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ABSTRACT

This paper! describes a natural language parsing algorithm for un-
restricted Lext which uses a probability-based scoring function 10 se-
lect, the “best™ parse of 4 sentence according to a given grammar.
The parser, Pearl, is a Lime-asynchronous botlom-up chart parser with
Earley-type top-down prediction which pursues the highest-scoring the-
ory in the charl, where the score of a theory represents the extent Lo
which the contexu of the sentence predicts that interpretation. This
parser differs from previous atlempts at stochastic parsers in that i uses
a richer form of conditional probabilivies based on contexy o predict
likelihood. Pearl also provides a lramework for incorporating the results
ol previous work in part-of-speech assignment, unknown word mod-
els, and other probabilistic models of linguistic features into one pars-
g 1ool, interleaving these techniques instead of using the traditiona)
pipeline architecture.  In tests performed on the Voyager direction-
finding domain, Pearl has been successful an resolving part-ol-speech
ambiguity, determining categories for unknown words, and selecting
correct parses firsy using a very loosely finting covering grammar.?

INTRODUCTION

All narural language grammars are ambiguous. Even tightly
fitting natural langnage grammars are ambiguous in some ways.
Loosely fitting grammars, which are necessary for handling the
variability and complexity of unrestricted text and speech, are
worse. 'L'he standard technique for dealing with this ambiguity,
pruning grammars by hand, is painful, time-consuming, and usu-
ally arbitrary. 'L'he solution which many people have proposed is
to use stochastic models to train statistical grammars automati-
cally from a large corpus.

Attempts in applying statistical techniques to natural lan-
guage parsing have exhibited varying degrees of success. 'Lhese
successful and unsuccessful attempts have suggested to us that:

o Stochastic techniques combined with traditional linguistic
theories can (and indeed must) provide a solution to the
natural language understanding problem.

YThis work was partially supported by DARPA grant No. N0014-85-
K0018, ONR contract No. N00014-83-C-0171 by DARPA and ATOSR jointly
under grant No. ATOSR-90-0066, and by ARO grant No. DAAL 03-89-C0031
PRI. Speaial thanks to Carl Weir and Lynette Hirschman at Unisys for their
valued input, guidancc and support.

*The grammar used for our cxperiments is the string grammar used in
Unisys’ PUNDIT natural language understanding system.
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o In order for stochastic techniques to be effective, they must
be applied with restraint (poor estimates of context are
worse than none[6}).

o Interactive, interleaved architectures are preferable to pipeline
architectures in NLU systems, because they use more of the
available information in the decision-making process.

We have constructed a stochastic parser, Pearl, which is based
on these ideas.

‘T'he development of the Pearl parser is an effort to combine
the statistical models developed recently into a single tool which
incorporates all of these models into the decision-making compo-
nent of a parser. While we have only attempted to incorporate a
few simple statistical models into this parser, Pearl is structured
in a way which allows any number of syntactic, semantic, and
other knowledge sources to contribute to parsing decisions. ‘Lhe
current implementation of Pearl uses Church’s part-of-speech as-
signment trigram model, a simple probabilistic unknown word
model, and a conditienal probability model for grammar rules
based on part-of-speech trigrams and parent rules.

By combining multiple knowledge sources and using a chart-
parsing framework, Pearl attempts to handle a number of difficult
problems. Pearl has the capability to parse word lattices, an
ability which is useful in recognizing idioms in text processing, as
well as in speech processing. ‘L'he parser uses probabilistic training
from a corpus to disambiguate between grammatically acceptable
structures, such as determining prepositional phrase attachment
and conjunction scope. Finally, Pearl maintains a well-formed
substring table within its chart to allow for partial parse retrieval.
Partial parses are useful both for error-message generation and for
processing ungrammatical or incomplete sentences.

