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Introduction 
Automatic recognition of spoken letters is one of the 
most challenging tasks in the field of computer speech 
recognition. The difficulty of the task is due to the acous- 
tic similarity of many of the letters. Accurate recognition 
requires the system to perform fine phonetic distinctions, 
such a s B  vs. D, B vs. P , D  vs. T, T v s .  G , C  vs. 
Z, V vs. Z, M vs. N and J vs. K. The ability to per- 
form fine phonetic distinctions--to discriminate among 
the minimal sound units of the language---is a fundamen- 
tal unsolved problem in computer speech recognition. 

We describe two systems that apply speech knowledge 
and neural network classification to speaker-independent 
recognition of spoken letters. The first system, called 
EAR (English Alphabet Recognizer), recognizes letters 
spoken in isolation. First choice recognition accuracy is 
96% correct on 30 test speakers. A second system locates 
and recognizes letters spoken with brief pauses between 
them. First choice recognition accuracy is 95.7% on 10 
test speakers for letters correctly located. This system 
was used to retrieve spelled names from a database of 
50,000 common last names. Of the 68 names spelled by 
ten test speakers, 65 were retrieved as the first choice, 
and the remaining three were the second choice. 

We attribute the high level of accuracy obtained by 
these systems to (a) accurate location of segment bound- 
aries, which allows feature measurements to be com- 
puted in the most informative regions of the signal, (b) 
the use of speech knowledge to design feature measure- 
ment algorithms, and (c) the ability of neural network 
classifiers to model the variability in speech. 

Isolated Letter Recognit ion 
S y s t e m  O v e r v i e w  

Figure 1 shows the system modules that transform an 
input utterance into a classified letter. The system is 
able to accept microphone input or classify letters from 
digitized waveform files. 

D a t a  C a p t u r e  
Speech is recorded using a Sennheiser HMD 224 noise- 
canceling microphone, lowpass filtered at 7.6 kHz and 
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Figure 1: EAR Modules 

sampled at 16 kHz. Data capture is performed us- 
ing the AT&T DSP32 board installed in a Sun4/l l0.  
The utterance is recorded in a two second buffer using 
the WAVES+ software distributed by Entropic systems. 
In order to speed recognition time, the spoken letter--  
typically 400 to 500 msec long--is located within the 2 
sec buffer based on values observed in two waveform pa- 
rameters; the zero crossing rate and peak-to-peak ampli- 
tude. The remaining representations, such as the DFT, 
are then computed in the region of the utterance only. 

Signal  P roces s ing  

Signal processing routines produce the following set of 
representations. All parameters are computed every 3 
msec. 

z e 0 - 8 0 0 0 :  the number of zero crossings of the wave- 
form in a 10 msec window; 
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ptp0-8000: the peak-to-peak amplitude (largest posi- 
tive value minus largest negative value) in a 
10 msec window in the waveform; 

ptp0-700: the peak-to-peak amplitude in a 10 msec 
window in the waveform lowpass filtered at 
700 Hz; 

DFT: a 256 point DFT (128 real numbers) com- 
puted on a 10 msec Hanning window; and 

spec t ra l  difference: the squared difference of the av- 
eraged spectra in adjacent 12 msec intervals. 

P i t ch  Tracking  
A neural network pitch tracker is used to locate pitch 
periods in the filtered (0-700 Hz) waveform [2]. The 
algorithm locates all plausible candidate peaks in the fil- 
tered waveform, computes a set of feature measurements 
in the region of the candidate peak, and uses a neural 
network (trained with backpropagation) to decide if the 
peak begins a pitch period. The neural classifier agrees 
with expert labelers about 98% of the time--just slightly 
less than they agree with each other. 

Segmen ta t ion  and  Broad  Classif icat ion 
A rule-based segmenter, modified from [3], was designed 
to segment speech into contiguous intervals and to assign 
one of four broad category labels to each interval: CLOS 
(closure or background noise), SON (sonorant interval), 
FRIC (fricative) and STOP. 

