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1. Introduction 
In order to meet the information processing demands of 

the next decade, natural language systems must have the 
capability of processing very large amounts of text, 
commonly called "messages", from highly diverse sources 
written in any of a few dozen languages. One of the key 
issues in building systems with this scale of competence is 
handling large numbers of different words and word senses. 
Natural language understanding systems today are typically 
limited to vocabularies of less than 10,000 words; 
tomorrow's systems will need vocabularies at least 5 times 
that to effectively handle the volume and diversity of 
messages needing to be processed. 

One method of handling large vocabularies is simply 
increasing the size of the lexicon. Research efforts at IBM 
[Chodorow, et al. 1988; Neff, et al. 1989], Bell Labs 
[Church, et al. 1989], New Mexico State University [Wilks 
1987], and elsewhere have used mechanical processing of 
on-line dictionaries to infer at least minimal syntactic and 
semantic information from dictionary definitions. However, 
even assuming a very large lexicon already exists, it can 
never be complete. Systems aiming for coverage of 
unrestricted language in broad domains must continually deal 
with new words and novel word senses. 

Systems with very large lexicons have the additional 
problems of an exploding search space, of disambiguating 
multiple syntactic and semantic possibilities when full 
interpretations are possible, and of combining partial 
interpretations into something meaningful when a full 
interpretation is not found. For instance, in The Wall Street 
Journal, the average sentence length is 21 words, more than 
twice the average sentence length of the corpus for the Air 
Travel Information System used in spoken language systems 
research. If the worst case complexity of a parser is n 3, then 
the search space can be eight times worse than in spoken 
language interfaces. 

A key element of our approach to these problems is the 
use of probabilistic models to control the greatly increased 
search space inherent in large vocabularies. We have 
observed that the state of the art in natural language 
processing (NLP) today is analogous to that in speech 

processing roughly prior to 1980, when purely knowledge- 
based approaches required much detailed, hand-crafted 
knowledge from several sources (e.g., acoustic, phonetic, 
etc.). Speech systems then, like NLP systems today, were 
brittle, required much hand-crafting, were limited in 
accuracy, and were not scalable. A revolution in speech 
technology has occurred since 1980, when probabilistic 
models were incorporated into the control structure for 
combining multiple sources of knowledge (providing 
improved accuracy and increased scalability) and as 
algorithms for training the system on large bodies 
("corpora") of data were applied (providing reduced cost in 
moving the technology to a new application domain). 

We are exploring the use of probabilistic models and 
training in NLP in a new pilot study, whose overall goal is 
to increase the robustness, precision, and scalability of 
natural language understanding systems. In the initial phase 
of the study, we are addressing issues raised by the huge 
vocabularies in ope n texts. We are experimenting with a 
variety of techniques for disambiguating word uses, selecting 
syntactic interpretations, and acquiring information about 
new words--techniques that can be applied both when a word 
is initially encountered and in handling the word more 
effectively the next time it is encountered: 

This paper reports the results of the first three months of 
this new effort. We have applied techniques from speech 
processing, such as "tri-tag" models and probability models 
on context-free grammars. We report on our initial 
experiments in using tri-tag models for hypothesizing parts 
of speech, as well as new results on the size of the corpus 
needed for training these models, and their use in processing 
unknown words. We discuss our use of a context-free 
probabilistic language model to help in selecting the correct 
parse from among multiple parses. Finally, we present a 
preliminary approach to the problem of learning the lexical 
syntax of new words in context and using our probabilistic 
language model to aid in selecting the interpretation to learn 
from. 
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2. Probabilistic Part of Speech 
Models 

One straightforward way to use probabilities is in 
assigning parts of speech to words. Models predicting part 
of speech can serve to cut down the search space a parser 
must consider in processing known words and can be used as 
one input to more complex strategies for inferring lexical 
and semantic information about unknown words. We have 
explored the use of such models in both contexts. 

