
Using Explanation-Based Learning to Increase
Performance in a Large-Scale NL Query System

Manny Rayner, Christer Samuelsson
Swedish Institute of Computer Science

Box 1263
S-164 28 KISTA, Sweden

1. Introduction
Explanation-based learning (EBL) is a machine-learning

technique, closely connected to other techniques like macro-
operator learning, chunking, and partial evaluation; a phrase
we have found useful for describing the method to logic
programmers is example-guided partial evaluation. The basic
ideas of the method are well-described in an overview article
which recently appeared in Artificial Intelligence [1], to
which we refer the reader who wants to understand the
theoretical principles; here, we will only summarize briefly
what EBL means in the context of natural-language
processing. A detailed presentation can be found in [3] and
[4].

What EBL tries to do in the context of NLP is exploit
the well-known observation that users of an NL interface
tend to ask the same types of question most of the time;
lacking exact figures, it seems reasonable to guess that at
least 80% of all questions posed to a given specific NL
application will be accounted for by the 100 most common
question-types. If one had some simple way of
automatically identifying these "common" question-types, it
would be possible to win a great deal of efficiency by by-
passing the normal parsing mechanism in all but the hard
case s ,

Unfortunately, it is not feasible simply to add 100 extra
rules to the grammar, since the common question-types vary
depending on the application: a construction which occurs
constantly in one domain may hardly exist in another.
Something more sophisticated is required, which is capable
of taking examples of common types of query and
synthesizing the corresponding special rules. This is exactly
what the EBL method offers. The normal route through the
parser is extended with an EBL bypass, which contains
special rules for efficient processing of common queries;
these rules are not coded by the programmer, but rather are
produced automatically by inspecting the solutions to
previously posed queries of the same type. EBL can thus
best be thought of as a way of automatically tuning an NL
system to produce increased performance in a particular
domain.

The EBL module can consequently be divided into its
compile-time and run-time parts. The compile-time part
extracts the learned rules from sample queries: the central
component is the generalizer, which in our version is
essentially a type of Prolog interpreter. The run-time part
then applies the rules to input queries, the compile-time

system having previously indexed them so as to make them
readily accessible to some kind of table look-up facility. In
[4], we demonstrated, using examples taken from an
application of the EBL method to CHAT-80 [2], that table
look-up methods of this kind can be implemented quite
simply in Prolog with a minimal overhead.

In the current paper, we describe the results of
experiments carried out at IBM Nordic Laboratories, where
the EBL method was used on a large-scale NL query
interface prototype. The EBL module learns a "two-lever'
set of special grammar rules; the top-level rules for S's treat
NP's as primitive, and these are supplemented by a second
set of rules for common NP's. Both types of rules are
learned automatically in the way described above. In the
remainder of the paper, we first give a brief overview of the
IBM system, concentrating on the features that presented
problems for the implementation of the EBL process; we
then describe the architecture of the EBL module's compile-
time and run-time components. In section 4, we present our
experimental results, which indicate fairly unambiguously
that the EBL method gives a real, and quite substantial,
speed-up of the system as a whole; the final section contains
our conclusions together with suggested directions for

• further research.

2. Relevant characteristics of the
target NL system

The system used for our experiments was a large-scale
NL query prototype, implemented in Prolog, which is
intended to provide good coverage of a fairly large portion of
English. The main components perform the tasks of
parsing, semantic interpretation, paraphrasing and database
query generation; since the first of these is both the
"cleanest" and by far the most time-consuming, we decided
only to attempt to apply EBL to this phase of the process.
We will thus concentrate exclusively in the following
description on the grammar formalism, grammar and parser.
As explained in [4], the main difficulties derive from the fact
that our implementation of the EBL method requires the
grammar to be reduced to a set of Horn-clauses: in our
earlier experiments with CHAT-80, this was fairly simple,
and only involved some minor editing of the code. Here,
however, the gap between the grammar and an equivalent
"clean" version was non-trivial. This was much more
important than the mere increase in its size (~1000 rules, as
opposed to 150 for CHAT-80), which in fact caused no
problems at all.

251

The two major hurdles with regard to the grammar
formalism were its non-standard treatment of features and
movement. The basic feature operation is not unification,
but priority merge: movement is handled not by gap
features, but rather by "non-restrictive" rules, in which more
than one non-terminal can occur on the left-hand side of the
rule as well as the right. Partly due to this, an unusual
parsing mechanism is used, in which extra-logical predicates
(especially "assert") play an integral part. To give the
flavour of the formalism, the following is a slightly
modified version of a typical non-restrictive rule, in this
case intended to cover free relatives like the one in "John
mentioned a book yesterday which you should read":

s (2,prm=l, fpe (2)) &
temp_advp (i, trm=l, fpe (i)) ->
temp_advp (dng=0) & s (rel=l)

The rule reverses the sequence of temporal adverbial and
relative clause, in effect transforming the sentence into
"John mentioned a book which you should read yesterday".
The "2" in the first argument position in the left-hand "s"
indicates that its features are to be inherited from those in
the second constituent on the right-hand side; " p r r a = l "
means that the "13 rra" feature in the inherited set will if
necessary be overridden and set to 1.

