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ABSTRACT 

In this paper we present preliminary results obtained at Dragon Systems on 
the Resource Maaaagernent benchmark task. The basic conceptual units of 
our system are Phonemes-m-Context (PICs), which are represented a s  

Hidden Mmkov Models, each of which is eapressed as a sequence of 
Phonetic Elements (PELs). The PELs corresponding to a given phoneme 
constitute a kind of alphabet for the representation of PICs. 

For the speaker-dependent tests, two basic methods of training the acoustic 
models were investigated. 'nac first method of training the Resouro~ 
Managemera models is to ~e-estimate the models for each test speaker from 
that speaker's training data, keeping the PEL spellings of the PICs fixed. The 
second approach is to use the re-estimated models from the first melhod to 
derive a segmentation of the training data, then to respall the PICs in a hrgely 
speaker-depmdmt manner in order to improve the representation of speaker 
differences. A full explanation of these methods is given, as are results using 
each method. 

In addition to repotting on two different training slrategies, we disoass N- 
Best results. The N-Best algorithm is a modification of the algorithm 
proposed by Soong and Huang at the Jtme 1990 workshop. This algorithm 
runs as a post-processing step and uses an A*-search (an algorithm also 
known as a 'stack decoder'). 

1. INTRODUCTION 

In this paper we report on some preliminary work done at 
Dragon Systems' on the Resource Management benchmark 
task. First, a brief overview of Dragon Systems speaker- 
dependent, continuous speech recognition system is given. 
Next, the modifications necessary to evaluate this system on 
the RM task are described. Our goal has been to make changes 
to the standard continuous speech recognition system in ways 
that are in line with Dragon's long term aims. The primary 
modifications so far have been in the areas of signal processing 
and speaker-dependent training. The speaker-dependent 
training is described in detail in Section 4. 

Recognition results are given for the RM1 speaker- 
dependent development test data and for the Feb91 evaluation 
test material. In presenting these results, we make a start at 
evaluating the transfer characteristics of our system when 
responding to changes in the speaker, the hardware, and the 
signal processing algorithm. Our experimentation was 
performed using the speaker-dependent development test 
~ta~ and these dam arc used to compare system configurations 
in this paper. Since we befieve that we are still on a steep 
learning curve, the February 1991 evaluation lest material was 
tun through the system only one time, and thus comparative 
results using the evaluation dam are not yet available. 

2. OVERVIEW OF THE DRAGON 
CSR SYSTEM 

Dragon Systems' continuous speech recognition system 
was presented at the June 1990 DARPA meeting [1,2,3]. The 
system is speaker-dependent and was demonstrated to be 
capable of near real-time performance on an 844 word task 
(mammography reports), when running on a 486-based PC. 
The signal processing is performed by an additional 
TMS32010-based board. The speech is sampled at 12 kHz and 
the signal representation is quite simple: there are only eight 
parameters - -  7 spectral comlxments covering the region up 
to 3 kHz and an overall energy ~ameter  - -  a complete set of 
which are computed every 20 ms and used as input to the 
HMM-based recognizer. 

The fundamental concepaml unit used in the system is the 
"phoneme-in-context" or PIC, where the word "context" in 

1. This work was sponsored by the Defense Advanced Research Projects Agency and was monitored by the Space and Naval 
Warfare Systems Command under Conlract N000-39-86-C-0307. 
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principle refers to as much information about the surrounding 
phonetic environment as is n e c ~  to determine the acoustic 
character of the phoneme in question. Several related 
alternative approaches have appeared in the literature [5,6,7]. 
Currently, context for our models includes the identity of the 
prec~ing and succeeding phonemes as well as whether the 
phoneme is in a prepausally lengthened segment PICs are 
modeled as a sequence of PELs (phonetic elements), each of 
which represents a "slate" in an HMM. P E ~  may be shared 
among PIC models representing the same phoneme. A 
detailed description of models for PICs and how they are 
trained may be found in [2]. Modifications made to the PIC 
training procedure are presented in Section 4. 

Recognition uses frame-synchronous dynamic 
programming to extend the sentence hypotheses subject to the 
beam pruning used to eliminate poor paths. Another important 
component of the system is the rapid matcher, described in [3], 
which limits the number of word candidates that can be 
hypothesized to start at any given frame. Some alternative 
approaches to the rapid match problem have ~so been outlined 
by others [8,9,10]. 

