
Exper iments with Tree-Structured M M I
Encoders on the RM Task

Mark T. Anikst, William S. Meisel, Matthew C. Stares
Speech Systems Incorporated

18356 Oxnard Street
Tarzana, California 91356

Kai-Fu Lee
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

ABSTRACT
This paper describes the tree-structured maximum mutual

information (MMI) encoders used in SSrs Phonetic Engine ®
to perform large-vocabulary, continuous speech recognition.
The MMI encoders are arranged into a two-stage cascade. At
each stage, the encoder is trained to maximize the mutual
information between a set of phonetic targets and
corresponding codes. After each stage, the codes are
compressed into segments. This step expands acoustic-
phonetic context and reduces subsequent computation. We
evaluated these MMI encoders by comparing them against a
standard minimum distortion (MD) vector quantizer
(encoder). Both encoders produced code streams, which were
used to train speaker-independent discrete hidden Markov
models in a simplified version of the Sphinx system [3]. We
used data from the DARPA Resource Management (RM)
task. The two-stage cascade of MMI encoders significantly
outperforms the standard MD encoder in both speed and
accuracy.

INTRODUCTION
Most hidden Markov model systems use minimum

distortion (MD) vector quantizers (encoders) to convert
continuously valued speech parameters into streams of
integer codes. However, MD encoders do not optimize a
criterion that is directly related to recognition accuracy.
Moreover, they use a single distortion measure that may not
be appropriate for all speech classes. In this paper, we
propose the use of maximum mutual information (MMI)
encoders that are trained to extract phonetic information and
thereby minimize phonetic recognition errors. We further
compress the frames into larger segments and repeat the
encoding.

Our MMI encoders are binary decision trees built to
maximize the average mutual information between the
phonetic targets and the codes assigned to them. The task of
training such encoders has been extensively addressed in the
theory of binary decision trees [5, 8, 2]. For example,
Breiman et al. systematically consider binary decision trees
applied to various classification tasks. The decision (interior)
nodes of the tree are allowed to use linear combinations of
feature vectors, as well as unordered categorical features.
Training criteria ("impurity" criteria) for the binary decision
trees include the average leaf-node-conditional class entropy.
Training is performed in a top-down node-at-a-time fashion,

adding new leaf nodes and maximizing reduction in the
average leaf node impurity attained by such additions. It is
demonstrated on many practical classification problems that
the above procedure results in a suboptimal, but sufficiently
accurate tree.

Labelled data necessary for the supervised training is
obtained by aligning speech frames with phonetic
transcriptions using dynamic programming. We train a two-
stage cascade of binary-tree encoders. In the first stage,
f rames are encoded to extract maximum information about
their target label classes. Feature vectors used in the tree
encoder are frame-based. Contiguous runs of frames with the
same code are compressed into segments. In the second stage,
the resulting segments are encoded to extract maximum
information about their target label classes (we assign a
single target label class per segment). Segment-based
acoustic feature vectors are used in the second-stage tree
encoder, along with some categorical features based on the
phonetic identities uncovered by the first-stage tree encoder.
Segment duration features are also used. Resulting runs of
segments with the same code are again compressed into
larger segments.

Speech Systems Incorporated (SSI) has been using a
version of this two-stage cascade of the MMI encoders in the
Phonetic Engine ®, an integral part of SSI's large-
vocabulary, continuous speech recognition system [6, 1].
The two-stage trees are very fast; they encode one second of
speech in one-third of a second on a 16 mHz 68020
microprocessor. In this study, we apply these MMI encoders
in a more limited sense -- as vector quantizers for the Sphinx
speech recognition system [3]. This enables a direct
comparison of MMI encoders and standard MD encoders. In
our experiments, for the sake of expediency, we used a
simplified version of the Sphinx system limited to 48
context-independent phonetic HMMs and 26 acoustic frame
features. The two-stage cascade of MMI encoders outperforms
the standard MD encoder: Word error rate drops by 33% and
recognition is performed roughly 1.6 times faster.

We also ran a preliminary evaluation of the MMI and MD
encoders using the Sphinx 1100 context-dependent
(generalized triphone) HMMs. We used the same codes
without re-growing the trees for context-dependent class
targets. Error rate was reduced by more than half relative to
no use of context.

346

SYSTEM O V E R V I E W
Here we briefly describe the system used in our

experiments. Figure 1 summarizes the encoding process and
the experiments performed.

Acoustic Processing
The speech is sampled at 16 kHz and is converted into a

sequence of 10-msec frames of 26 acoustic parameters: 12
cepstrum coefficients, 12 differenced cepstrum coefficients,
power and differenced power [3].