For preliminary tests of Pearl’s capabilities, we are using the
Voyager direction-finding domain, a spoken-language system de-
veloped at MIL'*® We have selected this domain for a number
of reasons. First, it exhibits the attachment regularities which
we are trying to capture with the context-sensitive probability
model. Also, since both MI'l' and Unisys have developed parsers
and grammars for this domain, there are existing parsers with
which we can compare Pearl. Finally, Pearl’s dependence on
a parsed corpus to train its models and to derive its grammar

3Special thanks to Victor Zuc at MLT for the use of the speoch data from
MIT’s Voyager systom.



required that we use a domain for which a parsed corpus ex-
isted. A corpus of 1100 parsed sentences was generated by the
Unisys’ puNDtT Language Understanding System. 'L'hese parse
trees were evaluated to be semantically correct by PUNDIT's se-
mantics component, although no hand-verification of this corpus
was performed. PUNDLL’s parser uses a string grammar with many
complicated, hand-generated restrictions. I'he goal of the exper-
iments we performed was to reproduce (or improve upon) the
parsing accuracy of PUNDIL using just the context-free backbone
of the puNDIT grammar, without the hand-generated restrictions
and, equally important, without the benefit of semantic analysis.

In a test on 40 Voyager sentences excluded from the training
material, Pearl has shown promising results in handling part-
of-speech assignment, prepositional phrase attachment, and un-
known word categorization. Pearl correctly parsed 35 out of 40
or 87.5% of these sentences, where a correct parse is defined to
mean one which would produce a correct response from the Voy-
ager system. We will describe the details of this experiment later.

In this paper, we will first explain our contribution to the
stochastic models which are used in Pearl: a context-free gram-
mar with context-sensitive conditional probabilities. 'L'hen, we
will describe the parser’s architecture and the parsing algorithm.
Finally, we will give the results of experiments we performed using
Pearl which explore its capabilities.

USING STATISTICS TO PARSE

Recent work involving context-free and context-sensitive prob-
abilistic grammars provide little hope for the success of processing
unrestricted text using probabilistic techniques. Works by Chi-
trao and Grishman[3] and by Sharman, Jelinek, and Mercer[11]
exhibit accuracy rates lower than 50% using supervised training.
Supervised training for probabilistic CFGs requires parsed cor-
pora, which is very costly in time and man-power(2].

In our investigations, we have made two observations which
attempt to explain the lack-luster performance of statistical pars-
ing techniques:

e Simple probabilistic CFGs provide generalinformation about
how likely a construct is going to appear anywhere in a sam-
ple of a language. ‘L'his average likelihood is often a poor
estimate of probability.

o Parsing algorithms which accumulate probabilities of parse
theories by simply multiplying them over-penalize infre-
quent constructs.

Pearl avoids the first pitfall by using a context-sensitive condi-
tional probability CFG, where context of a theory is determined
by the theories which predicted it and the part-of-speech se-
quences in the input sentence. ‘Lo address the second issue, Pearl
scores each theory by using the geometric mean of the contextunal
conditional probabilities of all of the theories which have con-
tributed to that theory. 'lhis is equivalent to using the sum of
the logs of these probabilities.

CFG with context-sensitive conditional probabilities

In a very large parsed corpus of English text, one finds that
the most frequently occurring noun phrase structure in the text
15 a noun phrase containing a determiner followed by a noun.
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Simple probabilistic CFGs dictate that, given this information,
“determiner noun” should be the most likely interpretation of a
noun phrase.

Now, consider only those noun phrases which oceur as subjects
of a sentence. Tn a given corpus, you might find that pronouns
occur just as frequently as “determiner noun”s in the subject
position. This type of information can easily be captured by
conditional probabilities.

Finally, assume that the sentence begins with a pronoun fol-
lowed by a verb. Tn this case, it is quite clear that, while you
can probably concoct a sentence which fits this description and
does not. have a pronoun for a subject, the first theory which you
should pursue is one which makes this hypothesis.

The context-sensitive conditional probabilities which Pearl
uses take into acconnt the immediate parent of a theory* and the
part-of-speech trigram centered at the beginning of the theory.

For example, consider the sentence:

My first love was named Pearl.
(no subliminal propaganda intended)

A theory which iries to interpret “love” as a verb will be scored
based on the part-of-speech trigram “adjective verb verb” and the
parent theory, probably “S — NP VP.” A theory which interprets
“love” as a noun will be scored based on the trigram “adjective
noun verb.” Although lexical probabilities favor “love” as a verb,
the conditional probabilities will heavily favor “love” as a noim
in this context.’