Simple but powerful models to predict part of speech can 
be derived using a corpus that has been tagged (or labelled) 
as to part of speech [Church 1988; de Marken 19901. Using 
a tagged corpus to train the model is called "supervised 
training", since a human has prepared the correct training 
data. This is in contrast to "unsupervised training" where 
the process is fully automated. For example, in 
unsupervised part of speech tagging, one can use a corpus 
without annotation for training, a dictionary that lists parts 
of speech for the most frequently occurring words, and an 
initial probability assignment, e.g., a uniform probability 
distribution or probability estimates from a previous, related 
domain. An iterative procedure then revises the probability 
estimates so as to maximize the probability over the whole 
corpus. 

Our supervised training experiments used a tri-tag model 
based on a corpus from the University of Pennsylvania 
consisting of Wall Street Journal articles in which each word 
or punctuation mark has been tagged with one of 47 parts of 
speech, as shown in the following example: 

A tri-tag model predicts the relative likelihood of a 
particular tag given the two preceding tags, e.g. how likely 
is the tag RB on the third word in the above example, given 
that the two previous words were tagged NNS and VBD. 
Using the UPenn corpus, we counted for each possible pair 
of tags, the number of times that the pair was followed by 
each possible third tag, and then derived from those counts a 
probabilistic tri-tag model. We also estimated from the 
training data the conditional probability of each particular 
word given a known tag (e.g., how likely is the work to be 
"terms" if the tag is NNS); this is called the "word emit" 
probability. Both of these probability estimates usedpadding 
to an arbitrary estimate to avoid setting the probability for 
unseen tri-tags or unseen word senses to zero. 

Given these probabilities, one can then predict the 
maximum-likelihood tag sequence for a given word 
sequence. Using the tri-tag probabilities, we computed the 
probabilities of all possible paths in the tag space through 
the sentence, selected the path whose overall probability was 
highest, and then took the tag predictions from that path. 
We replicated the result [Church 19881 that this process is 
able to predict the parts of speech with only a 3-5% error 
rate when the possible parts of speech of the words are 

known. We believe that this error rate could be reduced still 
further and extend the success to unknown words. 

Using the UPenn set of parts of speech, unknown words 
can be in any of the 22 open-class parts of speech. The tri- 
tag model can be used to estimate the most probable one. 
While random choice among the 22 open classes would be 
expected to show an error rate for new words of 91.5%, our 
initial results using the model showed an error rate of only 
51.6%. The best previously reported error rate was 75% 
[Kuhn & de Mori 19901. Note that the error rate should be 
reduced even further by using more knowledge, such as 
capitalization knowledge and morphology. 

While supervised training is shown here to be very 
effective, it requires a correctly tagged corpus. We have done 
some experiments to quantify how much tagged data is 
really necessary, and to suggest ways to handle new words 
when using such models. 

In these experiments, we demonstrated that the training set 
can, in fact, be much smaller than might have been 
expected. One rule of thumb suggests that the training set 
needs to be large enough to contain 10 instances of each 
type of tag sequence in order for their probabilities to be 
estimated with reasonable accuracy. This would imply that 
a tri-tag model using 47 possible parts of speech would need 
a bit more than a million words of training. However, we 
found that much less training data was necessary, as 
illustrated in Figure 1. 
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Figure 1: Size of Tri-tag Training Sets 

In our experiments, the error rate for a supervised tri-tag 
model increased only from 3.30% to 3.87% when the size 
of the training set was reduced from 1 million words to 
64,000 words. This is probably because most of the 
possible tri-tag sequences never actually appear. All that is 
really necessary, recalling the rule of thumb, is enough 
training to allow for 10 of each of the tag sequences that do 
occur. There were 16,170 unique mples in our training set, 
so the rule of thumb would suggest that 160,000 words 
would be sufficient training. This would explain why the 
degradation in performance was slight when the size of the 
corpus was reduced. The benefits of probabilistic modeling 
therefore seem applicable to new tag sets, subdomains, or 
languages without needing prohibitively large corpora. 



3. Probabilistic Language Model 
Probabilities can also quantify the likelihoods of 

alternative complete interpretations of a sentence. In these 
experiments, we used the grammar of the Delphi 
component from BBN's HARC system [Stallard 1989], 
which combines syntax and semantics in a unification 
formalism. We developed a context-free model, which 
estimates the probability of each rule in the grammar 
independently (in contrast to a context-sensitive model, such 
as the tri-tag model described above, which bases the 
probability of a tag on what other tags are in the adjacent 
context). 