Labelling
Training of the tree-structured MMI encoders is performed

using labelled speech data. The set of label classes used for
labelling contains 144 classes: there is a unique label class
for each of the three pdf's (roughly corresponding to
beginning, middle, and end) of each of the 48 Sphinx
context-independent phones. Labelled frame data for training
is obtained via Viterbi alignment using the Sphinx system.

First-Stage (Frame) MMI Encoder
At the first (frame-coding) stage, frames are encoded in

such a way as to convey maximum information about their
underlying label class identities. To perform frame encoding,
the frame time-sequence is scanned by a "sliding window"
covenng W frames; in our experiments, we kept W = 1 (a
constraint imposed for the sake of a fair comparison between
the first-stage MMI encoder and the standard MD encoder;
normally, we use a three-frame window). A set of the 26
acoustic parameters of a frame was used as a feature vector
accessed by the window. The tree frame encoder takes as
input this feature vector and outputs a code for the frame at
the center of the window. The encoder is trained to maximize
the average mutual information between its code alphabet and
the alphabet comprised of the 144 target label classes.

The resulting sequence of coded acoustic frames is further
processed to form acoustic segments by merging time-
contiguous blocks of frames with the same code. Also, the
most likely broad phonetic class is assigned to each formed
segment. The stream of the acoustic segments with the
assigned segmentation classes constitutes the input to the
segment-coding stage.

Second-Stage (Segment) MMI Encoder
The second (segment-coding) stage processing is similar

to that of the frame-coding stage. Namely, segments are
encoded in such a way as to convey maximum information
about their underlying phonetic classes.

To perform segment encoding, the stream of segments is
scanned by a sliding time window covenng three segments
(W = 3). A set of pre-defined feature vectors is extracted from
the acoustic parameters of all the frames encountered in the
segments accessed by the window. Also, the most-likely
broad phonetic classes assigned after the first stage to each of
the three segments in the window comprise additional
categorical variables. These variables provide phonetic
features complementing the acoustic features. Segment
duration features are also computed. The segment encoder tree
takes as input these sets of features and outputs a code for the
segment in the center of the window. The encoder is trained
to maximize the average mutual information between its
code alphabet and the alphabet comprised of the 144 target

label classes. The target labels for segments were derived
from the labels of the constituent frames.

To obtain a categorical feature for use in the tree based on
the phonetic class of a segment, we combined 144 target
phonetic classes into nine broad superclasses, and used the
most likely superclass number for each code. The selected set
of broad phonetic superclasses is shown in Table 1 (in the
standard notation of the Sphinx phonetic system, [3]).

Class Phones
0 SIL
1 S SH Z ZH TS JH CH
2 W L
3 V F T H
4 T K P H T D P D KDG B DDHDX DD
5 R ER
6 N M NG
7 AH AE AA AY AO OW OY AW
8 EH EY IH IY AX IX Y UH UW

Table 1: Superclasses used in a categorical variable for the
second-stage tree.

The resulting sequence of coded segments is further
processed to form larger segments as in the first stage. The
stream of the enlarged segments with the assigned codes
constitutes the output of the second stage.

MMI Training
The first- and second-stage MMI encoders are trained

using labelled data (supervised training). The encoders are
trained as binary decision trees using maximization of the
average mutual information I(classes, codes) between the set
of target label classes and the set of leaf-node numbers
(codes), as the training criterion:

I(classes, codes) =

E Pr(class,code)*log(Pr(class,code)/(Pr(class)*Pr(code))),
class code

where Pr(class,code) is the joint probability of the class and
the code assigned to a training sample, Pr(class) and Pr(code)
are the marginal class and code probabilities, respectively.

Training is performed top-down, starting from the root of
the binary decision tree. The decision function associated
with each decision node of the tree effects the split of the
feature space with a hyperplane (for the continuous-valued
feature vectors) or a dichotomy of a discrete set (for a
categorical feature). The training samples at each node were
those which reached that node after passing through
predecessor nodes.

Training of the decision function at a node uses as an
optimization criterion the reduction in the node's average
class entropy. To find a decision hyperplane, we use
conjugate gradient based search [9] where the gradient of the
criterion function with respect to the hyperplane coefficients
is computed by replacing the "hard limiter" decision function
with a piecewise linear one (the threshold-logic type) and
gradually annealing that non-linearity to the hard limiter.

