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ABSTRACT 
We present the concept of a "Segmental Neural 
Net" (SNN) for phonetic modeling in continuous 
speech recognition. The SNN takes as input all 
the frames of a phonetic segment and gives as 
output an estimate of the probability of each of 
the phonemes, given the input segment. By tak- 
ing into account all the frames of a phonetic seg- 
ment simultaneously, the SNN overcomes the well- 
known conditional-independence limitation of hid- 
den Markov models (HMM). However, the prob- 
lem of automatic segmentation with neural nets is 
a formidable computing task compared to HMMs. 
Therefore, to take advantage of the training and 
decoding speed of HMMs, we have developed a 
novel hybrid SNN/HMM system that combines the 
advantages of both types of approaches. In this hy- 
brid system, use is made of the N-best paradigm 
to generate likely phonetic segmentations, which 
are then scored by the SNN. The HMM and SNN 
scores are then combined to optimize performance. 
In this manner, the recognition accuracy is guaran- 
teed to be no worse than the HMM system alone. 

1 Introduction 
The current state of the art in continuous speech 
recognition (CSR) is based on the use of HMMs 
to model phonemes in context. Two main rea- 
sons for the popularity of HMMs is their high per- 
formance, in terms of recognition accuracy, and 
their computational efficiency (after initial signal 
processing, real-time recognition is possible on a 
Sun 4 [1]). However, the limitations of HMMs 
in modeling the speech signal have been known 
for some time. Two such limitations are (a) the 
conditional-independence assumption, which pre- 
vents a HMM from taking full advantage of the 
correlation that exists among the frames of a pho- 

netic segment, and (b) the awkwardness with which 
segmental features (such as duration) can be incor- 
porated into HMM systems. We have developed 
the concept of Segmental Neural Nets (SNN) to 
overcome the two HMM limitations just mentioned 
for phonetic modeling in speech. However, neu- 
ral nets are known to require a large amount of 
computation, especially for training. Also, there is 
no known efficient search technique for finding the 
best scoring segmentation with neural nets in con- 
tinuous speech. Therefore, we have developed a 
hybrid SNN/HMM system that is designed to take 
full advantage of the good properties of both meth- 
ods: the phonetic modeling properties of SNNs and 
the good computational properties of HMMs. The 
two methods are integrated through a novel use of 
the N-best paradigm developed in conjunction with 
the BYBLOS system at BBN. 

2 Segmental Neural Net Struc- 
ture 

There have been several recent approaches to the 
use of neural nets in CSR. The SNN differs fxom 
these approaches in that it attempts to recognize 
each phoneme by using all the frames in a phonetic 
segment simultaneously to perform the recognition. 
In fact, we define a SNN as a neural network that 
takes the frames of a phonetic segment as input 
and produces as output an estimate of the probabil- 
ity of a phoneme given the input segment. But the 
SNN requires the availability of some form of pho- 
netic segmentation of the speech. To consider all 
possible segmentations of the input speech would 
be computationally prohibitive. We describe in the 
next section how we use the HMM to obtain likely 
candidate segmentations. Here, we shall assume 
that a phonetic segmentation has been made avail- 
able. 
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phonetic segment ! 

Figure 1: The Segmental Neural Network model 
samples the frames in a segment and produces a 
single segment score. 

The structure of a typical SNN is shown in Fig- 
ure 1. The input to the net is a fixed number of 
frames of speech features (5 frames in our system). 
The features in each 10-ms frame currently include 
14 mel-warped cepstral coefficients, cepstral dif- 
ferences in time, power, and power difference. But 
the actual number of such frames in a phonetic seg- 
ment is variable. Therefore, we convert the vari- 
able number of  frames in each segment to a fixed 
number of frames (in this case, five frames). In 
this way, the SNN is able to deal effectively with 
variable-length segments in continuous speech. The 
requisite time warping is performed by a quasi- 
linear sampling of the feature vectors comprising 
the segment. For example, in a 17-frame phonetic 
segment, we would use frames 1, 5, 9, 13, and 
17, as input to the SNN. In a 3-frame segment, the 
five frames used are 1, 1, 2, 3, 3, with a repeti- 
tion of the first and third frames. In this sampling, 
we are using a result from stochastic segment mod- 
els (SSM) in which it was found that sampling of 
naturally-occurring frames gives better results than 
strict linear interpolation [5]. 

