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Abstract 

We have developed an algorithm for the automatic 
conversion of dictated English sentences to written text, 
with essentially no restriction on the nature of the mate- 
rial dictated. We require that speakers undergo a short 
training session so that the system can adapt to their 
individual speaking characteristics and that they leave 
brief pauses between words. We have tested our algo- 
rithm extensively on an 86,000 word vocabulary (the 
largest of any such system in the world) using nine 
speakers and obtained word recognition rates on the or- 
der of 93Uo. 

Introduction 

Most speech recognition systems, research and com- 
mercial, impose severe restrictions on the vocabulary 
that may be used. For a system that aims to do speech- 
to-text conversion, this is a serious limitation since the 
speaker may be unable to express himself in his own 
words without leaving the vocabulary. From the outset 
we have worked with a very large vocabulary, based on 
the 60,000 words in Merriam Webster's Seventh New 
Collegiate Dictionary. We have augmented this num- 
ber by 26,000 so that  at present the probability of en- 
countering a word not in the vocabulary in a text cho- 
sen at random from a newspaper, magazine or novel is 
less than 2% [25]. (More than 80% of out-of-vocabulary 
words are proper names.) 

Our vocabulary is thus larger than that  of any other 
English language speech-to-text system. IBM has a 
real-time isolated word recognizer with a vocabulary of 
20,000 words [1] giving over 95% word recognition on an 
office correspondence task. The perplexity [16] of this 
task is about 200; the corresponding figure in our case is 
700. There is only one speech recognition project in the 
world having a larger vocabulary than ours; it is being 
developed by IBM France [20] and it requires that  the 
user speak in isolated syllable mode, a constraint which 
may be reasonable in French but which would be very 
unnatural in English. 

Briefly, our approach to the problem of speech recog- 
nition is to apply the principle of naaximum a poste- 
riori probability (MAP) using a stochastic model for 

the speech data associated with an arbitrary string of 
words. The model has three components: (i) a language 
model which assigns prior probabilities to word strings, 
(ii) a phonological component which assigns phonetic 
transcriptions to words in the dictionary and (iii) an 
acoustic-phonetic model which calculates the likelihood 
of speech data for an arbitrary phonetic transcription. 

Language Modeling 

We have trained a trigram language model, which 
assigns a prior probability distribution to words in the 
vocabulary based on the previous two words uttered, 
on 60 million words of text consisting of 1 million words 
from the Brown Corpus [11], 14 million from Hansard 
(the record of House of Commons debates), 21 million 
from the Globe and Mail and 24 million from the Mon- 
treal Gazette. 1 Reliable estimation of trigram statistics 
for our vocabulary would require a corpus which is sev- 
eral orders of magnitude larger and drawn from much 
more heterogeneous sources but  such a corpus is not 
available today. Nonetheless we have found that the 
trigram model is capable of correcting over 60% of the 
errors made by the acoustic component of our recog- 
nizer; in the case of words for which trigram statistics 
can be compiled from the training corpus, 90% of the 
errors are corrected. 

Perhaps the simplest way of increasing recognition 
performance would be to increase the amount of train- 
ing data for the language model. Although we are for- 
tunate to have had access to a very large amount of 
data, we are still a long way from having a representa- 
tive sample of contemporary written English. IBM has 
trained their language model using 200 million words 
of text. It seems that  at least one billion words drawn 
from diverse sources are needed. 

We have found that  it is possible to compensate to 
some extent for the lack of training data by training 

1 We take this opportunity to acknowledge our debt 
to the Globe and Mail, to the Gazette, to G. & C. 
Merriam Co., to InfoGlobe, and to Infomart. Also, 
this work was supported by the Natural Sciences and 
Engineering Research Council of Canada. 

391 



parts-of-speech trigrams rather than word trigrams [10]. 
One of our graduate students has produced a Master's 
thesis which uses Markov modeling and the very de- 
tailed parts-of-speech tags with which the Brown Cor- 
pus is annotated to annotate new text automatically. 
We have also developed a syntactic parser which is ca- 
pable of identifying over 30% of the recognition errors 
which occur after the trigram model [22]. 