347

A
Cepstrum, Differenced Cepstrum,

coustlc Frames (10 m s) / P o w e r , Differenced Power

I I I I I I I I ~ . . . I
xt Baseline (VQ codes)

1st stage ,1 Single-frame context
(frame) T
decision tree t')

/ - N x Linear combinations of
encoder O ... ~O, features at each node

ou to os
~r (Terminal nodes of tree)

1°1°14°121~!12 19191 ... I ~"
Frame Codes

Segmentation

I C°ncatenate Runs I

st-1 st St+l

2nd s t a g e ~
(segment) £~
decision tree / \ Linear combinations of features
encoder ~ / ... \O or / - ~ ... categorical features at each node

/ \
~) ~ ~l-1 N Output codes

"" (Terminal nodes of tree)

I ~ Is l i i l I 4~ I.. . I
Segmentation

I C°ncatenate Runs I

Experiment

l a (256 x 3
codebooks)

lb (1024 codes)

2a (1024 codes)

2b (256 x 3
codebooks)

Segment features based on
Cepstrum, Differenced Cepstrum,
Power, Differenced Power,
Duration of segment, and
most likely phonetic class

Three-segment context
(moving window)

___.L.__. Segment Codes
• 7 . . ~ . - 4(1024codes)

5 5 5 7 7 7 4 4 ... ~ 3(1024codes,
Segment-Coded Frames N=1023)

Figure 1: Overview of the Multi-Stage Decision Tree
(MMI) Encoder and Experiments.

348

Once the optimal coefficients are estimated, we use the hard
limiter decision function to send the patterns to the left or
the right child node. We don't split a node if the highest
reduction in the class entropy attained by the "node split" is
less than a certain fraction of the node's class entropy; a final
node is a terminal node.

After the entire binary tree is created, its performance
criterion (i.e. the average mutual information between the set
of target classes and the set of the terminal nodes) is
evaluated with a combination of the training and independent
sets of labelled data. Some nodes are then removed, starting
with the current terminal nodes, i.e., the tree is "pruned," to
produce a more robust subtree with more accurate estimates
of the node-class probabilities. The resulting terminal node
numbers are used as codes.

The above training and pruning of the trees was performed
utilizing SSI tree-growing software.

EXPERIMENTS
We compared various MMI tree encoders with the standard

MD encoders (quantizers), as used in Sphinx and other
discrete HMM-based systems. Both MMI and MD encoders
produce codes, which were used as input to the Sphinx
System [3]. For this study, a simplified version of the
Sphinx system was used. Instead of context-dependent
modeling, we used only context-independent models. Instead
of 51 features (as used in the latest version), we used only 26
features (12 cepstrum coefficients, 12 differenced cepstrum
coefficients, power and differenced power). Therefore, the
results should be evaluated relatively rather than absolutely.
We evaluated both a three-codebook version (256 codes per
codebook) and a one-codebook version (1024 codes). For the
one-codebook version, we also used co-occurrence smoothing
and deleted interpolation [4] to smooth rarely observed codes.
We used the standard inventory of 48 phonetic models, each
with 7 states and 3 output pdt~s.

We also started a preliminary evaluation of the second-
stage segment MMI codes for a version of the Sphinx
system using context-dependent HMMs. Results are given at
the end of this section.

The task for our study is the DARPA Resource
Management (RM) task, with the perplexity 60 word-pair
grammar [7]. We used the standard "extended training set" of
3990 sentences from 109 speakers for speaker-independent
training. We trained the phonetic HMMs on all 3990
sentences. All results were evaluated on 300 independent test
sentences from 12 speakers (the June 88 test set). Following
that, selected cases were evaluated on the RM2 June 90 test
set as a verification.

We first generated a first-stage MMI tree encoder (MMI-
1024). This tree was grown using 144 target phonetic classes
(48 phones x 3 distributions). All 26 features were accessible
at all nodes to form linear decision boundaries (via linear
combination splits). We used half of the training sentences
to grow the MMI tree encoder, and all of the training
sentences to prune it. This tree was grown to 1430 codes,
and then pruned to 1024 codes. The average code-class
mutual information and corresponding error rate (substitution

+ deletion + insertion) on the RM task (after the Forward-
Backward training with co-occurrence smoothing and deleted
interpolation) are shown in in Table 2.

To evaluate this result, we also generated an MD encoder
(quantizer) that used the same 26 features, utilizing a
weighted Euclidean distance (MD-1024) [3]. The results of
this encoder (again, after the Forward-Backward training with
co-occurrence smoothing and deleted interpolation) are shown
in Table 2. In this experiment, the MMI-1024 encoder error
rate was 3.5% lower than the MD-1024 encoder (a 15%
reduction in error raate).

Experiment Encoder Info (bits) Error
No. I Rate

(%)

2a MMI-1024 3.42 out of 6.63 19.2
lb MD-1024 3.16 out of 6.63 22.7
1 See Fig. 1.