Far from discarding duration information, which 
is implied in the warping to fixed length, the du- 
ration of the original segments can be handed to 

the neural net as just another feature that can be 
weighted according to its significance for recogni- 
tion. 

Therefore, by looking at a whole phonetic seg- 
ment at once, we are able to take advantage of the 
correlation that exists among frames of a phonetic 
segment, and by making explicit use of duration as 
another feature, we are able to fully utilize dura- 
tion information, thus ameliorating both limitations 
of HMMs. These properties of the SNN are also 
shared by the SSM, which was originally developed 
at BBN [5]. The main difference between the two 
is in how the probability of a segment is computed. 
In the SSM, an explicit multi-dimensional proba- 
bility model has to be used (usually Gaussian) with 
many simplifying assumptions, so as to reduce the 
large amount of computation for training and recog- 
nition that would be needed in a model that has a 
complete covariance matrix. In contrast, the SNN 
has been shown to be capable of implicitly generat- 
ing an estimate of the posterior probability without 
the need for an explicit model[2, 3]. In this way, 
we believe that the neural net will use as much 
correlation among frames as is needed to enhance 
performance. 

In our initial experiments, we are using a single 
SNN with 53 outputs, each representing one of  the 
phonemes in our system. The SNN outputs are 
trained with a 1 for the correct phoneme and a 0 
for all the others. 

3 Integration of Algorithms Us- 
ing the N.Best Paradigm 

In continuous speech recognition, many systems 
produce as output a single transcription that best 
matches the input speech, given some grammar. 
Because of imperfections in the recognition, the 
output may not be the correct sentence that was 
uttered and anything using this output (such as a 
natural language part of a speech understanding 
system) will be in error. One way to avoid this 
is to use a search that produces not only the single 
best-matching sentence but also the N-best match- 
ing sentences [6], where N is taken to be large 
enough to include the correct sentence most of the 
time (N is usually anywhere between 20 and 100 
in our system, depending on the perplexity of the 
task; a higher N is needed for higher perplexity). 
The list of N sentences is ordered by overall score in 
matching the input utterance. For integration with 
natural language, we send the list of N sentences to 
the natural language component, which processes 
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the sentences in the order given and chooses the 
first sentence that can be understood by the system. 

In the hybrid SNN/HMM system, we use this 
N-best paradigm differently. A spoken utterance 
is processed by the HMM recognizer to produce a 
list of the N best-scoring sentence hypotheses. The 
length of this list is chosen to be long enough to 
include the correct answer almost always. There- 
after the recognition task is reduced to selecting 
the best hypothesis from the N-best list. As men- 
tioned above, this list is usually between 20 and 
100, which means that the search space of possible 
word theories is reduced from a huge number (for 
a 1000 word vocabulary, even a two word utter- 
ante has a million possible word hypotheses) to a 
relatively very small number. This means that each 
of the N hypotheses can be examined and scored 
using algorithms which would have been computa- 
tionally impossible with a combinatorially large set 
of hypotheses. In addition, it is possible to generate 
several types of scoring for each hypothesis. This 
not only provides a very effective way of comparing 
the effectiveness of different speech models (e.g., 
SNN versus HMM), but it also provides an easy 
way to combine several radically different models. 

The most obvious way in which the SNN could 
use the N-best list would be to derive a SNN score 
for each hypothesis in the N-best list and then re- 
order this list on the basis of these scores. The pro- 
posed answer would be the hypothesis with the best 
SNN score. However, it is possible to generate sev- 
eral scores for each hypothesis, such as SNN score, 
HMM score, g r ~ m a r  score, and the hypothesized 
number of words. We can then generate a compos- 
ite score by, for example, taking a linear combina- 
tion of the individual scores. It is also possible to 
choose the weights for this linear combination by 
automatically searching for the combination which 
minimizes a measure of the rank of the correct hy- 
potheses over a training corpus [4]. 