The segmenter uses cooperating knowledge sources to 
locate the broad category segments. Each knowledge 
source locates a different broad category segment by ap- 
plying rules to the parameters described above. For 
example, the SON knowledge source uses information 
about pitch, ptp0-700, zero crossings and spectral differ- 
ence to locate and assign boundaries to sonorant inter- 
vals. 

Fea tu re  M e a s u r e m e n t  
A total of 617 features were computed for each utter- 
ance. Spectral coefficients account for 352 of the fea- 
tures. For convenience, the features are grouped into 
four categories, which are briefly summarized here: 

• C o n t o u r  fea tures  were designed to capture the 
broad phonetic category structure of English letters. 
The contour features describe the envelope of the 
zc0-8000, ptp0-700, ptp0-8000 and spectral differ- 
ence parameters. Each contour is represented by 33 
features spanning (a) the interval 200 msec before 
the sonorant; (b) the sonorant; and (c) the interval 
200 msec after the sonorant. The 33 features are 
derived by dividing each of these intervals into 11 
equal segments, and taking the average (zc0-8000, 
ptp0-700, ptp0-8000) or maximum (spectral differ- 
ence) value of the parameter in each segment. 

• Sonorant  fea tures  were designed to discriminate 
among: (a) Letters with different vowels (e.g., E, 
A, O); (b) letters with the same vowel with impor- 
tant information in the sonorant interval (e.g., L, M, 
N); and (c) letters with redundant information near 
the sonorant onset (e.g., B, D, E). Sonorant fea- 
tures include averaged spectra in seven equal inter- 
vals within the sonorant, additional spectral slices 
after vowel onset (to determine the place of articu- 
lation of a preceding consonant), and estimates of 
pitch and duration. 

• P r e - s o n o r a n t  f e a t u r e s  were designed to discrimi- 
nate among pre-vocalic consonants (e.g., V v s .  Z, T 
v s .  G) and to discriminate vowels with glottalized 
onsets from stops (e.g., E v s .  B, A v s .  K). These 
features include estimates of prevoicing, and spec- 
tra sampled within the STOP or FRIC preceding 
the SON. If no STOP or FRIC were found, features 
were computed on an interval 200 msec before the 
vowel. 

• Pos t - sonoran t  fea tures  were designed to discrim- 
inate among F, S, X and H. Much of this informa- 
tion is captured by the contour features. The main 
post-sonorant feature is the spectrum at the point of 
maximum zero crossing rate within 200 msec after 
the sonorant. 

L e t t e r  Classif icat ion 
Letter classification is performed by fully connected 
feed-forward networks. The input to the first network 
consists of 617 feature values, normalized between 0 and 
1. There are 52 hidden units in a single layer and 26 
output units corresponding to the letters A through Z. 
The classification response of the first network is taken 
to be the neuron with the largest output response. 

If the first classification response is within the E-set, a 
second classification is performed by a specialized net- 
work with 390 inputs (representing features from the 
consonant and consonant-vowel transition), 27 hidden 
units and 9 output units. Similarly, if the first classifi- 
cation response is M or N, a second classification is per- 
formed by a specialized network with 310 inputs (repre- 
senting features mainly in the region of the vowel-nasal 
boundary), 16 hidden units and 2 output units. This 
strategy is possible because almost all E-set and M-N 
confusions are with other letters in the same set. If the 
classification response of the first network is not M or N 
or in the E-set, the output of the first net is final. 

S y s t e m  D e v e l o p m e n t  
Development of the EAR system began in June 1989. 
The first speaker-independent recognition result, 86%, 
was obtained in September 1989. The system achieved 
95% in January 1990 and 96% in May 1990. The rapid 
improvement to 95% in 5 months was obtained by im- 
proving the segmentation algorithm, the feature mea- 
surements and the classification strategy. The improve- 
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ment to 96% resulted from increased training data and 
the use of specialized nets for more difficult discrimina- 
tions. This section briefly describes the research that  
lead to the current system. 

Database  
The system was trained and tested on the ISOLET 
database [4], which consists of two tokens of each let- 
ter produced by 150 American English speakers, 75 male 
and 75 female. The database was divided into 120 train- 
ing and 30 test speakers. All experiments during system 
development were performed on subsets of the training 
data. 