Table 2: Comparison of an MD encoder with an MMI
frame stage encoder: a single codebook.

Since the standard Sphinx system uses three separate VQ
codebooks, we also compared the performance of a 3-
codebook MD encoder and a 3-codebook MMI encoder. In
each case, the encoder has access only to a subset of the
features (VQ1 - 12 cepstrum coefficients, VQ2 - 12
differenced cepstrum coefficients, and VQ3 - power &
differenced power). The codebook size was the same for all
the encoders (256 codes). Co-occurrence smoothing of the
output code pdfs was not performed in these experiments,
but deleted interpolation was done. The results (see Table 3)
indicate that the MMI encoder gives slightly higher error
than the MD encoder (despite higher information extracted),
and both were worse than the MMI-1024 encoder. We
conclude that effective tree encoders require access to the
entire feature vector, so as to exploit the between-feature
relationships.

Experiment E n c o d e r In fo (bits) Er ro r
No. 1 (VO1. VO2.VO33 Rate

(%)

2b MMI 3-VQ 2.23, 1.77, 1.79 20.5
out of 6.63

la MD3-VQ 2.09, 1.51, 1.68 20.0
out of 6.63

1 See Fig. 1.

Table 3: Comparison of MD encoders with MMI
frame-stage encoders: three codebooks.

Next, we evaluated the second-stage MMI tree encoder.
We used a three-segment sliding window to compute features
derived from the 26 frame acoustic parameters, and
categorical features derived from the segment phonetic
identities discovered by the first-stage tree encoder. Segment
duration features were also computed.

The target labels for segments were derived from the
labels of the constituent frames. Using those targets, we
grew a second-stage MMI tree encoder to 1417 codes (using
all of the training sentences) and then pruned it to 1024

349

codes. The codes output by the encoder were further
compressed by combining runs of segments with the same
codes into larger segments.

We evaluated the second-stage codes in two ways: as
frame codes (every constituent frame of a segment was
assigned the segment code, MMI-SF), and as segment codes
(one code per segment, MMI-SS). Respectively, we trained
two sets of the phonetic HMMs (standard 48 phonetic
models of the SPHINX system) and ran recognition tests
using streams of frame and segment codes. The code-class
mutual information and corresponding error rates are shown
in Table 4 (after the Forward-Backward training with co-
occu~ence smoothing and deleted interpolation).

Although MMI-SF extracts substantially more
information, the performance was slightly lower. However,
switching to segment codes (MMI-SS) resulted in a
performance improvement of 4.0% (21% reduction in error)
relative to the first stage alone. Performance was improved
7.5% (33% reduction) over the MD-1024 baseline (Table 2).

E x p e r i m e n t Fdl.C..9.d.fJ: l n f o (bits) Error
N o . R a t e

f%)

2a MMI-1024 3.42 out of 6.63 19.2
4 MMI-SF 3.85 out of 6.63 19.8
3 MMI-SS 3.52 out of 6.73 15.2

Table 4: MMI encoders: different temporal units. (MMI-
SF is segment codes on frames; MMI-SS is
segment codes on segments.)

It was also found that MMI segment codes lead to
significant frame compression (on the average, 1.6
frames/segment) and therefore to significant speed advantages
(which should be roughly proportional to the reduction in
segments). Table 5 illustrates this phenomenon. Thus, there
was a simultaneous improvement in speed and accuracy
using an MMI segment encoder rather than an MD vector
quantizer.

Table 5 displays the average number of temporal units
(frames or segments) per target label class in the Per Target
column. The number of segments decreases with each stage
of successive temporal compression. In the final
segmentation, the number of temporal units per target label
class is reduced by a factor of 1.6. We can measure whether
the temporal compression loses target class segment
boundaries, by examining the percentages of the target label
classes which were merged into groups of two or more
within single segments (Merged Targets column); only 3.2%
of such targets were merged by the final segmentation stage.

S e g m e n t a t i o n ~ Merged
T a r g e t s

before 1st stage 3.18 frames 0%
after 1st stage 2.48 segments 1.6%
after 2nd stage 2.01 segments 3.2%

Table 5: Effect of segmentation.

We conjecture that the observed improvement in the
recognition accuracy for the segment codes versus frame
codes is mainly due to the following. First, the underlying
assumption of independence of the output code distributions
given a transition in a phonetic class model (made for use of
the hidden Markov models of phonetic classes) is satisfied to
a greater extent when the runs of frames with the same code
are merged in a single segment code, thus absorbing short-
time dependencies. Therefore, the HMMs become more
adequate models of the phonetic classes. Second, there
remains a sufficient amount of training data for the segment
codes after the data is compressed due to segmentation.
Finally, segmentation does not lead to any significant
merging of the target label classes within the resulting
segments, thereby retaining temporal resolution of phonetic
targets.