A lexicon for the RM task had to be specified before 
models could be built. Pronunciations were supplied for each 
entry in the SNOR leficon by extracting them from our 
standard lexicon. Any entries not found in Dragon's current 
general English lexicon were added by hand. The set of 
phonemes used for English contains 24 consonants, 17 vowels 
(each of which may have 3 degrees of stress), and 3 syllabic 
consonants. Approximately 22% of the entries in the SNOR 
lexicon have been given multiple pronunciations. These 
pronunciations may reflect stress differences, such as stressed 
and unstressed versions of function words, and expected 
pronunciation alternatives. 

Roughly 39,000 PICs are used in modeling the vocabulary 
for this task. The set of PICs was deXermined by finding all of 
the PICs that can occur given the constraint that sentences 
must conform to the word pair grammar. The Iralning data 
used to build PIC models for the reference speaker comes 
primarily fi'om general Engli~ isolated words and phrases, 
supplemented by a few hundred phrases from the RM1 
training sentences. The generation andAraining of PICs is 
dis~ssed in more detail in the next section. 

3. MODIFICATIONS TO THE SYSTEM FOR 
USE WITH THE R M  TASK 

In order to be able to run the RM benchmark task on the 
Dragon speaker-dependent continuous speech recognition 
system, several modifications were necessary. These 
modifications primarily concerned the signal acquisition and 
preprocessing stages. Prior to this evaluation, the system had 
only been evaluated on data obtained from Dragon's own 
acquisition hardware. 

The signal processing, as described above, has always 
been performed by the signal acquisition board. Thus it was 
thought possible that the performance of the system would be 
highly tuned to the hardware. In order to run the RM clam 
through the system, software was written to emulate the 
hardware. One question to be addressed is how well the signal 
processing software does in fact emulate the hardware. To 
assess this, a small test was performed using new dam from 
Dragon's reference speaker. The speaker recorded, using the 
Dragon hardware, three sets of 100 sentences selected from 
the development test texts (those of BEF, CMR, and DAS). 
Recognition was performed, using the reference speaker's 
base models after adapting to the standard training sentences, 
and an average word error rate of 3.5% was recorded. The fact 
that the rate is comparable to error rates of some of the better 
RM1 speakers suggests that we have errl!dated our slandard 
signal p roc~ng  reasonably well. An explicit comparison of 
performance on the reference speaker using our standard 
hardware and our software emulation will be available soon. 

The language model used in the CSR system returns a log 
probability indicating the score of the candidate word. This 
was modified to return a fixed score if the word is allowed by 
the word-pair grammar or a flag denoting that the sequence is 
impermissible. 

The standard rapid match module was used in all of the 
experiments reported in this paper, in order to reduce processing 
time. We have not focused on the issue of proc~ing time in 
the current phase of our research, and have therefore modified 
our standard rapid match parameter settings to be suffidently 
conservative so as to insure that only a small proportion of the 
errors are due to rapid match mistakes. 

4. TRAINING ALGORITHMS FOR THE 
S P E A K E R - D E P E N D E N T  M O D E L S  

Dragon's strategy for phoneme-based training was 
described in detail in an earlier report[2]. We have used a fully 
automatic version of the same strategy to build speaker- 
dependent models for each of the RM1 speakers, using the 
reference speaker's models to provide an initial segmentation. 
The goal was to build models in which the acoustic parameters 
and duration estimates were based almost entirely on the 600 
training utterances for each speaker, using the reference 
speaker's models only in rare cases for which no relevant 
training ~ ta  is available. 

The recognition model for a word (or sentence) is obtained 
by concatenating a sequence of PICs, each of which is, in turn, 
were selected in the course of the semi-automatic labeling of 
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a large amount of data acqtfired horn the reference speaker. 
about 9000 isolated words and 6000 short phrases. In changing 
to the Resource Management task, an additional set of task- 
spccitic Iralning utterances flora lhe reference speaker were 
added. Although less than 10% of the training data was drawn 
from the Resource Management task, most of the PICs that are 
legal according to the word-pair grammar are representecl 
somewhere in lhe total training set. Legal PICs missing from 
the training set are typically like the sequence "ah-uh-ee" that 
would occur in "WICHITA A EAST': for the most part, they 
do not occur in the training sentences and seem unlikely to 
occur in evaluation sentences. 

The reference speaker's models are speakerMependent in 
three dk~nct ways: 

1. The parameters of the PELs depend on the spectral 
characteristics of the reference speaker's voice. 

. The durations for the PEI.~ in each Markov model for 
a PIC depend on the reference speaker's speaking rote 
and other features of his speech. 