The Phonological Component 

In most cases Merriam Webster's Seventh New Col- 
legiate Dictionary indicates only one pronunciation for 
each word. The transcriptions do not provide for 
phenomena such as consonant cluster reduction or 
epenthetic stops. Guided by acoustic recognition 2 
errors, we have devised a comprehensive collection of 
context-dependent production rules which we use to de- 
rive a set of possible pronunciations for each word. This 
work is described in [26]. 

Acoustic-Phonetic Modeling 

With the exception of /1/ and / r / ,  we represent 
each phoneme by a single hidden Markov model. The 
outstanding advantage of Markov modeling over other 
methods of speech recognition is that  it provides a sim- 
ple means of matching an arbitrary phonetic transcrip- 
tion with an utterance. However it suffers from several 
well-known drawbacks: HMMs fail to represent the dy- 
namics of speech adequately since they treat successive 
frames as being essentially independent of each other; 
they cannot be made sensitive to context-dependent 
phonetic variation without greatly increasing the num- 
ber of parameters to be estimated; they do not model 
phoneme durations in a realistic way. We have made 
substantial contributions to the literature on each of 
these problems. Our approach has been to increase the 
speech knowledge incorporated in our models without 
increasing the training requirements unduly. This has 
generally paid off in significant improvements in recog- 
nition performance. 

We were one of the first groups to advocate the use 
of dynamic parameters, calculated by taking differences 
between feature vectors separated by a fixed time inter- 
val, and we have patented this idea. In [12] we intro- 
duced the idea of multiple codebooks, which enables vec- 
tor quantization HMMs using both static and dynamic 
parameters to be trained using reasonable amounts of 
data. This idea has been adopted by several other re- 
searchers, notably Lee and Hon [19] and BBN. (We no 

That  is, recognition performed without the benefit of 
the language model 

longer use it ourselves since we found early on that  mul- 
tivariate Gaussian HMMs outperform vector quantiza- 
tion HMMs on our task and that  the problem of under- 
training is much less severe in the Gaussian case [6]). 

An unfortunate consequence of using both static and 
dynamic parameters in a HMM is that  the resulting 
model is a probability distribution on 'data '  which sat- 
isfy no constraints relating static and dynamic parame- 
ters. (The model does not know how the dynamic pa- 
rameters are calculated from the static parameters.) In 
the multivariate Gaussian case, it follows that  the model 
is inconsistent in the sense that  the totali ty of the data 
it can be presented with in training or recognition is as- 
signed zero probability. This inconsistency led us to con- 
struct a new type of linear predictive HMM [18] which 
contains the static parameters HMM, the dynamic pa- 
rameters ttMM and the Poritz hidden filter model [23] 
as special cases. 

In recognition tasks with a medium sized vocabulary 
(on the order of 1,000 words), the method of triphone 
modeling [24] has been found to be successful in address- 
ing the problem of context-dependent phonetic varia- 
tion. In its present form, this method cannot be scaled 
up to a recognition task as large as ours. (The num- 
ber of triphones in our dictionary is more than 17,000; 
when triphones spanning word boundaries are counted 
as well, the number is much larger [15].) However we 
found that  by constructing a collection of twenty five 
generalized-triphone models for each phoneme we were 
able to get a substantial improvement in recognition 
performance over unimodal phonemic HMMs (bench- 
mark results) [5]. The generalized-triphone units were 
defined by means of a five way classification of left and 
right contexts for each phoneme s . We use the preced- 
ing phoneme class for a vowel and the following phoneme 
class for a consonant to construct one-sided HMMs (also 
called L/R-allophonic HMMs). In constructing two- 
sided allophonic HMMs (LR-allophonic HMMs) for each 
phoneme, a combination of the above five contexts in 
both left and right gives rise to 25 two-sided allophonic 
contexts. The first conclusion we can draw from Table 
I is that  allophonic HMM's (columns 5-8) consistently 
outperform unimodal phonemic HMM's (columns 3-4). 
The difference in recognition accuracy is particularly no- 
ticeable with a large amount of training data (e.g., over 
2,500 words). In this case, averaged over speakers CA 
and AM, L/R-allophonic HMM's reduce recognition er- 
rors by 18% when we use the uniform language model 