Using the Geometric Mean of Theory Scores

According to probability theory, the likelihood of two inde-
pendent events occurring at the same time is the product of their
individual probabilities. Previous statistical parsing technigues
apply this definition to the cooccurrence of two theories in a parse,
and claim that the likelihood of the two theories being correct is
the product of the probabilities of the two theories.

This application of probability theory ignores two vital obser-
vations about, the domain of statistical parsing:

e Two constructs ocenrring in the same sentence are not nec-
essarily independent (and frequently are not). If the inde-
pendence assnmption is violated, then the product of in-
dividual probabilities has no meaning with respect to the
joint probability of two events.

Since statistical parsing snffers from sparse data, probability
estimates of low frequency events will usually be inaccurate
estimates. Fxtreme underestimates of the likelihood of low
frequency events will produce misleading joint probability
estimates.

*The parent of a theory is defined as a theory with a CF rule which contaius
the lefi-hand side of the theory. For instance, if “S — NP VP” and “NP —
del 0” are two grammar rules, the first rule can be a parent of the second,
since the lefi-hand side of the secoud “NP” occurs iu the righi-hand side of
the fiest rule.

5Iu fact, the part-of-speech Lagging model which is also used in Pearl will
heavily [avor “love” as a noun. We igoore Lhis beliavior Lo demonstrate the
beunelits of the trigram condilioning.



From these observations, we have determined that estimating
Joint probabilities of theories using individual probabilities is too
difficult. with the available data. We have found that the geo-
metric mean of these probability estimates provides an accurate
assessment. of a theory’s viability.

The Actual Theory Scoring Function

In a departure from standard practice, and perhaps against.
better judgment,, we will include a precise description of the the-
ory scoring function used by Pearl. This scoring function tries to
solve some of the problems noted in previons attempts at proba-
bilistic parsing{3][11]:

e Theory scores should not depend on the length of the string
which the theory spans.

o Sparse data (zero-frequency events) and even zero-probability
events do ocenr, and should not result in zero scoring the-
ories.

e Theory scores should not. discriminate against unlikely con-
structs when the context predicts them.

In this discnssion, a theory is defined to be a partial or com-
plete syntactic interpretation of a word string, or, simply, a parse
tree. The raw score of a theory, 8, is calculated by taking the
product of the conditional probability of that theory’s CFG rule
given the context, where context. is a part-of-speech trigram cen-
tered at the beginning of the theory and a parent theory’s rule,
and the score of the contextual trigram:

SCraw(0) = P(rules|(pop1p2). ruleparent )se(pop1p2)

Here, the score of a trigram is the product of the mutual in-
formation of the part-of-speech trigram,® popyp2, and the lexical
probability of the word at the location of p; being assigned that
part-of-speech p;.7 Tn the case of ambiguity (part-of-speech am-
bignity or multiple parent theories), the maximum value of this
product is used. The score of a partial theory or a complete the-
ory is the geometric mean of the raw scores of all of the theories
which are contained in that theory.

Theory Length Independence This scoring function, although
heuristic in derivation, provides a method for evaluating the value
of a theory, regardless of its length. When a rule is first, predicted
(Earley-style), its score is just its raw score, which represents how
much the context predicts it. However, when the parse process
hypothesizes interpretations of the sentence which reinforce this
theory, the geometric mean of all of the raw scores of the rule’s
subtree is used, representing the overall likelihood of the theory
given the context of the sentence.

Low-frequency Fvents Although some statistical natural lan-
gnage applications employ backing-off estimation techniques{10][5]
to handle low-frequency events, Pearl uses a very simple estima-
tion technigue, reluctantly attributed to Church[6]. This tech-
nique estimates the probability of an event by adding 0.5 to ev-

$The mulual information of a part-of-speech trigram, popips, is delined
to be ,‘,,:"‘Zp:;&;'), where x is any pari-of-speech. See [4] for further
explanation.

