
EVALUATION OF THE CMU ATIS SYSTEM

Wayne Ward

S c h o o l o f C o m p u t e r S c i e n c e
C a r n e g i e M e l l o n U n i v e r s i t y

P i t t s b u r g h , P a 1 5 2 1 3

A B S T R A C T

The CMU Phoenix system is an experiment in understanding spontaneous
speech. It has been implemented for the Air Travel Information Service
task. In this task, casual users are asked to obtain information from a
database of air travel information. Users are not given a vocabulary,
grammar or set of sentences to read. They compose queries themselves in
a spontaneous manner. This task presents speech recognizers with many
new problems compared to the Resource Management task. Not only is
the speech not fluent, but the vocabulary and grammar are open. Also,
the task is not just to produce a transcription, but to produce an action,
retrieve data from the database. Taking such actions requires parsing and
"understanding" the utteraoce. Word error rate is not as important as
utterance understanding rate.
Phoenix attempts to deal with phenomena that occur in spontaneous
speech. Unknown words, restarts, repeats, and poody formed or unusual
grammar are common is spontaneous speech and are very disruptive to
standard recognizers. These events lead to misrecognitions which often
cause a total parse failure. Our strategy is to apply grammatical con-
straints at the phrase level and to use semantic rather than lexical
grammars. Semantics provide more constraint than parts of speech and
must ultimately be delt with in order to take actions. Applying constraints
at the phrase level is more flexible than recognizing sentences as a whole
while providing much more constraint than word-spotting, Restarts and
repeats are most often between phase occurences, so individual phrases
can still be recognized correctly. Poorly constructed grammar often
consists of well-formed phrases, and is often semantically well-formed. It
is only syntactically incorrect. We associate phrases by frame-based
semantics. Phrases represent word strings that can fill slots in frames. The
slots represent information which the frame is able to act on.

The current Phoenix system uses a bigram language model with the
Sphinx speech recognition system. The top-scoring word string is passed
to a flexible frame-based parser, The parser assigns phrases (word strings)
from the input to slots in frames. The slots represent information content
needed for the frame. A beam of frame hypotheses is produced and the
best scoring one is used to produce an SQL query.

I N T R O D U C T I O N

Understanding spontaneous speech presents several problems
not found in transcribing read speech input. Spontaneous speech
is often not fluent. It contains stutters, filled pauses, restarts,
repeats, interjections, etc. Casual users do not know the lexicon
and grammar used by the system. It is therefore very difficuk for
a speech understanding system to achieve good coverage of the
lexicon and grammar that subjects might use. Also, the task of
the system is not just to produce a transcription, but to produce an
action. Taking such actions requires parsing and "understanding"
the utterance. Word error rate is not as important as utterance
understanding rate.

The Air Travel Information Service task is being used by
several DARPA-funded sites to develop and evaluate speech un-
derstanding systems for database query tasks. In the ATIS task,
novice users are asked to perform a task that requires getting

information from the Air Travel database. This database contains
information about flights and their fares, airports, aircraft, etc.
The only input to the system is by voice. Users compose the
questions themselves, and are allowed to phrase the queries any
way they choose. No explicit grammar or lexicon is given to the
subject.

At Carnegie Mellon University, we have been developing a
system, called Phoenix, to understand spontaneous speech
[1] [2] [3]. We have implemented an initial version of this

system for the ATIS task, This paper presents the design of the
Phoenix system and its current status. We also report system
evaluation results for the DARPA Feb91 test.

T H E P H O E N I X S Y S T E M

Some problems posed by spontaneous speech are:

• User noise - breath noise, filled pauses and other user
generated noise

• Environment noise - door slams, phone rings, etc.

• Out-of-vocabulary words - The subject says words
that the system doesn't know.

• Grammatical coverage - Subjects often use gram-
matically ill-formed utterances and restart and repeat
phrases.

Phoenix address these problems by using non-verbal sound
models, an out-of-vocabulary word model and flexible parsing.