In our context-free model, we associate a probability with 
each rule of the grammar. For each distinct major category 
(left-hand side) of the grammar, there is a set of context-free 
rules 

LHS <- RHS 1 

LHS <- RHS2 

LHS <- RHSn. 

For each rule, we estimate the probability of the right-hand 
side given the left-hand side. 

The probability of a syntactic structure S, given the input 
string W, is then modelled by the product of the 
probabilities of the rules used in S. ([Chitrao & Grishman 
1990] used a similar context-free model.) Using this model, 
we explored the following issues: 

What method of training the rule probabilities should 
be employed? 

How much (little) training data is required for reliable 
estimates? 

• How is system performance impacted? 

• Do the results suggest refinements in the probability 
model? 

Our intention is to use the Treebank corpus being 
developed at the University of Pennsylvania as a source of 
correct structures for training. However, until that material 
becomes available, we have run initial experiments using 
small training sets taken from an existing question- 
answering corpus of sentences about a personnel database. 
To our surprise, we found that as little as 100 sentences of 
supervised training (in which a person, using graphical 
tools, identifies the correct parse) is sufficient to improve 
the ranking of the interpretations found. In our tests, the 
NLP system produces all interpretations satisfying all 
syntactic and semantic constraints. From that set, the 
intended interpretation must be chosen. The context-free 
probability model reduced the error rate on an independent 

test set by a factor of two to four, compared to random 
selection from the interpretations satisfying all knowledge- 
based constraints. 

We tested the predictive power of rule probabilities using 
this model both in unsupervised and in supervised mode. In 
the former case, the input is all parse trees (whether correct 
or not) for the sentences in the training set. In the latter 
case, the training data included a specification of the correct 
parse as hand picked by the grammar's author from among 
the parse trees produced by the system. 

The detailed results from using a training set of 81 
sentences appear in the histogram in Figure 2. 
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Figure 2: Predictions of Probabilistic Language Model 

The "best possible" error rates for each test indicates the 
percentage of cases for which none of the interpretations 
produced by the system was judged correct, so that no 
selection scheme could achieve a lower error rate than that. 
The "chance" score gives the error rate that would be 
expected with random selection from all interpretations 
produced. The "test" column shows the error rate with the 
supervised or unsupervised probability model in question. 
The first supervised test had an 81.4% improvement, and the 
second a 50.8% improvement, and the third a 56% 
improvement. These results state how much better than 
chance the given model did as a percentage of the maximum 
possible improvement. 

We expect to improve the model's performance by 
recording probabilities for other features in addition to just 
the set of rules involved in producing them. For example, 
in the grammar used for this test, two different attachments 
for a prepositional phrase produced trees with the same set 
of rules, but differing in shape. Thus the simple, context- 
free model based on the product of rule probabilities could 
not capture preferences concerning such attachment. By 
adding to the model probabilities for such additional features, 
we expect that the power of the probabilisfic model to 
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automatically select the correct parse can be substantially 
increased. 

4. Learning Lexical Syntax 
One purpose for probabilistic models is to contribute to 

handling new words or partially understood sentences. We 
have done preliminary experiments that show that there is 
promise in learning lexical syntactic and semantic features 
from context when probabilistic tools are used to help 
control the ambiguity. 

In our experiments, we used a corpus of sentences each 
with one word that the system did not know. To create the 
corpus, we began with a corpus of sentences known to parse 
from the personnel question-answering domain (our goal, 
again, is to use the Treebank data from the University of 
Pennsylvania for such training when it becomes available). 
We then replaced one word in each sentence with an 
undefmed word. 

For example, in the following sentence, the word 
"contact" is undefined in the system: Who in Division Four 
is the contact for MIT? That word has both a noun and a 
verb part of speech; however, the pattern of parts of speech 
of the words surrounding "contact" causes the tri-tag model 
to return a high probability that the word is a noun. Using 
unification variables for all possible features of a noun, the 
parser produces multiple parses. Applying the context-free 
rule probabilities to select the most probable of the resulting 
parses allows the system to conclude both syntactic and 
semantic facts about "contact". Syntactically, the system 
discovers that it is a count noun, with third person singular 
agreement. Semantically, the system learns (from the use of 
who) that contact is in the semantic class PERSONS. 

