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Abstract 

This paper reports recent efforts to improve the performance 
of CMU's robust vocabulary-independent (VI) speech recog- 
nition systems on the DARPA speaker-independent resource 
management task. The improvements are evaluated on 320 
sentences that randomly selected from the DARPA June 88, 
February 89 and October 89 test sets. Our first improvement 
involves more detailed acoustic modeling. We incorporated 
more dynamic features computed from the LPC cepstra and 
reduced error by 15% over the baseline system. Our second 
improvement comes from a larger training database. With 
more training data, our third improvement comes from a more 
detailed subword modeling. We incorporated the word bound- 
ary context into our VI subword modeling and it resulted in a 
30% error reduction. Finally, we used decision-tree allophone 
clustering to find more suitable models for the subword units 
not covered in the training set and further reduced error by 
17%. All the techniques combined reduced the VI error rate 
on the resource management task from 11.1% to 5.4% (and 
from 15.4% to 7.4% when training and testing were under dif- 
ferent recording environment). This vocabulary-independent 
performance has exceeded our vocabulary-dependent perfor- 
mance. 

Introduction 

As speech recognition flourishes and new applications 
emerge, the demand for vocabulary-specific training will 
become the bottleneck in building speech recognizers. If 
successful, a vocabulary-independent (VI) speech recogni- 
tion system trained on a large database alleviates the te- 
dious vocabulary-specific training process. We have previ- 
ously demonstrated the feasibility of vocabulary-independent 
speech recognition systems [4, 5]. Although the vocabulary- 
independent results improved as the training data increases, 
the best vocabulary-independent result previously reported 
was still about 30% worse than the vocabulary-dependent 
(VD) result. In this paper, we will report recent efforts to fur- 
ther improve CMU's robust vocabulary-independent speech 
recognition systems on the DARPA speaker-independent re- 
source management task. 

Our first improvement involves the incorporation of more 

dynamic features in theacoustic front-endprocessing [7]. Our 
previous vocabulary-independent experiments have used only 
first order differenced cepstra and power. Here, we add second 
order differenced cepstra and power. We also incorporateboth 
40 msec and 80 msec differenced cepstraa. These new features 
yielded a 15% error rate reduction, about the same as was 
achieved on vocabulary-dependent tasks [7]. 

Our second improvement involves the collection of more 
general English data, from which we can model more pho- 
netic variabilities, such as the word boundary context. Our 
experiment shows that adding 5,000 sentences to an original 
15,000 sentence training set gives only a 3% error reduction. 
In this experiment, the set of models was fixed. 

Next, we incorporated word boundary context into our VI 
subword modeling, which resulted in a surprising 30% error 
reduction. This compares with only a 20% error reduction 
obtained in the vocabulary-dependent case. In the past, it has 
been argued that between-word triphones may be learning 
grammatical constraints instead of modeling acoustic vari- 
ations. This result shows the contrary, since in vocabulary- 
independent experiments, grammars in the training and recog- 
nition are completely different. 

With more detailed models (such as between-word tri- 
phones), coverage on new tasks was reduced. To deal with 
this problem, we proposed a new decision-tree based sub- 
word clustering algorithm to find more suitable models for 
the subword units not covered in the training set [11]. These 
questions were first created using human speech knowledge, 
and the tree was automatically constructed by searching for 
simple as well as composite questions. Finally, the tree was 
pruned using cross validation. When the algorithm termi- 
nated, the leaf nodes of  the tree represented the generalized 
allophones to be used. This tree structure not only could find 
suitable models for subword units never observed before, but 
it also enables smoothing with all ancestor nodes instead of 
only the context-independent one. In a preliminary experi- 
ment, we found that decision-tree based allophones made 17 % 
fewer errors than generalized triphones. 