For vowels, neighboring phonemes were classified as: 
(1) word boundary, breath noise, or / h / ,  (2) labial 
consonants, (3) apical consonants, (4) velar con- 
sonants, (5) vowels. For consonants, neighboring 
phonemes were classified as (1) word boundary or 
breath noise, (2) palatal vowels (including / j / ) ,  (3) 
rounded vowels ( including/w/) ,  (4) plain vowels, (5) 
consonants. 
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Speake r  

(test size) 
CA 

(female) 

(1090 

words) 

AM(male) 

(698 wds) 

MA(fem.) 

(586 wds) 

Train B e n c h m a r k  

size unif. 3 -g r am 

717 32.1 19.4 

1532 29.8 15.0 

2347 29.4 13.2 

3098 29.2 13.2 

3880 29.3 13.3 

1100 45.5 22.0 

2039 31.8 19.0 

2742 31.3 18.1 

1600 21.0 9.6 

Table I. 

L /R-a l l oph .  

unif. 3-gram 

30.0 16.5 

25.0 11.5 

24.5 10.9 

24.0 11.0 

23.9 10.9 

46.0 22.0 

27.0 16.0 

25.8 11.9 

16.9 8.4 

LR-alloph. 

uniL 3-gram 

30.3 17.5 

21.9 12.0 

19.2 9.6 

17.3 8.7 

17.0 8.1 

46.6 23.0 

28.0 17.0 

23.9 13.6 

16.2 10.4 

Mixtures 

unif. 3 -g ram 

30.3 19.5 

19.0 10.0 

13.9 5.8 

14.0 6.0 

14.1 6.0 

44.6 21.0 

26.1 13.0 

23.3 10.3 

13.8 7.5 

Comparison of recognition error rates (in %) for the 
context-dependent allophonic HMM's (L/R-allophone and 
LR-allophone models) and the context-independent phonemic 
HMM's (unimodal (benchmark) and mixture models). Results for 
the uniform (unif.) and trigram (3-gram)language models are 
given separately. 

and by 26% when we use the trigram language model. 
LR-allophonic HMM's reduce the error rate further, by 
35% and 33%, respectively, for the two language models. 

One of our most interesting discoveries was that  we 
could obtain still better  performance by training Gaus- 
sian mixture HMMs for each phoneme with 25 mixture 
components per state, using the mean vectors of the 
generalized triphone models as an initialization. Since 
the forward-backward calculations are notoriously coma- 
putationally expensive for mixture models having large 
numbers of components, we had to devise a new vari- 
ant of the Baum-Welch algorithm in order to train our 
system. We call it the semi-relaxed training algorithm 
[8]. It uses knowledge of the approximate location of 
segment boundaries to reduce the computation needed 
for training by 70% without sacrificing optimality. (For 
continuous speech, the computational savings will be 
larger still.) As can be seen from Table I (compare 
columns 7-8 to columns 9-10), the mixture HMMs out- 
perform the LR-allophonic HMMs in almost every in- 
stance both with the uniform and the trigram language 
models. 

The acoustic realization of stop consonants is highly 
variable, making them the most difficult phonemes to 
recognize. In general, they may be decomposed into 
quasi-stationary subsegments (microsegments) which 
can be classified crudely as silence, voice-bar, stop- 
burst and aspiration; the microsegments that  actually 

occur in the realization of a given stop depend largely 
on its phonological context. We performed an experi- 
ment where we trained HMMs for several different types 
of microsegment (15 in all) and formulated context- 
dependent rules governing their incidence. We obtained 
a dramatic improvement in the acoustic recognition rate 
for CVC words. When tested on two speakers (see Ta- 
ble II), the error rate improved from 32.4% to 22.1% in 
one case and from 31.4% to 19.6% in the other [4]. 