N o n . V e r b a l S o u n d M o d e l s
Models for sounds other than speech have been shown to

significantly increase performance of HMM-based recognizers
for noisy input. [2] [4] In this technique, additional models are
added to the system that represent non-verbal sounds, just as
word models represent verbal sounds. These models are trained
exactly as ff they were word models, but using the noisy input.
Thus, sounds that are not words are allowed to map onto tokens
that are also not words.

O u t - o f - v o c a b u l a r y W o r d M o d e l
This module has not yet been implemented, In order to deal

with out-of-vocabulary words, we will use a technique essentially
like the one presented by BBN. [5] We will create an explicit
model for out-of-vocabulary words. This model allows any
triphone (context dependent phone) to follow any other triphone
(given of course that the context is the same) with a bigram

i01

probability model. The bigrams are to be trained from a large
dictionary of English pronunciations.

Flexible Parsing
Our concept of flexible parsing combines ~ame based seman-

tics with a semantic phrase grammar. We use a frame based
parser similar to the DYPAR parser used by Carbonell, et al. to
process ill-formed text, [6] and the MINDS system previously
developed at CMU. [7] Semantic information is represented in a
set of frames. Each blame contains a set of slots representing
pieces of information. In order to fill the slots in the frames, we
use a partitioned semantic phrase grammar. Each slot type is
represented by a separate finite-state network which specifies all
ways of saying the meaning represented by the slot. The gram-
mar is a semantic grammar, non-terminals are semantic concepts
instead of parts of speech. The grammar is also written so that
phrases can stand alone (be recognized by a net) as well as being
embedded in a sentence. Strings of phrases which do not form a
grammatical English sentence are still parsed by the system. The
grammar is compiled into a set of finite-state networks. It is
partitioned in the sense that, instead of one big network, there are
many small networks. Networks can "call" other networks,
thereby significantly reducing the overall size of the system.
These networks are used to perform pattern matches against input
word strings. This general approach has been described in earlier
papers. [1] [3]

The operation of the parser can be viewed as "phrase spotting".
A beam of possible interpretations are pursued simultaneously.
An interpretation is a frame with some of its slots filled. The
f'mite-state networks perform pattern matches against the input
string. When a phrase is recognized, it attempts to extend all
current interpretations. That is, it is assigned to slots in active
interpretations that it can fill. Phrases assigned to slots in the
same interpretation are not allowed to overlap. In ease of overlap,
multiple interpretations are produced. When two interpretations
for the same frame end with the same phrase, the lower scoring
one is pruned. This amounts to dynamic programming on series
of phrases. The score for an interpretation is the number of input
words that it accounts for. At the end of the utterance, the best
scoring interpretation is output.

In our system, slots (pattern specifications) can be at different
levels in a hierarchy. Higher level slots can contain the infor-
mation specified in several lower level slots. These higher level
forms allow more specific relations between the lower level slots
to be specified. In the utterance "leaving denver and arriving in
boston after five pro", "leaving denver" is a [deparUloc] and
"arriving in boston" is an [arrive loci, but there is ambiguity as to
whether "after 5 pro" is [depart_time_range] or
[arrive_timejange]. The existence of the higher level slot
[ARRIVE] allows this to be resolved. One rewrite for the slot
[ARRIVE] is ([arrive loc] [arrive_time range]) in which the two
lower level slots are specfically associated. Thus two interpreta-
tions for this utterance are produced,

leaving denver and arriving
in boston after 5 pm

i
[depart_loc] leaving denver
[arrive_loc] arriving in boston
[depart time_range] after 5 pm

2
[depart_loc] leaving denver
[ARRIVE]

[arrive_loc] arriving in boston
[arrive time range] after 5 pm

In picking which interpretation is correct, higher level slots are
preferred to lower level ones because the associations between
concepts is more tightly bound, thus the second (correct) inter-
pretation is picked here.