“The trigram scoring [unclion actually used by the parser is somewhat
more complicaled than this.
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ery frequency count.8 Low-scoring theories will be predicted by
the Farley-style parser. And, if no other hypothesis is snggested,
these theories will be pursned. If a high scoring theory advances
a theory with a very low raw score, the resulting theory’s score
will be the geometric mean of all of the raw scores of theories
contained in that theory, and thus will be much higher than the
low-scoring theory’s score.

Example of Scoring Function As an example of how the conditional-

probability-based scoring function handles ambiguity, consider
the sentence

Fruit flies like a banana.

in the domain of insect studies. Lexical probabilities should indi-
cate that the word “flies” is more likely to be a phiral nonn than
a tensed verb. This information is incorporated in the trigram
scores. However, when the interpretation

S—.NPYVP
is proposed, two possible NPs will be parsed,
NP — noun (fruit)
and
NP — noun noun {fruit flies).

Since this sentence is syntactically ambiguons, if the first hypoth-
esis is tested first, the parser will interpret this sentence incor-
rectly.

However, this will not happen in this domain. Since “fruit
flies” is a common idiom in insect studies, the score of its tri-
gram, noun noun verb, will be much greater than the score of the
trigram, noun verb verb. Thus, not only will the lexical proba-
bility of the word “flies/verb” be lower than that of “flies/noun,”
but, also the raw score of “NP — noun (fruit)” will be lower than
that of “NP — noun noun (fruit, flies),” because of the differential
between the trigram scores.

So, “NP — noun noun” will be used first to advance the “S
— . NP VP” rule. Further, even if the parser advances both NP
hypotheses, the “S — NP . VP” rule using “NP — noun noun”
will have a higher score than the S — NP . VP” rule using “NP
— noun.”

INTERLEAVED ARCHITECTURE IN
PEARL

The interleaved architectnre implemented in Pearl provides
many advantages over the traditional pipeline architecture, but
it also introduces certain risks. Decisions about word and part-
of-speech ambiguity can be delayed until syntactic processing can

5We are not deliberalely avoiding using all probability estimation tech-
niques, only those backing-ofl techniques which use independence assump-
tions that frequenlly provide misleading information when applied (o vatural
language.



disambiguate them. And, using the appropriate score combina-
tion finctions, the scoring of ambignons choices can direct the
parser towards the most likely interpretation efficiently.

However, with these delayed decisions comes a vastly enlarged
search space. The effectiveness of the parser depends on a major-
ity of the theories having very low scores based on either unlikely
syntactic structures or low scoring input (such as low scores from
a speech recognizer or low lexical probability). Tn experiments we
have performed, this has been the case.

The Parsing Algorithm

Pearl is an agenda-based time-asynchronons bottom-np chart
parser with Farley-type top-down prediction. The significant dif-
ference between Pearl and non-probabilistic bottom-up parsers
is that instead of completely generating all grammatical inter-
pretations of a word string, Pearl uses an agenda to order the
incomplete theories in its chart to determine which theory to ad-
vance next. The agenda is sorted by the value of the theory
scoring function described above. Instead of expanding all the-
ories in the chart, Pearl pursnes the highest-scoring incomplete
theories in the chart, advancing up to N theories at each pass.
However, Pearl parses without pruning. Although it is only ad-
vancing N incomplete theories at each pass, it retains the lower
scoring theories in its agenda. Tf the higher scoring theories do
not generate viable alternatives, the lower scoring theories may
be used on subsequent passes.

The parsing algorithm begins with an input word lattice, which
describes the inpuf sentence and inclhides possible idiom hypothese
and may include alternative word hypotheses.” Lexical rules for
the input word lattice are inserted into the parser’s chart. Using
Farley-type prediction, a sentence (S) is predicted at the begin-
ning of the input, and all of the theories which are predicted by
that initial sentence are inserted into the chart. These incomplete
theories are scored according to the context-sensitive conditional
probabilities and the trigram part-of-speech model. The incom-
plete theories are tested in order by score, until N theories are
advanced.!® The resulting advanced theories are scored and pre-
dicted for, and the new incomplete predicted theories are scored
and added to the chart. This process continues nntil an complete
parse tree is determined, or until the parser decides, heuristically,
that it shonld not continue. The heuristics we used for deter-
mining that no parse can be found for an input are based on
the highest scoring incomplete theory in the chart, the number of
passes the parser has made, and the size of the chart.