4 Hybrid SNN/HMM System Us- 
ing N-Best 

As mentioned above, recognition in the hybrid 
SNN/HMM system is performed by using the SNN 
scores together with HMM and other scores to re- 
order the N-best list of likely hypotheses for the 
utterance. The process is shown schematically in 
Figure 2. A constrained HMM recognition is per- 
formed for each of the N-best hypotheses in turn. 
This provides both the HMM version of the acous- 
tic score and the segmentation of the utterance for 
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Figure 2: Schematic diagram of the N-best rescor- 
ing system using the SNN score. 

each of the N hypotheses. Of course, only one of 
these hypotheses can be correct, but this is not a 
problem since a bad segmentation for the incorrect 
hypothesis will lead to a correspondingly poor SNN 
score. This means that the incorrect hypothesis will 
not only be penalized because of a bad acoustic 
match, but it will also be penalized because of a 
malformed segmentation. 

The SNN uses the segmentation and phonetic se- 
quence produced by the HMM under each hypoth- 
esis to construct feature vectors from each segment 
in the same way as in the Waining procedure. The 
neural net produces a score between 0 and 1 for 
each segment, which gives an estimate of the prob- 
ability that the segment actually corresponds to the 
hypothesized phoneme. The logarithm of all these 
segment scores are computed and added together to 
produce a SNN score for the particular hypothesis. 

For each hypothesis, a total score is then com- 
puted by taking a linear combination of the SNN 
score, HMM score, and other scores computed 
solely from the text of the hypothesis (e.g., gram- 
mar score, number of words). The weights for the 
linear combination are found by training on a de- 
velopment corpus that is different from the training 
corpus used to train both the HMM and SNN. A 
different corpus is used since the acoustic scores 
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generated from training data will be unrealistically 
optimistic. 

It is important to note that, because of the use 
of weighting to optimize peformance in this hy- 
brid system, overall recognition accuracy can never 
be worse than with the HMM system alone. How 
much better the hybrid system will be depends on 
how well the SNN performs and how different are 
the errors made by the HMM and SNN systems 
alone. 

5 Results 
In our initial experiments, we used a version of 
the BYBLOS HMM system with non-crossword, 
context-dependent triphones, to compute the N-best 
sentence hypotheses. N was set to 20 in our experi- 
ments. We used a single context-independent SNN 
with 53 outputs. The neural net had only a sin- 
gle layer. The training and test data were obtained 
from the DARPA Resource Management speaker- 
dependent corpus, which consisted of data from 12 
male and female speakers. In order to provide a 
realistic framework for the recognition, a statistical 
class grammar with perplexity 100 was used. 

Under these conditions, the HMM system alone 
gave a word error rate of 9.1%, the SNN system 
alone gave a word error rate of 20.3%, and the 
hybrid SNN/HMM system gave a word error rate 
of 8.5%. The small reduction in error rate in the 
hybrid system over the HMM system is quite rea- 
sonable, considering the relatively large error rate 
of the SNN system alone. The poor performance 
of the SNN system was expected because the SNN 
was really primitive, both in terms of structure and 
the fact that it was context-independent. We expect 
that, as we enhance the structure of the SNN and 
make it context dependent, the performance of the 
SNN will improve and so will that of the hybrid 
system. 

6 Conclusions and Further Work 
The ultimate purpose of investigating new speech 
recognition algorithms is to improve on the per- 
forrnance of existing algorithms. Our hybrid 
SNN/HMM system has the advantage that its per- 
formance cannot be inferior to that of the corre- 
sponding HMM system alone. The neural network 
in this initial version of the SNN is a very simple 
model. It uses a one-layer neural net modelling 
context-independent phonemes. Even so, it pro- 
duces a slight increase in accuracy over the context- 

dependent HMMs. Future developments of the 
SNN system will include the modelling of context- 
dependent phoneme segments, will use more soph- 
icsticated neural networks, and will add additional 
features in order to model phoneme segments more 
closely. 
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