. The sequence of PELs used in the Markov model for 
a PIC depends on what allophone the reference speaker 
uses in a given context 

We report on two techniques for creating speaker- 
dependent PICs starting with the reference speaker's models. 
The first is a straightforward adaptation algorithm, in which a 
new speaker's training utterances are segmented into PICs 
and PELs using a set of base models, and the segments are then 
used to re-estimate the immmeters of the PELs and of the 
duration models. This algorithm is typically run multiple 
times. This ~ ' o a c h  is very effective in dealing with (1), 
since the 600 training sentences include dam for almost all of 
the PELs. This strategy is less effecdve in dealing with (2), 
since only about 6000 of the 30000 PICs occur in the training 
scripts. Adaptation alone, however, can do nothing to change 
(3) the "spelling" of each PIC in terms of PELs. 

The first technique uses the following two steps: 

Step 1: The data from all 12 ofthe spe,~ers were used to 
adapt the reference speaker's models. Three passes of 
adaplafion weze performed with these data. Since Dragon's 
algorithm does not yet use mixture distributions, this has the 
effect of averaging together spectra for male and female 
talkers and generally "washing out" formants in PELs for 
vowels. The resulting "multiple speaker" models are not good 
enough to do speaker-independent recognition, but they serve 
as a better basis for speaker adaptation than do the reference 
speaker's models. 

Step 2: For a given speaker, a maximum of six passes of 
adaptation are carried out, starting from the multiple-speaker 
models. The resulting models are used to segment the utterances 
into phonemes. At this point we have a good speaker- 
dependent set of PEL models, and a set of segmentations with 
which to proceed further. 

The second technique begins with the models produced by 
the first technique together with the segmentation of the 
training data into phonemes done using those same models. 
Using this automatic labeling, speaker-dependent training is 
performed for each of the RM1 speakers, to produce a new 
speaker-dependent set of PIC models - -  with new PEL 
spellings and duration models. The algorithm is as follows: 

Step 1: For each phoneme in turn, all the labeled training 
dam for that phoneme are extracted from the training sentences. 
For each PIC that involves the phoneme, an appropriate 
weighted average of these data is taken to create a spectral 
model (a sequence of expected values for each frame) for the 
PIC. Details of this averaging process may be found in our 
earlier report[2], but the key idea is to take a weighted average 
of phoneme tokens that represent the PIC to be modeled or 
closely related PICs. 

The number of PICs to be constructed for each phoneme 
is of the same order of magnitude as the number of examples 
of the phoneme in the 600 trairfing sentences. Since there are 
examples of only about 6000 PICs in the RM1 training 
sentences, for most PICs the models must be based entirely on 
data with either the left or right context incorrect. For about 
one-fifth of the 30000 PICs, therewere insufficient related 
data to construct a spectlal model (using the usual criteria for 
"relatedness"). This is frequently the case when a diphone 
corresponding to a legal word pair fails to occur in the training 
sentences. 

Step 2: Dynamic programming is used to construct the 
sequence of PELs that best represents the spectral model for 
each PIC, thereby 'Yespelling" the PIC in terms of PELs. This 
results in a speaker-dependent PEL spelling for each PIC. In 
the process, speaker-dependent durations for each PEL in a 
PIC are also computed. 

Step 3: Step 2 results in respelled PICs for those PICs for 
which sufficient training data are available. For the remaining 
approximately 6000 PICs, the adapted PIC models of the 
reference speaker are used (as in technique 1). Merging these 
Pies results in a model for every legal PIC in the word-pair 
grammar. 
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Table 1: Comparison of recognition results for RM1 speakers using the two methods of speaker Iraining: speaker dependent 
models (SD-PELs) and speaker-dependent respelling of PICs (SD PICs). Word error rates are repo~d as percentages for the 
RM1 development test clam and the Feb91 evaluation data. 

Speaker 

BEF 
CMR(0 
DAS(f) 
DMS(0 
DTB 
DTD(O 
ERS 
HXS(0 
JWS 
PGH 
RKM 
TAB 

Average 

SD-PELs 
Development 

10.5 
6.9 
4.3 
4.1 
7.6 
5.6 

12.4 
3.1 
6.3 
5.3 

13.9 
3.6 

SD-PICs 
Development 

7.2 
6.8 
2.9 
3A 
3.6 
4.4 

10.5 
2.5 

• 4.7 
5.5 
9.8 
4.3 

7.0 5.4 

SD-PICs 
Evaluation 

6.3 
15.0 

1.9 
3.6 
7.2 
7.8 

12.6 
5.6 
4.5 
9.1 
9.9 
5.3 

7.5 

Step 4: A final pass of adaptation consists of resegmenting 
the training data into PELs and then re-estimating the 
parameters of the speaker-dependent PELs. In the process, 
duration distributions are also re-estimated. 