Pearl’s Capabilities

Besides using statistical methods to guide the parser through
the parsing search space, Pearl also performs other functions

? Using allernative word hypotheses withoul incorporating a speech recog-
nition model would not necessarily produce useful resully. Given two unam-
biguous nouns ai the same position in the sentence, Pearl has no information
with which to disambiguale Lhese words, and will invariably select the first one
enlered into the charl. The capability to process a alternate word hypothe-
ses is included Lo suggest the future implementation of a speech recognition
model in Pearl.

19We helieve that N depends on the perplexity of the grammar used, bui for
the string grammar used for our experiments we used N=3. For the purposes
ol Lraining, we suggest that a higher N should be used in order lo generate
more parses.
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which are crucial to robustly processing unrestricted natural lan-
guage text and speech.

Handling Unknown Words Pearl uses a very simple proba-
bilistic unknown word model to hypothesize categories for un-
known words. When a word is fonnd which is unknown to the
system’s lexicon, the word is assnmed to be any one of the open
class categories. The lexical probability given a category is the
probability of that category occurring in the training corpus.

Tdiom Processing and Lattice Parsing Since the parsing search
space can be simplified by recognizing idioms, Pearl allows the
input string to include idioms that span more than one word in
the sentence. This is accomplished by viewing the input sentence
as a word lattice instead of a word string. Since idioms tend to
be unambiguous with respect to part-of-speech, they are gener-
ally favored over processing the individual words that make up
the idiom, since the scores of rules containing the words will tend
to be less than 1, while a syntactically appropriate, nnambignons
idiom will have a score of close to 1.

The ability to parse a sentence with multiple word hypothe-
ses and word boundary hypotheses makes Pearl very useful in
the domain of spoken langunage processing. By delaying decisions
about word selection but maintaining scoring information from
a speech recognizer, the parser can use grammatical information
in word selection without slowing the speech recognition process.
Because of Pearl’s interleaved architecture, one could easily in-
corporate scoring information from a speech recognizer into the
set of scoring functions nsed in the parser. Pearl could also pro-
vide feedback to the speech recognizer abont the grammaticality
of fragment hypotheses to giide the recognizer’s search.

Partial Parses The main advantage of chart-based parsing
over other parsing algorithms is that a chart-based parser can
recognize well-formed substrings within the input string in the
course of pursuning a complete parse. Pear] takes full advantage
of this characteristic. Once Pearl is given the input sentence, it
awaits instructions as to what type of parse should be attempted
for this inpnt. A standard parser antomatically attempts to pro-
duce a sentence (S) spanning the entire input string. However, if
this fails, the semantic interpreter might be able to derive some
meaning from the sentence if given non-overlapping noun, verb,
and prepositional phrases. If a sentence fails to parse, requests
for partial parses of the input string can be made by specifying
a range which the parse tree should cover and the category (NP,
VP, ete.). These reqnests, however, must be initiated by an in-
telligent semantics processor which can manipulate these partial
parses.

Trainability One of the major advantages of the probabilis-
tic parsers is trainability. The conditional probabilities used by
‘Pearl are estimated by using frequencies from a large corpus of
parsed sentences. The parsed sentences must be parsed using the
grammar formalism which the Pearl will use.

Assnming the grammar is not recursive in an unconstrained
way, the parser can be trained in an unsupervised mode. This
is accomplished by running the parser without the scoring func-
tions, and generating many parse trees for each sentence. Previ-
ous work!! has demonstrated that the correct information from

1 This is an unpublished resull, reportedly due to Fujisaki at IBM Japan.



these parse trees will be reinforced, while the incorrect substric-
ture will not. Multiple passes of re-training using freqnency data
from the previous pass should cause the frequency tables to con-
verge to a stable state. This hypothesis has not. yet been tested.!?

An alternative to completely nnsupervised training is to take
a parsed corpus for any domain of the same langunage using the
same grammar, and use the frequency data from that corpus as
the initial training material for the new corpus. This approach
shonid serve only to minimize the number of unsupervised passes
required for the frequency data to converge.