As we shall see in section 3.3, the parsing mechanism
turns out to be irrelevant for our purposes; all that is
significant is the grammar, viewed as a declarative
description. We shall accordingly conclude our description of
the target system at this point.

3. Design of the EBL module

3.1 Overall architecture
As explained above, the EBL module can naturally be

divided into its compile-time and run-time components,
which we will further describe in the following sections.
For convenience, we will sub-divide the compile-time
system into three smaller components. These are the
grammar pre-processor, which converts the grammar into a
suitable pure Horn-clause representation; the generalizer,
which performs the actual extraction of learned rules; and the
simplifier, which attempts to reduce them in size by
removing unnecessary calls. We now examine each of these
in turn.

3.2 The grammar pre-processor
This component performs the job of converting the

original grammar into a pure DCG form, in which the first
argument of each non-terminal contains a term encoding its
derivation history; the motivation for this additional
condition will be apparent in the next section. The only
non-trivial part of the process, from our viewpoint, was
dealing with unrestricted rules, since the other problems had

already been taken care of by the normal grammar compiler.
However, it turned out that this problem could also be
solved simply, by first representing the unrestricted rules in
Pereira's Extraposition Grammar (XG) format; using the XG
compiler from [2], it is then straight-forward to turn the
grammar into pure Horn-clauses. Conceptually, the XG
compiler turns the ~mrestricted grammar into a DCG, where
each non-terminal is given an extra pair of arguments (the
"extraposition list"), to pass around the additional left-hand
constituents. To give an example, the rule quoted at the end
of section 2 is represented (again in a slightly edited form)
as follows:

s(s(rulell2,S,T),Feats l,Sem i,
X_in, x (nogap, nonterm~nal,

t emp_advp (T, Feat s_2, Sere_2),
X out)) ->

temp_advp (T, Feat s_3, X in, Xnext),
{get_feature (Feats_3, dng, 0) },
s (S, Feats_4, X_next, X out),
{get_feature (Feat s_4, rel, 1),
put_feature (Feat s_3, prm, i, Feat s_l),
put feature (Feat s_4, trm, I, Feat s_2) }.

The DCG produced can potentially contain left-recursive
rules. However, we shall see in the next section that this
causes no problems, since it is not used for normal,
unrestricted parsing; the non-terminating branches in the
search space can thus never be entered.

3.3 The generalizer
Since a detailed description of the generalizer can be found

in [4], we will restrict ourselves here to an example and a
brief overview. The basic idea is first to define the class of
operational goals; by this, we mean the goals which will be
allowed to appear on the right-hand-side of learned rules.
Having done this, a successfully processed example is
generalized by (notionally) constructing a derivation tree for
it, and then chopping off all the branches rooted in
operational goals; the leaves in the new, "generalized"
derivation will be the conditions in the learned rule (and thus
by construction operational), and the root will be a more
general version of the goal corresponding to that in the
example. In the simplest (one-level) version of the scheme,
operational goals will coincide with lexical ones: thus
generalization will be at the word level. An illustrative
example is shown in diagram 1.

A slight refinement is to allow non-lexical operational
goals, in particular ones corresponding to NP's. The basic
method can now be applied recursively, first to the proof
tree corresponding to the entire example, and then to each
tree rooted in an operational NP goal; in the latter case, the
operationality criterion is once again lexical. This results in
the acquisition of two sets of rules, corresponding to the
two different operationality criteria: the top-level rules
construct S's from NP's and lexical items, and the second-
level ones construct NP's from lexical items alone.

252

s (S) --> np(Agr,VP^S), vp(Agr,VP). (i)
np (3-s, NP) --> pn(NP) . (2)
np (Agr,NP) --> det (Agr,Ni^NP), n (Agr, Nl) . (3)
vp (Agr,X^S) --> tv(Agr, X^VP), np (_,VP^S). (4)
pn((PN^VP)^VP) --> [PN], {lex(PN, pn)}. (5)
det (Agr, (X^Si) ̂ (X^S2) ̂ quant (Det,X, Si, S2)) -->

[Det], {lex(Det,det(Agr))}. (6)
n(Agr,X^[N,X]) --> [N], {lex(N,n(Agr))}. (7)
tv(Agr,X^yA[TV, X,Y]) --> [TV], {lex(TV, tv(Agr))}. (8)

lex (john, pn) .
lex (cat, n (3-s)) .

lex (a, det) .
lex (loves, tv (3-s)) .