Our strategy is to apply grammatical constraints at the phrase
level and to associate phrases in frames. Phrases represent word
strings that can fill slots in frames. The slots represent infor-
mation which, taken together, the frame is able to act on. We
also use semantic rather than lexical grammars, Semantics
provide more constraint than parts of speech and must ultimately
be delt with in order to take actions. Applying constraints at the
phrase level is more flexible than recognizing sentences as a
whole while providing much more constraint than word-spotting.
Restarts and repeats are most often between phases, so individual
phrases can still be recognized correctly. Poorly constructed
grammar often consists of well-formed phrases, and is often
semantically well-formed. It is only syntactically incorrect.

System Structure
The overall structure of our current system is shown in Figure

1. We use the Sphinx system as our recognizer module [8].
Sphinx is a speaker independent continuous speech recognition
system.

Curremly the recognizer and parser are not integrated. The
speech input is digitized and vector quantized and then passed to
the Sphinx recognizer. The recognizer uses a bigram language
model to produce a single best word string from the speech input.
This word string is then passed to the frame-based parser which
assigns word slxings to slots in frames as explained above.

The slots in the best scoring frame are then used to build
objects. In this process, all dates, times, names, etc. are mapped
into a standard form for the routines that build the database
query. The objects represent the information that was extracted
from the utterance. There is also a currently active set of objects
which represent constraints from previous utterances. The new
objects created from the frame are merged with the current set of
objects. At this step ellipsis and anaphora are resolved. Resolu-
tion of ellipsis and anaphora is relatively simple in this system.
The slots in frames are semantic, thus we know the type of object
needed for the resolution. For ellipsis, we add the new objects.
For anaphora, we simply have to check that an object of that type
already exists.

Each frame has an associated function. After the information is

102

I % No Weighted
Input % True % False Answer Score

Transcript 80.7 16.6 2.8 64.0

spe h 61.4 26.9 11.7 34.5

Table 1: Phoenix results for Feb91 Class-A test set

S r c

Word

String

S u b s Del Ins Error

19.3 6.8 2.6 28.7

79.1 79.1

Table 2: Recognition error rates for Class-A

extracted and objects built, the frame function is executed. This
function takes the action appropriate for the frame. It builds a
database query (if appropriate) from objects, sends it to SYBASE
(the DataBase Management System we use) and displays output
to the user.

R E S U L T S

Our current system has a lexicon of 710 words and uses a
bigram language model of perplexity 49. Six noise models are
included in the lexicon. We used the version of Sphinx produced
by Hun [9], which includes between-word triphone models. The
vocabulary-independent phone models generated by Hon
[9] were used to compile the word models for the system. No

task specific acoustic training was done. We have not yet added
the out-of-vocabulary models to the system.

The DARPA ATIS0 training set consists of approximately 700
utterances gathered by Texas Instruments and distributed by
NIST. This data was gathered and distributed before the June
1990 evaluations. The data was gathered using a "wizard"
paradigm. Subjects were asked to perform an ATIS scenario.
They were given a task to perform and told that they were to use
a speech understanding computer to get information. A hidden
experimenter listened to the subjects and provided the appropriate
information from the database. The transcripts from this set were
used to train our language model. This includes the bigram
model for the recognizer and the grammar for the parser. Since
this amount of data is not nearly enough to train a language
model, we chose to "pad" our bigrams. Bigrams were generated
based on tag pairs rather than word pairs. Words in our lexicon
were put into categories represented by tags. The June90 training
corpus was tagged according to this mapping. We then generated
a word-pair file from the Phoenix finite-state ATIS grammar,
This file was used to initiafize the tag bigram counts. The tagged
corpus was then used to add to the counts and the bigram file was
generated. It is a "padded" bigram in the sense that the grammar
is used to insure a count of at least 1 for all "legal" tag pairs. This
procedure yielded a bigrarn language model which has perplexity
39 for the ATIS0 test set.

The DARPA ATIS1 test (for the February 1991 evaluations)
has two mandatory test sets, the class A set and the class D1 set.