We have found that different recording environments be- 
tween training and testing (CMU vs. TI) degrades the per- 
formance significantly [4], even when the same microphone 
is used in each case. In [4], we found the vocabulary- 
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independent system suffered much more from differences 
in the recording environments at '17 versus CMU than the 
vocabulary-dependent system. However, with the above 
techniques, the vocabulary-independent system became more 
robust to the changes in recording environment than the 
vocabulary-dependent system. Our results now show the 
vocabulary-independent system works about 11% better than 
vocabulary-dependent system under cross-condition recogni- 
tion. 

These techniques implemented on the vocabulary- 
independent system led to more than 50% error reduction 
on both same recording and cross recording conditions. They 
made our vocabulary-independent system 13% better than our 
vocabulary-dependent system on the resource management 
task. 

In this paper, we will first describe our recent efforts on 
CMU's vocabulary- independent speech recognition system, 
including incorporating more dynamic acoustic feature, larger 
training database, word boundary context, and decision tree 
allophone clustering. Then we will describe our experiment 
setup and present results. Finally, we will close with some 
concluding remark about this work and future work. 

More Detailed Acoustic Model 

Temporal changes in the spectra are believed to play an im- 
portant role in human perception. One way to capture this 
information is to use differenced coefficients [3, 12] which 
measure the change of coefficients over time. Our previ- 
ous vocabulary-independent experiments have used only three 
codebooks, the first codebook for cepstrum coefficients, the 
second codebook for differenced cepstrum coefficients (40 
msee) and the third codebook for power and differenced power 
(40 msec) [4]. 

In additional to first order differencing, it has recently been 
shown that adding second order differenced coefficients fur- 
ther enhances performance [7]. Thus, we added the fourth 
codebook with second order cepstrum coefficients. We also 
incorporated both 40 msec and 80 msec differenced cepstrum 
coefficients into the second codebook and power, differenced 
power (40 msec), and second order differenced power into 
the third codebook. (For detailed implementation, see [7]). 
These new features reduced the error rate on the vocabulary- 
independent system from 11.1% to 9.4 % and therefore yielded 
a 15% error reduction, about the same as was achieved on the 
vocabulary-dependent system [6]. 

Larger Training Database 

In previous work [4], we showed the vocabulary-independent 
results improved dramatically as the vocabulary-independent 
training increased. (The error rate was reduced 45% when 
VI training database was increased from 5,000 sentences to 

15,000 sentences). Therefore, we continue collecting more 
general English database and hope to improve VI results from 
more VI training. 

In addition to the TIM1T (3,300 sentences), Harvard 
(19,00 sentences) and old general English (10,000 sentences) 
databases used in the previous experiments, we add 5,000 
more general English data into our vocabulary-independent 
training set. The database covered about 22,000 different 
words and 13,000 different triphones (not counting inter-word 
triphones). While the word coverage on DARPA resource 
management task was only improved from 57% to 60%, the 
intra-word triphone coverage was improved from 90.0% to 
93.6%. We first clustered the 13,000 different triphone mod- 
els down to about 2,200 by using an agglomerative clustering 
algorithm [ 10] and trained on those 2,200 generalized triphone 
models. However, we only obtained a small improvement, re- 
ducing the error rate from 9.4 % to 9.1% (a 3 % error reduction ), 
when the training database increased from 15,000 sentences 
to 20,000 sentences. 

We conjectured the current subword modeling technique 
may have reached an asymptote, so that additional sentences 
are not giving much improvement. If this is correct, we need 
to make our subword models more detailed with the growing 
database. 

Between-Word Triphone 

Because our subword models are phonetic models, one way 
to model more acoustic-phonetic detail is to incorporate more 
context information, e.g. stress, word-boundary context, syl- 
lable position, etc. We have already incorporated the stress 
into vocabulary-dependent and vocabulary-independent sys- 
tems and did not get any improvement [4, 11]. It might be 
because lexical stress does not predict sentential stress well. 