Grammar and lexicon

lex (john, pn)

(5)

pn ((john^VP) ̂ VP,
[johnlR],R)

lex (loves, tv (3-s))

(8)
tv (3-S,

X^Y ̂ [loves, X, Y],

lex (a, det (3-s)) lex (cat, n (3-s))

det(3-s, (Y^Sl) ̂ (Y^S2) ^ n(3-s,Y ̂ [cat,Y],
quant (a, Y, Sl, S2), [cat }R] ,R)

[loves I R], R) [al R], R ~ ~

np (3-s, (Y^S) ̂ quant (a,Y, [cat,Y],S),
(2) ~ [a, cat I R] ,R)

np (3-s, (john^VP) ̂ VP, ~ /
[johnl R], R)

vp (3-s,X^quant (a,Y, [cat,Y], [loves,X, Y]),
[loves, a, cat I R], R)

s (quant (a,Y, [cat, Y], [loves, john, Y]),
[john, loves, a, cat], [])

Derivation of"John loves a cat"

lex (A, pn) lex (B, tv (3-s))

I(5) 1(8)
tv (3-S, pn ((A^VP) ̂ VP,

[AIR] ,R) X^Y^ [B'X' Y] '
[BIR] ,R)

np (Agr, (Y^S) ̂ quant (C,Y, [D,Y],S),
(2) ~ [C,DIR] ,R)

np (3-s, (A^VP) ̂ VP, ~ /
[AIR] ,R)

vp (3-s, X^quant (C,Y, [D,Y], , [B,X,Y])
[B, C,D IR], R)

s (quant (C,Y, [D,Y], [B,A,Y]) ,
[A,B,C,D], [])

Generalized derivation tree

s (quant (C,Y, [D,Y], [B,A,Y]), [A,B,C,D], []) "-
lex(A, pn), lex(B,tv(3-s)), lex(C, det), lex(D,n(Agr)) .

Generalized derived rule

Diagram 1. Example application of EBL to a toy logic grammar.

lex (C, det (Agr)) lex (D, n (Agr))

I (6) I(7)
det (Agr, (X^SI) ̂ (X^S2) ̂ n (Agr,Y^ [D,Y],

quant (C, X, SI, $2), [DIR],R)
[CIR] ,R)

253

The generalizer is basically a Prolog meta-interpreter,
which means that generalization is from a computational
perspective essentially the parsing of a query with a DCG;
this means that care has to be taken to ensure that parsing
efficiency is acceptably high, and even more importantly
that infinite recursions are not caused by left-recursive
grammar rules. Luckily, there is a simple and uniform way
to solve this problem, by exploiting the fact that the first
argument in each rule has been set up to hold the derivation
history. The query is first run through the normal, "dirty"
grammar, to find the intended instantiation of the derivation
argument; this is then used to guide DCG parser used by the
generalizer, effectively making the "parsing" deterministic.
The top-level is thus schematically:

extract rule (Query,Rule) "-
dirty_parse (s (Tree, ,) ,Query),
generalize (clean_parse (s (Tree, ,),

Query) ,
Rule) .

where the predicate names have their obvious meanings.

3.4 T h e s i m p l i f i e r
The purpose of this module is to attempt to reduce the

size of learned rules, in particular calls to feature-
manipulation primitives; these make up most of the body of
typical rules with on average about 50 calls per rule. The
basic mechanism is to take each feature-value, and trace its
update history backwards through successive updates.
Dividing feature-manipulation into "gets" and "puts", we
can optimize in at least the following ways:

- Removing "gets" which can already be seen at compile-
time to succeed. Since learned rules are compositions of
normal ones, this case occurs when one component rule
"gets" a feature that an earlier component has "put".

- Removing duplicate copies, when the same "get" occurs
more than once in the rule.

- Reordering the rule body so that all structure-building
takes place at the end: this ensures that structure will
only be built if the rule succeeds.

If features were only used for syntax, it would also be
possible to perform a further kind of optimization for S-
level rules; having traced each "get" back through the chain
of "puts" ending in the feature set it accesses, we could then
remove the "puts" altogether. This would represent a very
considerable reduction in average rule-size. Semantic
processing in the target system is unfortunately not
structured so as to allow this, but we think it likely that the
method could be applicable in other, similar, contexts.

The following pseudo-code characterizes the simplifica-
tion algorithm:

Phase 1
1. Combine "gets" and "puts" accessing the same feature

set into groups. Replace each group with a
corresponding call to get_group or put_group.