Much of the information for recognizing stops (and 
other consonants) is contained in the formant transi- 
tions of adjacent vowels. It is not possible for us to take 
advantage of this fact directly since there are far more 
CV and VC pairs in our dictionary than can be covered 
in a training set of reasonable size. However, we have 
constructed a model for these transitional regions which 
we call a state interpolation HMM [17] and which can 
be trained using data that  contains instances of every 
vowel and every consonant but not necessarily of every 
CV and VC pair. The state interpolation HMM models 
the signal in the transitional region by assuming that it 
can be fitted to a line segment in the feature parameter 
space joining a vowel steady-state vector to a consonant 
locus vector (the terminology is motivated by [3]); the 
remainder of the signal is modeled by consonant and 
vowel HMMs in the usual way. One steady-state vector 
is trained for each vowel and one locus vector for each 
consonant, so the model is quite robust. When tested 
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Table II. 

speake r  

s p k r l  

spkr2 

P e r c e n t  E r r o r  (no l anguage  mode l )  

one  H M M  

per  s top  

32.4% 

31.4% 

s top  m i c r o s e g m e n t s  

c o n t e x t - i n d e p .  

26.0% 
24.4% 

con t ex t -  d e p e n d e n t  

22.1% 

19.6% 

C o m p a r i s o n  of r ecogn i t i on  e r ro r  r a t e s  for  312 C V C ( V )  words  

using one  m ode l  pe r  s top,  c o n t e x t - i n d e p e n d e n t  m i c r o s e g m e n t  

mode l s ,  and  c o n t e x t - d e p e n d e n t  m i c r o s e g m e n t  mode l s .  No 

l anguage  m o d e l  is used.  

on five speakers we found that this model gave improve- 
ments in acoustic recognition performance in every case; 
it also gives consistent improvements across a variety of 
feature parameter sets. 

We have observed marked differences in the distribu- 
tion of vowel durations in certain environments and we 
have found that this can be used to improve recogni- 
tion performance by conditioning the transition proba- 
bilities (but not the output distributions) of the vowel 
HMMs on these environments [7]. We have performed 
recognition experiments where we distinguish three en- 
vironments for each vowel: monosyllabic words with a 
voiceless coda, monosyllabic words having a voiceless or 
absent coda and polysyllabic words. This gave a 2% 
increase in acoustic recognition accuracy for both the 
speakers tested. 

Many acoustic misrecognitions in our recognizer are 
due to phonemic hidden Markov models mapping to 
short segments of speech. When we force these mod- 
els to map to larger segments corresponding to the ob- 
served minimum durations for the phonemes [14], then 
the likelihood of the incorrect phoneme sequences drops 
dramatically. This drop in the likelihood of the incor- 
rect words results in significant reduction in the acous- 
tic recognition error rate. Even in cases where acous- 
tic recognition performance is unchanged, the likelihood 
of the correct word choice improves relative to the in- 
correct word choices, resulting in significant reduction 
in recognition error rate with the language model. On 
nine speakers, the error rate for acoustic recognition re- 
duces from 18.6% to 17.3%, while the error rate with 
the language model reduces from 9.2% to 7.2%. 

O v e r v i e w  of  the  R e c o g n i z e r  

Speech is sampled at 16 kHz and a 15-dimensional 
feature vector is computed every 10 ms using a 25 ms 
window. The feature vector consists of 7 reel-based cep- 
stral coefficents [2] and 8 dynamic parameters calcu- 

lated by taking cepstral differences over a 40 ms inter- 
val. (The zeroth order cepstral coefficent which contains 
the loudness information is not included in the static 
parameters but it is used in calculating the dynamic 
parameters.) 

The first step in recognizing a word is to find its end- 
points, which we do using a weighted spectral energy 
measure. In order to avoid searching the entire dic- 
tionary, we then attempt to 'recognize' the number of 
syllables in the word using a vector quantization HMM 
trained for this purpose, generating up to three hypothe- 
ses for the syllable count. The correct count is found in 
the hypothesis list 99.5% of the time. 