PARSING THE VOYAGER DOMAIN

Tn order to test Pearl’s capabilities, we performed some simple
tests to determine if ifs performance is at least consistent with the
premises upon which it is based. The test sentences used for this
evaluation are not from the training data on which the parser was
trained. Using Pearl’s context-free grammar, which is equivalent
to the context-free backbone of PUNDIT’s grammar, these test
sentences produced an average of 64 parses per sentence, with
some sentences producing over 100 parses.

Overall Parsing Accuracy

The 40 test sentences were parsed by Pearl and the highest
scoring parse for each sentence was compared to the correct parse
produced by PUNDIT. Of these 40 sentences, Pear! produced parse
trees for 38 of them, and 35 of these parse trees were equivalent
to the correct parse produced by PUNDIT, for an overall accu-
racy rate of 88%. Although precise accuracy statistics are not
available for PUNDIT, this result is believed to be comparable to
PUNDIT’s performance. However, the result is achieved without
the painfully hand-crafted restriction grammar associated with
PUNDIT’s parser.

Many of the test sentences were not difficult to parse for ex-
isting parsers, but most had seme grammatical ambiguity which
would produce multiple parses. In fact, on 2 of the 3 sentences
which were incorrectly parsed, Pearl produced the correct parse
as well, but the correct parse did not have the highest score. And
both of these sentences would have been correctly processed if
semantic filtering were used on the top three parses. -

Of the two sentences which did not parse, one used passive
voice, which only occurred in one sentence in the training corpus.
While the other sentence,

How can I get from cafe sushi to Cambridge
City Hospital by walking

did not produce a parse for the entire word string, it could be pro-
cessed using Pearl’s partial parsing capability. By accessing the
chart produced by the failed parse attempt, the parser can find
a parsed sentence containing the first eleven words, and a prepo-
sitional phrase containing the final two words. This information
could be used to interpret the sentence properly.

21 fact, for certain grammars, the frequency tables may not converge at
all, or they may corverge to zero, with the grammar generating no parses for
the entire corpus. This is a worst-case scenario which we do not anticipate
happening.

Unknown Word Part-of-speech Assignment

To determine how Pearl handles unknown words, we randomly
selected five words from the test sentences, I, know, fee, describe,
removed their entries from the lexicon, and stetion, and tried to
parse the 40 sample sentences using the simple unknown word
model previously described.'®

In this test, the pronoun, [, was assigned the correct part-of-
speech 9 of 10 times it occurred in the test sentences. The nouns,
tec and station, were correctly tagged 4 of 5 times. And the verbs,
know and describe, were correctly tagged 3 of 3 times. While this

Category | Accuracy
pronoun 90%
noun 80%
verb 100%
overall 89%

Figure 1: Performance on Unknown Words in Test Sentences

accuracy is expected for unknown words in isolation, based on the
accuracy of the part-of-speech tagging model, the performance is
expected to degrade for sequences of unknown words.

Prepositional Phrase Attachment

Accurately determining prepositional phrase attachment in
general is a difficult and well-documented problem. However,
based on experience with several different domains, we have found

prepositional phrage attachment to be a domain-specific phenomenon

for which training can be very helpful. For instance, in the
direction-finding domain, from and to prepositional phrases gen-
erally attach to the preceding verb and not to any noun phrase.
This tendency is captured in the training process for Pearl and
is used to guide the parser to the more likely attachment with re-
spect to the domain. This does not mean that Pear! will get the
correct parse when the less likely attachment is correct; in fact,
‘Pearl will invariably get this case wrong. However, based on the
premise that this is the less likely attachment, this will produce
more correct analyses than incorrect. And, using a more sophis-
ticated statistical model which uses more contextual information,
this performance can likely be improved.

‘Pearl’s performance on prepositional phrase attachment was
very high (54/55 or 98.2% correct). The reason the accuracy rate
is 8o high is that the direction-finding domain is very consistent
in its use of individual prepositions. The accuracy rate is not
expected to be as high in less consistent domains, although we
expect it to be significantly higher than chance.