Structure of Phoenix
A Spoken Language Understanding System

;,, .-h,---
speech: "show me...ah.,.l want to see all the flights to

Denver after two pro"

digitize: 16 KHz, 16 bit samples

DSP

VQ codes: A vector of 3 bytes, each 1O ms

S~ax

words: "show me I want to see all flights to
Denver after two pro"

Error Correcting
Parser [list]: I want to tee

| frame: [flights]: all flights
[arrive loci: to Denver

Dialog-Based [depart_time range]: after two pm

can~r~m,~: [mlOt, l: mght,
[errive_loc]: "DEN"

ATIS [depart Joe]: "PIT"
Application [depar t_time._range]: 1400 2400

~ ¢ ~ SQL: select airline_code, flight_nmnber
from flight_table

Travel where (from_alrport = ' l iT 'and toairport ='DEN')
Database

and (departure_time > 1400)

Figure 1: Structure of the Phoenix system

The class A set contains 145 utterances that are processed in-
dividually without context. All utterances in the test set were
"Class-A", that is, answerable, context independent and with no
disfluencies. The class D1 set contains 38 utterance pairs. These
are intended to test dialog capability. The first utterance of a pair
is a Class-A utterance that sets the context for the second. Only
scores for the second utterance are reported for this set.

We processed both transcript and speech input for each set.
Tables 1-4 show the results of this evaluation.

Utterances were scored correct if the answer output by the

103

No Weighted
Input True False Answer Score

Transcript 60.5 34.2 5.2 26.3

Speech 39.4 55.2 5.2 -15.8

Table 3: Phoenix results for Feb91 Class-D1 test set

Src Subs

Word 17.6

String 77.6

Table 4: Recognition error rates for Class-D1

Del

8.6

Ins

0.7

Error

26.9

77.6

Source % of Total Errors

Grammatical Coverage

Semantic Coverage

Wrong CAS Field

Unanswerable

Application Coding Errors

25

20

25

10

20

Table 5: Analysis of Errors for Class-A NL

system matched the reference answer for the utterance. The refer-
ence answer is database output, not a word string. Systems are
allowed to output a NO_ANSWER response, indicating that the
utterance was misunderstood. Any output that was not correct or
NOANSWER was scored incorrect. The Weighted Score is
computed as (1- (2*percent false + percentNO_ANSWER)).

Table 1 shows the results for class A utterances. For these, the
system produced the correct answer for 80.7 percent of the
transcript input and 61.4 percent of the speech input. The perfor-
mance for transcript input reflects the grammatical and semantic
coverage of the parser and application program. The perfor-
mance for the speech input reflects additional errors made in the
recognition stage. Recognition performance for these utterances
is shown in Table 2. Word substitutions, deletions and insertions
are summed to give the word error measure of 28.7 percent. A
string error rate of 79 percent means that only twenty one percent
of the utterances contained no errors. However, 61 percent of the
utterances gave correct answers. This illustrates the ability of the
parser to handle minor misrecognitions in the recognized string.

The D1 test set is designed to provide a test of dialog
capability. The utterances are specified in pairs. The first ut-
terance is processed normally and is used to set the context for
the second utterance of the pair. Missing the first utterance can
lead to incorrectly interpreting the second. Tables 3 and 4 show
the understanding performance and speech recognition rates for
the D1 test set. While the recognition results are comparable to
those for set A, the understanding performance is significantly
worse. This is due in large part to utterances in which we missed
the first utterance, causing the context for the second to be wrong.

We feel that recognition error rates for spontaneous input will
improve considerably with the addition of out-of-vocabulary
models and with better lexical and grammatical coverage.

E R R O R A N A L Y S I S

In order to interpret the performance of the system, it is useful
to look at the source of the errors. Table 5 shows the percentage
of errors from various sources.