As suggested by the incorporation of word boundary con- 
text into triphone modeling in vocabulary-dependent systems 
[9, 14], we decided to do between-word triphone modeling on 
our vocabulary-independent system by adding three more con- 
texts, word beginning, word ending and single-phone word 
positions. The incorporation of word boundary context in- 
creased the number of triphones on the VI training set from 
13,000 to 33,500 and reduced the triphone coverage on re- 
source management task from 93.6% to 90.0%. We used the 
same clustering algorithm to cluster those 33,500 triphones 
down to 2,600 generalized triphones. The between-word tri- 
phone modeling enables us to reduce the error rate of the 
vocabulary-independent system from 9.1% to 6.5%, which is 
about 29% error reduction. 

This result is surprising when compared to only a 20% er- 
ror reduction in the vocabulary-dependent system [8]. In 
the past, it has been argued that between-word triphones 
might be learning grammatical constraints instead of mod- 
eling acoustic-phonetic variations. This result shows the con- 
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trary, since in vocabulary-independent systems, grammars in 
the training and recognition are completely different. 

Decis ion  T r e e  A l l o p h o n e  C l u s t e r i n g  

As indicated in the previous section, with more detailed mod- 
els (between-word triphone models), coverage on new task 
was reduced. For example, the triphone coverage on resource 
management was reduced from 93.6% (only intra-word tri- 
phones) to 90.0% (incorporated inter-word triphones). This 
means for 10% of the phones in the dictionary, we couldn't 
find suitable generalized triphone models, and were forced 
to used the monophone model. This could hurt the system's 
performance. 

To deal with this problem, we proposed a new decision tree 
based subword clustering algorithm [11, 2, 1, 15]. At the root 
of the decision tree is the set of all triphones corresponding to a 
phone. Each node has a binary "question" about their contexts 
including left, right and word boundary contexts (e.g., "Is the 
right phoneme a back vowel?"). These questions are created 
using human speech knowledge and are designed to capture 
classes of contextual effects. To find the generalized triphone 
for a triphone, the tree is traversed by answering the questions 
attached to each node, until a leaf node is reached. Figure 1 is 
an example of a decision tree for the p h o n e / k / ,  along with 
some actual questions. 

• ? 

Left = vowel7 Left = Vowel? 

~wel? 
Right ~ ..~ Schwa? y ~ c ?  

Figure 1: An example of a decision tree that clusters the 
allophones of the phone / k / 

The metric for splitting is a information-theoretic distance 
measure based on the amount of entropy reduction when split- 
ting a node. We want to find the question that divides node m 
into nodes a and b, such that 

P(m) H(m) - P(a)  H(a) - P(b) H(b) is maximized 

C 

H(z) = - ~p(c l~r )  log e(elz)  
C 

where H(z)  is the entropy of the distribution in HMM model 
x, P(z )  is the frequency (or count) of a model, and P(elz ) 
is the output probability of codeword c in model x. The 

algorithm to generate a decision tree for a phone is given 
below [2]: 

1. Generate an HMM for every triphone. 

2. Create a tree with one (roo0 node, consisting of all 
triphones. 

3. Find the best composite question for each node. 

(a) Generate a tree with simple questions at each 
node. 

(b) Cluster leaf nodes into two classes, represent- 
ing the composite question. 

4. Split the node with the overall best question. 

5. until some convergence criterion is met, go to step 
3. 

If only simple questions are allowed in the algorithm, the 
data may be over-fragmented, resulting in similar leaves in 
different locations of the tree. Therefore, We deal with this 
problem by using composite questions [1, 13] (questions that 
involve conjunctive and disjunctive combinations of all ques- 
tions and their negations). A good composite question is 
formed by first growing a tree using simple questions only, 
and then clustering the leaves into two sets. Figure 2 shows 
the formation of one composite question. 

O O 

Figure 2: The use of simple-question clustering to form a 
composite question 

To enhance the ability the decision tree clustering to predict 
the suitable classes for new triphones, we grew the tree a 
little further and pruned the tree by cross-validation with an 
independent set [2]. Two thirds of the VI training data was 
used to train the triphone models and the models were then 
used to grow the trees. Finally, the other set of triphone 
models trained from the remaining one third of training data 
was used to prune the trees. 

