion between phoneme yi and yi+l. 

3. D E C I S I O N  T R E E S  

We now discuss the question of how, in general, we can es- 

t imate the likelihoods in Eq. 2.2. We stated in the introduction 

that we intend to estimate them directly from training data  by 

statistical means. In the DARPA resources management task, 

we use the output  of the phone recognizer run on the training 

set. Since the phone recognizer is also trained on this same data 

set, the phone recognition rate would be much better than on 
independent test sets if we did this directly. Instead, we train 

the phone recognizer on 9/10 of the training set and then run it 

on the remaining 1/10. By doing this ten times on the different 
portions of the training set, we are able to obtain a more realistic 
phone training set for lexical access. 

Given this data, how can we obtain estimates the the pro- 
nunciation and duration likelihoods in Eq. 2.2? 

The simplest procedure would be to collect n-gram statistics 
on the training data. A bi-phonemic or possibly tri-phonemic 

context would be the largest possible with available training data  
if we want statistically reliable estimates. 

We believe that a straight-forward n-gram statistics on the 
phonemes are probably not ideal for this problem since the con- 
textual effects that we are trying to model often depend on a 

whole class of phonemes in a given position, e.g., whether the 
preceding phoneme is a vowel or not. A procedure that  had 

all vowels in that position clustered into one class for that case 

would produce a more compact description, would be more eas- 

ily estimated, and would allow a wider effective context to be 

290 



examined. 

Thus intuitively we would like a procedure that  pools to- 

gether contexts that behave similarly, but splits apart  ones 

that differ. An attractive choice from this point of view is a 

statistically-generated decision tree with each branch labelled 
with some subset of phonemes for a particular position. The 

tree is generated by spliting nodes that  statistical tests, based 
on available data, indicate improve prediction, but terminating 
nodes otherwise. 

An excellent description of the theory and implementation of 

tree-based statistical models can be found in Classification and 
Regression Trees [7]. The interesting questions for generating 

a decision tree from data - how to decide which splits to take 

and when to label a node terminal and not expand it further - 

are discussed in these references along with the widely-adopted 
solutions. 

Suffice it to say here the result is a binary decision tree whose 

branches are labelled with binary cuts on the continuous features 

and with binary partitions on the categorical features and whose 

terminal nodes are labelled with continuous predictions (regres- 

sion tree) or categoricM predictions (classil]cation tree). By a 
continuous feature or prediction we mean a real-valued, linearly- 

ordered variable (e.g., the duration of a phone, or the number of 

phonemes in a word); by a categorical feature or prediction we 

mean an element of an unordered, finite set. (e.g., the phoneme 
set). 

When categorical predictions are made, the relative proba- 

bility of each outcome at a node can be directly estimated, and 

when continuous predictions are made, the distribution at a node 

can be para~meterically estimated. In this way, the trees can serve 
as estimators of distributions like in Eq. 2.2 and not just as clas- 
sifters and predictors. 

We have chosen to use decision trees to form our estima- 
tors since they (1) relatively efficiently use the available data, 

(2) are able to handle both categorical and continuous inputs 

and outputs, (3) are trainable to new corpuses quickly (which 

is necessary since we train on the output of a changing phone 

recognizer), and (4) generalize well to new test data  due to the 

cross-validation procedure for selecting tree size [7]. The use of 

decision trees for these kinds of purposes has already met with 
some success [8-11]. 

4. P R O N U N C I A T I O N  M O D E L  

In the exposition in Section 2, we combined word boundary 
and stress information into the phoneme set itself. When we 

actually input the features into the tree classification procedure 
we have found it more convenient to keep them separate. 

We include ± r  phonemes around the phoneme that  is to be 
realized (r = 2). This is irrespective of word boundaries. We pad 
with blank symbols at sentence start and end. 

Since there are about 40 different phonemes, if we directly 
input each phoneme into the tree classification routine, 240 pos- 
sible splits would have to be considered per phoneme posi- 

tion at each node, since, by default, all possible binary par- 
titions are considered. This is clearly intractable, so instead 

we encode each phoneme as a feature vector. A manage- 
able choice is to encode each phoneme as a four element vec- 

tor: (consonant-manner, consonant-place, vowel-manner, 
vowe l -p l ace ) .  Each component can take one of about a dozen 

values and includes 'n/a'  for 'not  applicable'. For exam- 
p l e , / a / i s  encoded as ( v o i c e l e s s - f r i c a t i v e ,  p a l a t a l ,  n / a ,  
n/a) a n d / i y / i s  encoded as ( n / a ,  n / a ,  y -d iph thong ,  h igh -  
front) 

If the phoneme to be realized is syllabic, then we also input 
whether it has primary or secondary stress or is unstressed. We 

use stress as predicted by the Bell Labs text-to-speech system; 

this is essentially lexical stress with function words de-accented. 

If the phoneme is not syllabic, we input both the stress of the 

first syllabic segment to the left and to the right if present within 
the same word (and use ' n / a ' e '  if not). 

To encode word boundaries, we input the number of 

phonemes from the beginning and end of the current word to 

the phoneme that  is being realized. 