S e g m e n t e r  D e v e l o p m e n t  
The behavior of the segmentation algorithm profoundly 
affects the performance of the entire system. Segment 
boundaries determine where in the signal the feature 
measurements are computed. The feature values used 
to train the letter classification network are therefore di- 
rectly influenced by the segmenter. 

The rule-based segmenter was originally developed to 
perform segmentation and broad phonetic classification 
of natural continuous speech. The algorithm was modi- 
fied to produce opt imum performance on spoken letters. 
It was improved by studying its performance on letters 
in the training set and modifying the rules to eliminate 
observed errors. 

F e a t u r e  D e v e l o p m e n t  
The selection of features was based on past experience 
developing isolated letter recognition systems [5] and 
knowledge gained by studying visual displays of letters 
in the training set. (Letters in the 30 speaker test set 
were never studied.) Several features were designed to 
discriminate among individual letter pairs, such as B 
and V. For these features, histograms of the feature val- 
ues were examined, and different feature normalization 
strategies were tried in order to produce better  separa- 
tion of the feature distributions. Feature development 
was also guided by classification experiments. For ex- 
ample, a series of studies on classification of the let- 
ters by vowel category showed that  the best results were 
obtained using spectra between 0-4 kHz averaged over 
seven equal intervals within the vowel. 

N e t w o r k  Training 
Neural networks were trained using backpropagation 
with conjugate gradient optimization [6]. Each network 
was trained on 80 iterations through the set of feature 
vectors. The trained network was then evaluated on a 
separate "cross-validation" test set (consisting of speak- 
ers not in the ISOLET database) to measure general- 
ization. This process was continued through sets of 80 
iterations until the network had converged; convergence 
was observed as a consistent decrease or leveling off of 
the classification percentage on the cross-validation data 

A 98.3 
B 88.3 
C 100.0 
D 93.3 
E 100.0 
F 96.7 
G 98.3 

tt 100.0 
I 98.3 
J 98.3 
K 96.7 
L 100.0 
M 88.1 
N 80.0 

O 100.0 
P 91.7 
Q 100.0 
R 100.0 
S 93.3 
T 90.0 
U 98.3 

V 93.3 
W 98.3 
X 98.3 
Y 100.0 
Z 96.7 

Table h Classification performance for individual letters 
for 30 test speakers (with E-set and M-N nets). 

over successive sets of iterations. Convergence always oc- 
curred by 240 iterations, about  36 hours on a Sun 4/60. 

The main (26 letter) network was trained with 240 
feature vectors for each letter (6240 vectors), computed 
from two tokens of each letter produced by 60 male and 
60 female speakers. The specialized E-set and MN net- 
works were trained on the appropriate subset of letters 
from the same training set. 

R e c o g n i t i o n  P e r f o r m a n c e  
The EAR system was evaluated on two tokens of each 
letter produced by 30 speakers. The main network (26 
outputs, no specialized nets) performed at 95.9%. The 
specialized E-set network improved performance slightly, 
while the MN network hurt  performance on this data 
set (experiments on subsets of the training data  showed 
substantial improvement with the MN network). The 
combined three-network system performed at 96%. Ta- 
ble 1 shows the individual letter scores for the combined 
three-net  system. The specialized E-set network scores 
95% when run on all the E-set, and scores 94.2% when 
trained and tested on just  B,D,E and V. 

Multiple Letter Recognition 
The approach used to classify letters spoken in isolation 
has been extended to automatic  recognition of multiple 
letters--letters spoken with brief pauses between them. 
We have implemented and evaluated a system that  uses 
multiple letter strings to retrieve names from a database 
of 50,000 common last names. 

The recognition system differs from EAR in two im- 
portant  ways: (a) the D F T  was reduced to 128 points, 
and (b) a neural network was used to segment speech 
into broad phonetic categories. 1 The processing stages 
are shown in Figures 2 and 3. 