The tree structure not only could find suitable mod- 
els for subword units never observed before, but also en- 
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able smoothing with all ancestor nodes instead of only 
context-independent one in the traditional generalized tri- 
phone scheme which used agglomerative clustering algo- 
rithm. Thus we expected the decision tree based clustering 
would perform better than other algorithms in vocabulary- 
independent systems. In a preliminary experiment, the use 
of decision tree based generalized triphones rather than tradi- 
tional generalized triphones reduced the error rate of the VI 
system from 6.5% to 5A% (a 17% error reduction). 

In [4], we found that decision tree based clustering worked 
only marginally better than agglomerative clustering. The 
significant improvement here is due to three reasons: (1) 
improved tree growing and pruning techniques, and (2) our 
models in this study are more detailed and consistent, which 
makes it easier to find appropriate and meaningful questions, 
and (3) triphone coverage is lower in this study, so decision 
tree based clustering is able to find more suitable models. 

Experiments and Results 

All the experiments are evaluated on the speaker-independent 
DARPA resource management task. This task is a 991-word 
continuous speech task and a standard word-pair grammar 
with perplexity 60 was used throughout. The test set con- 
sists of 320 sentences from 32 speakers (a random selection 
from June 1988, February 1989 and October 1990 DARPA 
evaluation sets) 

For the vocabulary-dependent (VD) system, we used the the 
standard DARPA speaker-independent database which con- 
sisted of 3,990 sentences from 109 speakers to train the sys- 
tem under different configurations. The baseline vocabulary- 
independent (VI) system was trained from a total of 15,000 VI 
sentences. 5,000 of these were the ' lIMIT and Harvard sen- 
tences and I0,000 were General English sentences recorded at 
CMU. We have shown that different recording environments 
between training and testing degrades the performance signif- 
icantly [4]. While the VD training set were recorded at TI, the 
VI training set were recorded at CMU. Therefore, we recorded 
at CMU another exactly test set from 32 speakers (different 
from TI speakers), each speaking 10 sentences (same as the 
TI sentences), to illustrate the influence of different recording 
environments. From now on, we use"CMU test set" to denote 
the test set recorded at CMU and "TI test set" to denote the 
test set recorded at TI. 

In the baseline systems, both the VD and VI systems only 
used 3 codebook and intra-word generalized triphones. In the 
first experiment with more acoustic dynamic features, both 
VD and VI used 4 codebook configuration and got roughly 
the same improvements. After that, we added 5,000 more 
general English sentences to the VI training set. We then 
incorporated inter-word triphones into both VD and VI sys- 
tems. The VI system was improved more than the VD system. 
Finally, we used decision tree based generalized triphones on 

both VD and VI systems. As we expected, the decision tree 
clustering further improved the VI system by finding more 
suitable models for subword units never observed in VI train- 
ing set. Decision tree clustering did not improve the VD 
system since all the triphones were covered in the VD system. 
Table 1 shov,s the recognition error rate for these experiments 
when training and testing are under the same recording envi- 
ronments. The VI systems was tested on CMU test set and 
the VD systems was tested on TI test set. Note that the last 
column showed the percentage of the increase of error rate for 
the VI system in comparison with the VD system. With the 
above techniques, the final VI system was better than the VD 
system. 