Our output set is simply a direct encoding of the 47 element 

phone set used in Ljolje[1] plus the symbol [ - ]  if the phoneme 

deletes. Computation time grows only linearly with the number 

of output classes so this direct encoding presents no problem 

similar to the exponential growth found with size of the input 

feature dasses. 

We now describe the results of this model applied to the 
DARPA resource management database. The phonetic transcrip- 

tion for 3838 sentences of the training set produced by our phone 

recognizer as described above were aligned with their phone- 

mic transcription as predicted by the Bell Labs text4o-speech 
system from their orthographic transcription. For each of the 
resulting 140168 phonemes, the phonemic context was encoded 
as described. A classification tree was grown on this data and 

the tree size was chosen to minimize prediction error in a 5-fold 

cross-validation. The resulting tree had approximately 300 ter- 

minal nodes. The resulting model predicts the phone output by 

the recognizer 79.5% of the time (cross-validated), contains the 

"correct" phone in the top 5 guesses 97% of the time, and has a 
conditional entropy of 1.1 bits. 

The corresponding insertion tree predicts whether or not the 

phone recognizer inserts a phone between phonemes 94.5% of the 
time. This seemingly good prediction is, in fact, quite poor, since 

the mere constant decision "doesn't insert" is correct by almost 
the same percentage. The best cross-validated insertion tree has 

only six terminal nodes, which essentially represents a fixed in- 

sertion distribution depending little on context. This reflects the 

fact that our choice of phone set does not produce many regular 

insertions (as it would if stop closure and release were separate 

phones), and the fact that  the phone recognizer apparently does 
not insert spurious phones in a predictable manner. 

5. D U R A T I O N  M O D E L  

Our duration model, corresponding to the second factor in 
Eq. 2.2, has a very similar form to the pronunciation model. Our 

prediction, of course, is a continuous quantity, segmental dura- 
tion, so we use a regression tree. We include all the input features 
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described above for the pronuncation tree, but we now add the 
corresponding phone too. We encode the phone with a scheme 
similar to that for phonemes, but add a few extra categories to 
fully specify all the phones. Perhaps a useful additional input 
feature would try to capture speech rate; we have not tried this 
yet. 

The standard deviation in the residual in the prediction of 
the durations of phones output by the phone recognizer is 29 
msec. This compares with an overall 45 msec. standard deviation 
in the phones themselves. The best cross-validated tree-length is 
about 300 terminal nodes. 

For the lexical access, we need to represent the probability 
distribution of the durations. To do so, we can fit a gamma 
distribution to the data at each terminal node in the tree. 

6. I M P L E M E N T A T I O N  O F  L E X I C A L  A C C E S S  

With these trees it is straight-forward to take a word se- 
quence and phone sequence and estimate the likelihood that the 
word sequence gives rise to the phone sequence. We use the pro- 
nunciation trees to predict the first factor in Eq. 2.2 and the 
duration trees to predict the second factor. This simple-minded 
generate-and-test algorithm, of course, is not acceptable during 
recognition since the number of legal sentences is enormous. In- 
stead, we have to find a more efficient way compute the exact 
same thing or a close approximation. 

The simplest approach to an efficient implementation is to 
use the decision trees to form pronunciation and duration net- 
works for each word in the vocabulary ahead of time. Then, for 
every possible starting phone and every possible stopping phone 
in the recognized phone sequence we match to the pronunciation 
network for each word in the vocabulary. To allow for inser- 
tions and deletions, this essentially becomes a string match with 
costs in terms of log likelihoods in the probabilistic model [cf. 3]. 
Dynamic programming permits an efficient match here [6]. 

This approach presents one disadvantage; word co~ 
articulation information is mostly lost, since the individual word 
pronuncation model would need to be created without knowing 
the lexical context. To get around this, we can create multiple 
word models per word keyed to different lexical contexts. 

7. R E S U L T S  

At this time we have a simple version of the model de- 
scribed here running. We have not yet implemented the word- 
coartlculation component and the lexical likelihood model has 
the form: 

P(y, dlw ) ~ P(ylw)P(dIw) (7.1). 

In other words, the duration model does not include the phone 
sequence only the phoneme sequence (cf. Eq. 2.2). 

Testing the model on the February '89 DARPA resource 
management test set and using the word-pair grammar, we 
achieved 85.7% word correct and 83.2% word accurary. Word in- 
sertion were 2.4% and deletions were 3.5%. This is with a phone 
recognizer that is achieves an estimated 81.5% phone correct and 

76.0% phone accuracy on the same test set, using automatically 
derived phonetic transcriptions [see 1]. 

We are encouraged by this since it is a considerable improve- 
ment over this system's progenitor and approaching the best re- 
sults reported for phone-based recognition. This improvement 
is due both to much better phone recognition and to improved 
lexical access with this approach. 

We believe considerable further improvement will come when 
we include better duration information, word co-articulation, 
and, most importantly, when we input a phone lattice with rec- 
ognizer alternatives rather than just the best guess. We have, 
in fact, implemented a crude version of a lattice in which the 
segmentation produced by the best guess is used, but alternative 
phones and their likelihoods are included. This performed 88.5% 
phone correct and 87.2% phone accuracy on the the Feb '89 test 
set. We are now implementing a structure that allows a true 
lattice that will allow alternative segmentations. 
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