For each of the hypothetical syllable counts we gen- 
erate a list of up to 100 candidate phonetic transcrip- 
tions using crude forward-backward calculations and our 
graph search algorithm [13] to search a syllable network 
for transcriptions which are permitted by the lexicon. 
The exact likelihood of the speech data is then calcu- 
lated for each of the candidate transcriptions using the 
acoustic-phonetic model. We thus obtain the acoustic 
match of the data with up to 300 words in the vocab- 
ulary (the number of words depends on the number of 
hypotheses for the syllable count). This list of candidate 
words is found to contain the correct word 96.5% of the 
time when phonemic duration constraints are not im- 
posed on the search. In this case the search takes about 
two minutes to perform on a Mars-432 array processor. 
The percentage increases to 98% when the search is con- 
strained to respect minimum durations. We have also 
found that the number of search errors can be reduced 
by using the language model to generate additional word 
hypotheses, but this increases recognition time by a fac- 
tor of two so we do not use it. 

At this point we have a lattice of acoustic matches 
for each of the words uttered by the speaker. The final 
step is to find the MAP word string by using the acous- 
tic matches to perform an A* search [21] through the 
language model. 

Word recognition rates on data collected from nine 
speakers are presented in Table III. For each speaker, 
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acoustic recognition 
total words 

s p e a k e r  

(sex) 
DS (m) 
AM (m) 
ML (m) 
JM (m) 
FS (m) 
NM (f) 
CM (f) 
MM (f) 
LM (f) 
Ave/Tot 

training test 

1900 451 

2742 565 

2000 596 

1664 587 

2322 1014 

1299 967 

2343 1090 

2338 586 

2353 863 

2107 6719 

s e a r c h  e r r o r s  

no  d u r  d u r  

4.9% 3.1% 
3.6% 1.8% 
1.7% 1.2% 

3.0% 3.0% 

1.7% 1.3% 
4.0% 1.7% 

3.5% 2.1% 

2.2% 1.4% 

3.8% 1.7% 

3.1% 1.8% 

e r r o r s  a f t e r  

l a n g  m o d e l  

no dur dur 

24.0% 21.9% 
30.6% 31.0% 
14.5% 12.6% 
23.9% 22.7% 
8.4% 7.5% 

19.4% 15.0% 
16.9% 16.5% 
14.3% 14.3% 
23.7% 22.6% 

18.6% 17.3% 

r e c o g  e r r o r s  

no  d u r  d u r  

14.4% 
14.2% 

6.7% 
8.2% 
5.0% 

11.0% 

8.9% 
5.0% 

12.1% 

9.2% 

10.4% 

12.2% 

5.4% 

7.8% 

3.7% 

6.0% 

7.8% 

3.6% 

9.8% 

7.2% 

Table I I I .  Recognition error rates for nine speakers with and without 
duration constraints. 

the number of word tokens used in training and test- 
ing are listed in the first two columns. The test data 
comprise 6,719 word tokens in all; recall that there are 
86,000 words in the vocabulary. 

C o n c l u s i o n s  

Our objective was to develop an algorithm for speech- 
to-text conversion of English sentences spol~en as iso- 
lated words from a very large vocabulary. We started 
with a vocabulary of 60,000 words but we found it nec- 
essary to increase this number to 86,000. Our initial 
recognizer used VQ-based HMMs, but we have since 
then switched to Gaussian mixture HMMs resulting in 
dramatic reduction in acoustic recognition errors. Im- 
posing duration constraints on these HMMs has resulted 
in further reductions in acoustic recognition errors. We 
have shown that the trigram language model can be 
used effectively in our 86,000-word vocabulary recog- 
nizer, reducing the recognition errors by another 60%. 

The recognition results show that we have acquired 
the capability to recognize words drawn from this much 
larger vocabulary with a degree of accuracy which is 
sufficient to warrant the commercial development of 
this technology once real-time implementation problems 
have been solved. Professor Jack Dennis of MIT has 
proposed a parallel architecture for HMM-based contin- 
uous speech recognition [9]. He estimates that decoding 
time can be decreased by a factor of at least 100 using 
a 'parallel priority queue'. We have recently begun to 
explore this avenue. 
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