Twenty five percent of our errors were a result of lack of
grammatical coverage. This includes unknown words for con-
cepts that the system has. For example, the system knew day
names (Monday, Tuesday, ere) but nov plural day names (Mon-
days, etc) since these had not been seen in the training data. This
category also contains errors where all words were known but the
specific word sequence used did not match any phrase patterns.

Twenty percent of the errors were due to a lack of semantic
coverage. In this case, there were no frames for the type of
question being asked or no slots for the type of information being
provided. For example, one utterance requested "a general
description of the aircraft". Our" system allows you to ask about
specific attributes of an aircraft but does not have the notion of
"general description" which maps to a subset of these attributes.

Twenty five percent of the errors were due to outputting the
wrong field from the database for the CAS answer. In these cases,
the utterance was correctly understood and a reasonable answer
was output, but it was not the specific answer required by the
CAS specifications. For example, when asked for cities near the
Denver airport, we output the city name "DENVER" rather than
the city code "DDEN" as required by CAS.

104

Ten percent of the errors were due to utterances that our
system considered unanswerable. For CAS evaluation runs, we
map all system error messages to a NO_ANSWER response. For
example, one utterance asked for ground transportation from At-
lanta to Baltimore. Our system recognized that this was outside
the abilities of the database and generated an error message that
was mapped to NO~kNSWER. The reference answer was the
null list "0".

The other twenty percent of the errors were due to coding bugs
in the back end.

The first two categories (grammatical and semantic errors) are
errors in the "understanding" part of the system. Forty five per-
cent of our total errors were due to not correctly interpreting the
input. The other fifty five percent of the errors were generation
errors. That is, the utterance was correctly interpreted but the
correct answer was not generated.

F U T U R E P L A N S

Our next step in the evolution of the Phoenix system will be to
integrate the recognition and parsing. We will use the pattern
matching networks to drive the word Izansifions in the recog-
nition search rather than a bigram grammar.

A C K N O W L E D G M E N T S

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 5167, under
contract number N00039-85-C-0163. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects
Agency or the US Government.

REFERENCES

1. Ward, W., "Understanding Spontaneous Speech", Proceedings of
the DARPA Speech and Natural Language Workshop, 1989, pp.
137, 141.

2. Ward, W., "Modelling Non-verbal Sounds for Speech Recog-
nition", Proceedings of the DARPA Speech and Natural Lan-
guage Workshop, 1989, pp. 47, 50.

3. Ward, W., "The CMU Air Travel Information Service: Under-
standing Spontaneous Speech", Proceedings of the DARPA
Speech and Natural Language Workshop, 1990.

4. Wilpon, J.G., Rabiner, L.R., Lee, C.H., Goldman, E.R.,
"Automatic Recognition of Vocabulary Word Sets in Uncon-
strained Speech Using Hidden Markov Models", in press Trans-
actions ASSP , 1990.

5. Asadi, A., Schwartz, R., Makhoul, J., "Automatic Detection Of
New Words In A Large Vocabulmy Continuous Speech Recog-
nition System", Proceedings of the DARPA Speech and Natural
Language Workshop, 1989. pp. 263, 265.

6. Carbonell, J.G. and Hayes, P.J., "Recovery Strategies for Parsing
Extragrammafical Language", Tech. report CMU-CS-84-107,
Carnegie-Mellon University Computer Science Technical Report,
1984.

7. Young, S. R., Hauptmann, A. G., Ward, W. H., Smith, E. T. and
Wemer, P., "High Level Knowledge Sources in Usable Speech
Recognition Systems", Communications of the ACM, Vol. 32, No.
2, 1989, pp. 183-194.

8. Lee, K.-F., Automatic Speech Recognition: The Development of
the SPHINX System, Kluwer Academic Pubfishers, Boston, 1989.

9. Hon, H,W., Lee, K.F., Weide, R., "Towards Speech Recognition
Without Vocabulary-Specific Training", Proceedings of the
DARPA Speech and Natural Language Workshop, 1989, pp. 271,
275.

105