Configuration VD VI 

Baseline 8.6% 11.1% 
+ 4 codebooks 7.5 % 9.4% 
+ 5,000 sentences (VI) 7.5% 9.1% 
+ inter-word triphones 6.0% 6.5% 
+ decision-tree clustering 6.2% 5.4% 

Increase in 
Error  Rate 

+29.0% 
+25.3% 
+21.3% 
+8.3% 
-12.9% 

Table 1: The VD and VI results under the same recording 
condition 

The recording environment difference is unavoidable in the 
vocabulary-independent speech recognition system because 
the system is trained only once, and must be applied to any 
applications which could take place in other different environ- 
ments. In [4], we found the VI system suffered much more 
from cross environment recognition than the VD system. Ta- 
ble 2 showed the cross environment recognition for both the 
VD and VI systems. That is, the VI systems were tested on TI 
test set and the VD systems were tested on CMU test set. We 
find that the VI system became more robust to the changes 
in recording environment than the VD system when the VI 
system had more training data and better subword models. At 
last, the VI system also performed better than the VD system 
under cross recording condition. 

Configuration VD VI Increase in 
Error  Rate 

Baseline 10.8% 15.4% +42.6% 
+ 4 codebooks 10.1% 13.7% +35.6% 
+ 5,000 sentences (VI) 10.1% 12.7% +25.7% 
+ inter-word triphones 8.1% 8.0% - 1.2% 
+ decision-Wee clustering 8.3% 7.4% - 10.8% 

Table 2: The VD and VI results under the cross recording 
condition 

Finally, we tested the last two systems(incoporating inter- 
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word triphones and decision-tree clustering) on the no- 
grammar recognition. Table 3 showed both results under 
the same or cross recording conditions. Like the recognition 
with word-pair grammar, the use of decision tree clustering 
algorithm reduced the error rate of VI system from 27.8% to 
22.8%(a 18% error reduction) under the same recording con- 
dition and also made the best VI system better than the besst 
VD system under the same and cross recording conditions. 

Configuration VD VI 

w/o decision-tree (same) 24.5% 27.8% 
w/o decision-tree (cross) 29.2% 30.8% 
w decision-tree (same) 25.2% 22.8% 
w decision-tree (cross) 29.9% 28.1% 

Increase in 
Error Rate 

+13.5% 
+5.5% 
-9.5% 
-6.0% 

Table 3: The VD and VI results for no-grammar recognition 

Conc lus ions  

In this paper, we have presented several techniques that sub- 
stantially improve the performance of CMU's vocabulary- 
independent speech recognition system. These techniques, 
including more dynamic features in acoustic modeling, more 
training data, more detailed subword modeling (incorporat- 
ing the word boundary contexts) and decision tree allophone 
clustering, led to more than 50% error reduction on both same 
recording and cross recording conditions. This also made our 
vocabulary-independent system better than our vocabulary- 
dependent system on the resource management task under 
both conditions. 

In the future, we expect to further extend some of these 
areas. We will enhance our subword units by modeling more 
acoustic-phonetic variations, e.g., contexts further than left 
and right contexts, and function word contexts, etc. Currently, 
since the use of composite questions might lead to some unrea- 
sonable combinations of simple questions, we would like to 
refine and constrain the type of questions which can be asked 
to split the decision tree. We would also like to reduce the 
training data for the decision tree based generalized allophone 
system and demonstrate the smoothing power and generaliz- 
ability of decision tree because it would reduce the coverage 
of the vocabulary-independent systems for new tasks. 

Although the vocabulary-independent recognition results 
on cross recording condition were improved a lot when we 
had more training data and better subword modeling, there is 
still a non-negligible degradation for cross recording condi- 
tion. In the future, we will implement some environmental 
normalization techniques to further improve the performance 
of cross environment conditions. Moreover, we would also 
like to implement some rapid and non-intrusive task adapta- 

lion to make the vocabulary-independent system tailored to 
the individual task. 

To make the speech recognition system more robust for 
new vocabularies and new environments are essential to make 
the speech recognition application feasible. Our results have 
shown that plentiful training data, careful subword model- 
ing, and decision tree based clustering have compensated 
for the lack of vocabulary and environment specific train- 
ing. We hope with the additional help of environmental nor- 
realization and non-intrusive task adaptation, the vocabulary- 
independent system can be tailored to any task quickly and 
cheaply. 
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