N e u r a l  N e t w o r k  S e g m e n t a t i o n  a n d  B r o a d  

C l a s s i f i c a t i o n  
The neural network segmenter, developed by Murali 
Gopalakrishnan as part  of his Master's research, con- 

1 Pe r fo rmance  of  the  E A R  s y s t e m  is a b o u t  1% b e t t e r  us ing  the  
ru l e -based  segraenter ,  b u t  t he  ru les  are n o t  easi ly  ex tended  to con- 
t i nuous  speech.  
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Figure 3: X windows display for the utterance "C O L E." The top four panels show (a) the digitized waveform, 
(b) the spectrogram, (c) the output  of the segmenter, and (d) the location of the letters. The  lower panel shows the 
classification performance of the system. Each row has the top four system outputs  for a letter. 

sists of a fully connected feed-forward net with 244 in- 
put units, 16 hidden units and 4 output  units. The seg- 
reenter produces an output  every 3 msec for each broad 
category label. The f rame-by-frame output  of the clas- 
sifier is converted to a string of broad category labels by 
taking the largest output  value at  each t ime frame af- 
ter applying a 5-point median smoothing to the outputs  
across successive frames. Simple duration rules are then 
applied to the resulting string to prevent short spurious 
segments, such as a SON less than 80 msec. 

The network was trained on multiple letter strings pro- 
duced by 30 male and 30 female speakers. The features 
used to train the network consist of the spectrum for the 
frame to be classified, and the waveform and spectral dif- 
ference parameters  in a 300 msec window centered on the 
frame. The features were designed to provide detailed in- 
formation in the immediate  vicinity of the f rame and less 
detailed information about  the surrounding context. 

L e t t e r  S e g m e n t a t i o n  

Letter segmentat ion is performed by applying rules to 
the sequence of broad category labels produced by the 
neural network. The rules are relatively simple because 
the speakers are required to pause between letters. Ex- 

cept for W, all letters have a single sonorant  segment. 
We assume every sonorant  is par t  of a distinct letter. 
The boundary  between adjacent  sonorants is placed in 
the center of the last closure before the second sonorant. 
In the English alphabet ,  all within-letter closures occur 
after the sonorant  (i.e. X and H), so these simple rules 
capture every case except W, which is usually realized 
as two sonorants. Our system usually treats  W as two 
letters; we recover f rom this over-segmentation during 
the search process. 

L e t t e r  C l a s s i f i c a t i o n  
A single fully connected feed-forward network with 617 
inputs, 52 hidden units and 26 outputs  was used to clas- 
sify letters. This  is similar to the first network used in 
EAR, al though spectral coefficients were based on a 128- 
point DFT.  The  network was trained on a combination 
of da ta  from the ISOLET database  and 60 additional 
speakers spelling names and random strings with pauses. 

N a m e  R e t r i e v a l  
After the individual letters are classified, a database of 
names is searched to find the best match.  For this search, 
the values of the 26 output  units are used as the scores 
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Figure 2: Name Retrieval Modules 

for the 26 letters. For each letter classified, 26 scores are 
returned. The score for a name is equal to the product  
of the scores returned for the letters in that  name in the 
corresponding positions. 

The number  of letters found may  not match  the num- 
ber of letters in the target  name for a number  of reasons: 
there can be segmentat ion errors; non-letter sounds can 
be mistaken for letters; the name can be mis-spelled. Be- 
cause of such errors, letters inserted into or deleted from 
names are penalized but do not invalidate a match.  

We deal with split Ws during name retrieval in the fol- 
low way. If  a string of letters does not score well against 
any name, then all pairs of letters in the string for which 
the second letter is U are collapsed into a W with a score 
of 0.5 and the search is repeated. This trick has worked 
surprisingly well in our initial studies because the second 
part  of W is almost  always classified as U and because 
replacing W in a name with something-U does not usu- 
ally yield another name. Future systems will deal with 
W in a more elegant manner.  

Resu l t s  
We tested our system on 100 spelled names from 10 
new speakers. Name retrieval was evaluated on two 
databases. The first database consisted of 10,940 names 
from a local mailing list. Ignoring split Ws (which caused 
no name-retrieval errors), 697 of 719 letters (97%) were 
correctly located. Of  these, 95.7% Were correctly classi- 
fied. The correct name was returned as the first choice 
97 of 100 times. For the three errors, the correct name 

was the second or third choice twice. (The other name 
contained three letters spoken without pause. We did 
not strictly screen the database  for pauses because we 
wanted some borderline cases as well.) Sixty-eight of 
the one-hundred names were also in a database of 50,000 
common last names. When using this database,  65 of 68 
names were returned as the first choice. The correct 
name was the second choice for the 3 errors. 