Furthermore, the partially-specified semantic representa- 
tion for the sentence as a whole also shows the semantic 
relation to SCHOOLS, which is expressed here by the for 
phrase. Thus, even a single use of an unknown word in 
context can supply useful data about its syntactic and 
semantic features. 

Probalistic modelling plays a key role in this process. 
While context sensitive techniques for inferring lexical 
features can contribute a great deal, they can still leave 
substantial ambiguity. As a simple example, suppose the 
word "list" is undefined in the sentence "List the 
employees." The tri-tag model predicts both a noun and a 
verb part of speech in that position. Using an underspecified 
noun sense combined with the usual definitions for the rest 
of the words yields no parses. However, an underspecified 
verb sense yields three parses, differing in the 
subcategorization frame of the verb "list". For more 
complex sentences, even with this very limited protocol, the 
number of parses for the appropriate word sense can reach 
into the hundreds. 

Using the rule probabilities acquired through supervised 
training (described in the previous section), the likelihood of 
the ambiguous interpretations resulting from a sentence with 
an unknown word was computed. Then we tested whether 
the tree ranked most highly matched the tree previously 
selected by a person as the correct one. This tree equivalence 
test was based on the trees' smcture and on the rule applied 
at each node; while an underspecified tree might have some 
less-specified feature values than the chosen fully-specified 
tree, it would still be equivalent in the sense above. 

Of 160 inputs with an unknown word, in 130 cases the 
most likely tree matched the correct one, for an error rate of 
18.75%, while picking at random would have resulted in an 
error rate of 63.14%, for an improvement by better than a 
factor of 3. This suggests that probabilistic modeling can 
be a powerful tool for controlling the high degree of 
ambiguity in efforts to automatically acquire lexical data. 

We have also begun to explore heuristics for combining 
lexical data for a single word acquired from a number of 
partial parses. There are some cases in which the best 
approach is to unify the two learned sets of lexical features, 
so that the derived sense becomes the sum of the 
information learned from the two examples. For instance, 
the verb subcategorization information learned from one 
example could be thus combined with agreement 
information learned from another. On the other hand, there 
are many cases, including alternative subcategorization 
frames, where each of the encountered options needs to be 
included as separate alternatives. 

5. Conclusions 
In trying to address the problems inherent in understanding 

text using very large vocabularies, we found that the use of 
probabilistic models was crucial in obtaining useful results. 
The three main problems addressed by this paper were (1) 
reducing ambiguity resulting from multiple parts of speech, 
(2) reducing parse ambiguity, and (3) learning lexical 
information of new words encountered in the text. 

Using supervised training for tri-tag probabilities, we 
achieved a 3-5% error rate on a test set in picking the correct 
part of speech. Our experiments showed that a smaller 
training set than previously expected (64,000 words rather 
than 1 million) was needed in order to achieve a good level 
of performance. 

For reducing interpretation ambiguity, our context-free 
probability model, trained in supervised mode on only 81 
sentences, was able to reduce the error rate for selecting the 
correct parse on independent test sets by a factor of 2-4. 

For the problem of processing new words in the text, the 
tri-tag model reduced the error rate for picking the correct 
part of speech for such words from 91.5% to 51.6%. And 
once the possible parts of speech for a word are known (or 



hypothesized using the tri-tag model), the probabilistic 
language model proved useful in indicating which parses 
(obtained using the unknown word) should be looked at for 
learning more complex lexical information about the word. 

6. Future Work 
We plan to explore ways in which to reduce the error rates 

resulting from our current models. For example, the 
potential of using a weighted combination of n-tag models 
for a range of n, as opposed to a single tri-tag model, can be 
studied. We also plan to use a more complex probabilistic 
model of grammar, one that more realistically represents the 
biases in language, for example, by using conditional 
probabilities relying on more than just one level of context- 
free rules. 

In a different direction, we plan to explore automatic 
methods for learning semantic information. We will explore 
the use of the Common Facts Database (CFDB) [Crowther 
1989], which was derived from an on-line dictionary with a 
base vocabulary of 65K words. The CFDB would be useful 
in assigning semantic classes to noun phrases, for example, 
as well as in providing information on the classes of verb 
arguments. 
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