The above algorithm to create speaker-dependent PIC 
models provides two sets of models with which we have 
experimented. The first set is referred to as speaker-dependent 
RM models. The second set is the output of the final stage, and 
is referred to as the respeHed speaker-dependent RM models. 
Both sets of speaker-dependent models may contain unchanged 
PICs from the original reference speakex when no training 
data was available - -  mainly unchanged duration models, 
since most PELs are used in a variety of PICs. 

5. R E C O G N I T I O N  EXPERIMENTS 
AND DISCUSSION 

In this section we present results making use of the two sets 
of speaker dependent models, as well as results on post 
processing with the N-best algorithm. 

5.1 Comparison of two methods for speaker- 
dependent training 

The error rates using each of the training strategies are 
shown in Table 1. In this table we display the word error rates 
on the 100 development test sentences for each of the 12 RM1 
speakers, and we also display the performance of the respelled 
models on the Feb91 evaluation data, which consisted of 25 
sentences for each speaker. 

Table 2: Cumulative percentage of ccorrect sentences on the 
choice list using the N-Best algorithm. 

Choice # Cumulative % 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

72 

83 

87 

88 

90 

91 

92 

92 

93 

93 

93 

93 

93 

93 

94 
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Analysis of Errors for Speaker-Dependent 
Respelled PICs 

In the course of our research it has been enlightening to 
investigate the errors. We will now focus our discussion on 
the performance of the respelled models when recognizing the 
development data: The word error rates are seen to range from 
a low of 2.5% for speaker HXS to 10.5% for ERS, with an 
overall average error rate of 5A%. When the very same 
system is run without the rapid match module, the amount of 
compmafon is vastly increased, but there is only a small 
reduction of the observed overall error rate from 5.4% to 
5.1%. Roughly 62% of the errors involve function words 
only, and the remaining 38% involve a content word (and may 
also include a function word error). Function words have an 
error rate of 7.6% compa~d to 2.5% for content words. The 
most common content word error is "SPS-40" which is often 
misrecognized as "SPS-48". Other content word errors often 
involve homophones (such as "ships+s" - -~  "ships"). Function 
word deletions are more common than insertions, and 
substitutions may be symmetric ¢'and" - ->  "in" are as frequent 
as "in" - ->  "and") or asymmetric C'theh ~' - ->  "the" but the 
reverse confusion does not occur). Other common errors 
involve contractions: "what is" -> ''what+s" and ''when will" 
- ->  "when+ll". 

Use of alternate pronur~iafions 

Approximately 22% of the lexical entries have alternate 
pronunciations. These variants are used to express expected 
pronunciation alternations and/or stress differences. 

5.2 N-Best Algorithm Test. 

A recognition pass using an N-Best algorithm was 
performed on the development test data. The N-Best algorithrn 
which we have implemented is similar to the one proposed by 
Soong and Huang[4]. It runs as a post-processing step and is 
essentially a stack decoder which processes the speech in 
reverse time. Computational results saved during the forward 
pass are used to provide very close approximations to the best 
score of a full transcription which extends a reverse partial 
transcription. Although a more complete description of the 
algorithm is beyond the scope of the paper, we note that a key 
difference between the algorithm we use and that of Soong 
and Huang is that we do a full acoustic match in the reverse 
pass (i.e., we process the speech dam). Also, the reason our 
extension sc~es are only approximate is that in our current 
implemenlation, the forward and reverse acoustic match scores 
are different. 

The test was run on the 1200 utterances from the RM1 
development sentences, 100 each from the 12 RM1 speakers. 

The parameters conlrolling the N-Best were set conservatively. 
With high confidence, the 100 best alternative sentence 
transcriptions were delivered (slowing down the recognition 
by about a factor of six). These transcriptions included ones 
differing only in placement of internal pauses and/or alternative 
pronunciations. If such transcriptions are considered identical, 
17 choices were delivered on average. The results given below 
do consider such transcriptions as being identical. 

The forward algorithm determined the correct transcription 
70% of the time, and the N-Best algorithm delivered it as a 
choice 94% of the time (almost always as one of the top 15). 
That is, for around 80% of the misrecognitions, the correction 
was on the choice list A cumulative count (based on the 1200 
test utterances) is given in Table 2. For instance, the ccorrect 
transcription was one of the top 5 choices 90% of the time. 
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