Search Space Reduction

One claim of Pearl, and of probabilistic parsers in general, is
that probabilities can help guide a parser through the immense
search space produced by ambiguous grammars. Since, without
probabilisties, the test sentences produced an average of 64 parses
per sentence, Pearl unquestionably has reduced the space of possi-
bilities by only producing 3 parses per sentence while maintaining

2The unknown word model used in this test was augmented to include

closed class categories as well as open class, since the words removed from
the lexicon may have included (in fact did include) closed class words.
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Prep. | Accuracy
from 92%
to 100%
on 100%
Overall 98.2%

Figure 2: Accuracy Rate for Prepositional Phrase Attachment, by
Preposition

high accuracy. However, it is interesting to see how Pearl’s scor-
ing function performs against previously proposed scoring func-
tions. The four scoring functions compared include a simple prob-
abilistic CFG, where each context-free rule is assigned a fixed like-
lihood based on training, a CFG using probabilistic conditioning
on the parent rule only, which is similar to the scoring function
used by Chitrao and Grishman[3], and two versions of the CFG
with CSP model, one using the geometric mean of raw theory
scores and the other using the product of these raw scores. Using

Technique Fdges | Accuracy
P-CFG 929 35%
CFG with Parent Cond.| 883 50%
CFG with CSP 210 83%
Prod. of Scores G657 60%

Figurce 3: Search Space Reduction and Accuracy for Lour Probabilistic
Madels

a simple probabilistic CFG model, the parser produced a much
lower accuracy rate (35%). The parental conditioning brought
this rate up to 50%, and the trigram conditioning brought this
level up to 88%. The search space for CFG with CSP was 4to b
times lower than the simple probabilistic CFG.

FUTURE WORK

The Pearl parser takes advantage of domain-dependent infor-
mation to select the most appropriate interpretation of an input.
However, the statistical measure used to disambiguate these in-
terpretations is sensitive to certain attributes of the grammatical
formalism used, as well as to the part-of-speech categories used to
label lexical entries. All of the experiments performed on Pearl
thus far have been using one grammar, one part-of-speech tag
set, and one domain (because of availability constraints). Future
experiments are planned to evaluate Pearl’s performance on dif-
ferent domains, as well as on a general corpus of Fnglish, and on
different grammars, including a grammar derived from a manually
parsed corpus.

Specifically, we plan to retrain Pearl on a corpus of terrorist-
related messages from the Message Understanding Conference
(MUC). Using this material, we will attempt two very differ-
ent experiments. The first experiment will be similar to the
one performed on the Voyager data. Using a corpus of correctly
parsed MUC sentences from SRI’s Tacitus system, we will derive
a context-free grammar and extract training statistics for Pearl’s
models. Since the MUC sentences exhibit many more difficul-
ties than Voyager, including 50 word sentences, punctuation, no
sentence markers, and typographical errors, we expect Pearl to
require significant re-engineering to handle this experiment.

The second experiment on the MUC corpus involves extract-
ing a grammar and training statistics from a hand-parsed corpus.
When the University of Pennsylvania’s Treebank project[2] makes
a hand-parsed version of the MUC training material available to
the DARPA community, we will extract a context-free grammar
from these parse trees, and retrain Pearl on this material. This
experiment is even more interesting because, if successful, it will
show that Pearl provides an alternative to the hand-pruning of
grammars to cover specific domains. If a hand-parsed corpus
can provide a covering grammar which can be used to accurately
parse a particular domain, porting natural language applications
to new domains will be greatly facilitated.

CONCLUSION

The probabilistic parser which we have described provides a
platform for exploiting the useful information made available by
statistical models in a manner which is consistent with existing
grammar formalisms and parser designs. Pearl can he trained to
use any context-free grammar, accompanied by the appropriate
training material. And, the parsing algorithm is very similar to a
standard bottom-up algorithm, with the exception of using theory
scores to order the search.

In experiments on the Voyager direction-finding domain, Pearl,
using only a context-free grammar and statistical models, per-
formed at least as well as PUNDIT’s parser, which includes hand-
generated restrictions. In the future, we hope to demonstrate
similar performance on more difficult domains and using manu-
ally parsed corpora.
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