Discuss ion  
English alphabet  recognition has been a popular  task 
domain in computer  speech recognition for a number 
of years. Early work, reviewed in [7], applied dynamic 
programming to frame by f rame matching of input and 
reference pat terns  to achieve speaker-dependent recog- 
nition rates of 60% to 80%. A substantial  improvement 
in recognition accuracy was demonstra ted in the FEA- 
T U R E  system, which combined knowledge-based feature 
measurements  and mult ivariate  classifiers to obtain 89% 
speaker-independent recognition of spoken letters [5]. In 
recent years, increased recognition accuracy, to a level 
of 93%, has been obtained using hidden Markov models 
[8, 9]. 

It  is difficult to compare recognition results across lab- 
oratories because of differences in databases, recording 
conditions, signal bandwidth,  signal to noise ratio and 
experimental  procedures. Still, as Table 2 reveals, per- 
formance of the EAR system compares favorably to pre- 
viously reported systems. 

We at t r ibute  the success of the EAR system to the 
use of speech knowledge to design features that  cap- 
ture the impor tan t  acoustic-phonetic information, and 
the ability of neural network classifiers to use these fea- 
tures to model the variability in the data.  Our research 
has clearly shown tha t  the addition of specific features 
for difficult discriminations, such as B vs. V, improves 
recognition accuracy. For example,  networks trained 
with spectral features alone perform about  10% worse 
than networks trained with the complete set of features. 

Explicit segmentat ion of the speech signal is an impor- 
tant  feature of our approach. The location of segment 
boundaries allows us to measure features of the signal 
that  are most  impor tant  for recognition. For example, 
the information needed to discriminate B from D is con- 
tained in two main regions: the interval extending 20 
msec after the release burst  and the 15 msec interval 
after the vowel onset. By locating the stop burst  and 
the vowel onset, we can measure the impor tan t  features 
needed for classification and ignore irrelevant variation 
in the signal. 

We are impressed with the level of performance ob- 
tained with the neural network segmenter. We believe 
the algori thm can be substantial ly improved with ad- 
ditional features, recurrent networks and more train- 
ing data. Neural network segmenters have the impor- 
tan t  advantage of being easily retrained for different 
databases (e.g., telephone speech, continuous speech), 
whereas rule-based segmenters require substantial  hu- 
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S t u d y  Condi t ions  Speakers  A p p r o a c h  Le t t e r s  Resul t s  

Brown 20 kHz Sampling 100 speakers HMM E-set 92.0% 
(1987) 16.4 dB SNR (multi-speaker) 

Euler 6.67 kHz Sam- 100 speakers HMM 26 letters + 93.0% 
et al. i pling (telephone (multi-speaker) 10 digits + 
(1990) bandwidth) 3 control words 

Lang Brown's data 100 speakers Neural networks B,D,E,V 93.0% 
et. al (multi-speaker) 
(1990) 

Cole, 16 kHz Sampling 120 training Knowledge-based 26 letters; 96.0% 
Fanty 31 dB SNR 30 test (speaker- features and neural E-set; 95.0% 
(1990) independent) networks B,D,E,V 94.2% 

Table 2: Recent letter classification results 

man engineering. 
The application of spoken letter recognition to name 

retrieval is an obvious and important application. Early 
work with databases of 18,000 names suggested that 
spelled names are sufficiently unique so that accurate [6] 
name retrieval could be obtained without accurate let- 
ter recognition [10]. One insight we have gained from 
our experiments with the 50,000 names is that larger [7] 
databases do require accurate letter recognition to re- 
trieve names. For example, the 3724 4-letter names in 
our database generate 20,192 pairs that differ by one let- 
ter. Of these, 1372 differ by an acoustically similar letter, 
such as B-D (152), M-N (128), etc. Correct retrieval of 
these names requires the system to perform fine phonetic [8] 
distinctions. 
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