We also made a preliminary evaluation of the 2nd-stage
segment MMI codes for a version of the Sphinx system
using context-dependent HMMs (1100 generalized triphone
models for within- and between-word triphones). The results
are shown in Table 6. Results for a comparable Sphinx
configuration using 3 MD codebooks (using subsets of the
26 features) is shown for comparison. In both cases, co-
occurrence smoothing was performed along with deleted
interpolation. Although the word accuracy is close for both
cases, the decoding speedup for the segment codes gives the
advantage to the MMI encoder. We view these results as
rather encouraging, in view of the following limitations: (a)
the encoder tree's topology was not utilized for pdf
smoothing, and (b) training of the MMI encoders was done
on the pdf labels of the 48 phones, and not on the generalized
triphones. Further investigation of the use of MMI encoders
with context-dependent HMMs will be conducted in the
future.

E n c o d e r

MMI-SS-Context Dependent
MD 3-VQ-Context Dependent

Error
R a t e

7.1
7.0

Table 6: Context-dependent decoding.

Results for the RM2 (June 90) test set are shown in table 7.
They show the same trend.

Fdllf.O.dg.i: Error
R a t e
f%)

MD-1024 19.5
MMI-SS 15.6
MMI-S S -Context Dependent 8.0

Table 7: Results on June 90 RM test set.

CONCLUSION
We compared vector quantization (the MD encoder) with

no segmentation to a multi-stage decision-tree encoder (the
MMI encoder) with and without segmentation. We found that
the MMI encoder (1) extracts a significantly larger amount of
information than the MD encoder; (2) works better with a

350

combined feature set (as a single tree); and (3) yields higher
accuracy with faster decoding time when segment codes are
used.

In order to make a controlled comparison, neither the best
decision tree technology nor the best Markov model
technology was used. In decision trees, we did not use wider
context in the frame tree, as in previous work [1]. In
addition, we have found that a third segmentation stage
helps, creating even larger yet "clean" segments (unpublished
work at SSI). The decision tree can easily use more features
simultaneously, providing the prospect of more informative
codes. Since the trees make dichotomous decisions, more
extensive smoothing of the codes (utilizing tree topology)
should help. Further, several iterations of the entire process
of labelling the frames and tree-growing can be repeated to
improve accuracy (as long as the resulting recognizer
provides more accurate decoding than that of the previous
iteration). Finally, due to temporal compression of frames
and resulting data reduction, a reduced topology of the
phonetic HMMs (e.g., fewer states/transitions) may yield a
better fit to the segment codes. Future research will include
trying some of these variations.

In our experiments, we have not fully explored the context
dependency of the phonetic models. Further investigation of
the use of MMI encoders with context-dependent HMMs will
be conducted in the future.

REFERENCES
1. Anikst, M.T., Meisel, W.S., Newstadt, R.E,, Pirzadeh,
S.S., Schumacher, J.E., Shinn, P., Soares, M.C., Trawick,
D.T. A Continuous Speech Recognizer Using Two-Stage
Encoder Neural Nets. Proc. International Joint Conference on
Neural Networks, Washington D.C., pp. I1-306 - II-309,
January 1990.

2. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone,
C.J. Classification and Regression Trees, Wadsworth
International Group, Belmont, Calif., 1984.

3. Lee, K.-F. Automatic Speech Recognition: The
Development of the SPHINX System. Kluwer Academic
Publishers, Boston, 1989.

4. Lee, K.F., Hon, H.W. Speaker-Independent Phone
Recognition Using Hidden Markov Models, IEEE
Transactions on ASSP, November, 1989.

5. Meisel, W.S., Michalopoulos, D.A. A Partitioning
Algorithm with Application in Pattern Classification,
Piecewise-Constant Approximation, and the Optimization of
Decision Trees, IEEE Trans. on Computers, January 1973.

6. Meisel, W.S., Fortunato, M.P., Michalek, W.D. A
Phonetically-Based Speech Recognition System, Speech
Technology, pp. 44-48, Apr/May 1989.

7. Pallett, D. S. Benchmark Tests for DARPA Performance
Evaluations, Proc. ICASSP 98, pp. 536-539, May 1989.

g. Payne, H.J., Meisel, W.S. An Algorithm for
Constructing Optimal Binary Decision Trees, IEEE Trans.
on Computers, September 1977.

9. Press, W.H., Flannery, B.P.,Teukolsky, S.A.,
Vetterling, W.T. Numerical Recipes, Cambridge University
Press, 1986.

351