2. Collect all calls to structure-building routines.

Phase 2
Go through the body of the rule, passing an alist of
annotations; this is used to replace or simplify calls to
"get_group". The alist associates with each feature set a
history of its derivation. This is one of
• primitive (Constituent) - the feature setis the

one associated with Constituent.

• update_from (Old_features, Update_set) -
the feature set was derived from 01 d_ f e at u r e s by
the chain of updates Update_set.

For each literal L in the rule body, do one of the following.

i) If L is of the form put group (Old, Updates,
New), then add a suitable entry to the alist, constructed
from L and the derivation history of Old.

ii) IlL is of the form getgroup (Feature_set,
Ac c e s s i i st), replace it with a literal of the form
get_gro'up (Ori gi nal, Acce s s_l i st_l),
where:
a) O r i g i n a l is the base of the update chain that

F e a t u r e s e t belongs to.

b) Access list_l is derived from Access_list
as follows: for each element F=V, if F=VI is in the
list of updates, unify V with Vl and throw away
F=V.

iii) If L is of any other form, keep it unaltered.

Phase 3
1. Remove duplicate calls.
2. Re-expand calls to get_group and put_group.
3. Add structure-building calls to the end of the rule body.

3.5 . T h e p a t t e r n - m a t c h e r
Since the learned rules acquired by the generalizer in effect

comprise a specialized grammar, it would be possible to
apply the normal parsing mechanism to them. However,
this fails to exploit the grammar's unusually simple
structure: the depth of a derivation-tree cannot exceed two,
and NP is the only non-lexical category. Thinking about the
problem in this way should make the pattern-matcher's
construction easy to understand. The rules are compiled into
a trie-structure, indexed by constituent category; this can
either be "NP", or some lexical category. The pattern-
matcher then locates potentially suitable rules by a kind of
non-deterministic LR parsing method, driven by the trie-
structure and otherwise optimized to exploit the peculiarities
of the situation; a well-formed substring table is used to
remember previously located NP's. Our tests indicate that
this method is at least five times faster than the target
system's normal parser.

The following pseudo-code characterizes the algorithm.
Positions in the input string are marked from 0 to * e n d * ;

254

* t r i e - r o o t * denotes the root-node of the trie-structure;
p o i n t e r marks the place we have reached in the input
string, t r i e _ n o d e the current position in the rule trie,
and n p s the sequence of NP's so far located between 0 and
p o i n t e r . We assume that lexical analysis has already been
performed, so that we can discover by a suitable look-up
operation whether or not there is an item of a given lexical
category at a given location in the input string.

Pattern-matching algorithm
1. Set pointer to 0. Set trie-node to *trie-

root*.
2. Set category to the lexical category of the item at

pointer.
3. Non-determinisfically do one of:

a) If there is a tde arc from trie-node to next-
node triggering on category then set trie-
node to next-node. Bump pointer andgo
back to 2.

b) If there is atde arc from trie-node to next-
node triggering on "NP", and there is an NP from
pointer to next-pointer, set trie-node
to next-node, set pointer to next-
pointer, push the found NP onto nps, and go
back to 2.

c) If pointer = *end*, and trie-node is a leaf
of the trie marked with a rule, then try to apply it to
the whole input string, if necessary looking up NP's
in sequence from rips.

The subroutine for finding NP's is similar, though
slightly simpler; the variable and constant names correspond
in the obvious way to those in the first algorithm.

To find an NP from p o i n t e r to n e x t - p o i n t e r :

1. If the well-formed substring table records that NP's have
been searched for at p o i n t e r , pick one non-
deterministically and return, else

2. Set NP-pointer to pointer. Set NP-trie-
node to *NP-trie-root*.

3. Set NP-category to the lexical category of the item
at NP-pointer.

4. Non-deterministically do one of:

a) Find a trie arc from N P - t r i e - n o d e to NP-
next-node UJggering on category. Set NP-
trie-node to NP-next-node. Bump NP-
pointer and go back to 3.

b) If there is a reduction rule at NP-trie-node,
attempt to apply it to the segment of the input
string joining p o i n t e r to N P - p o i n t e r , and
record the result in the well-formed substring table.
Then return.

c) If N P - p o i n t e r = p o i n t e r and there are no
alternatives left, record in the well-formed substring
table that NP's have been searched for at p o i n t e r ,
and return with failure.

4. Results
A proper evaluation of performance gain due to the EBL

bypass is impossible without a large statistical sample of
typical user interactions with the target system; at this stage
of the project, such data is unfortunately not available. Our
preliminary performance measurements have been based on a
corpus of 31 queries of distinct syntactic type, in length
varying between 3 and 14 words; the histogram in diagram 2
summarizes the distribution of the speed-up factor over this
set. The speed-up factor was defined as the ratio of EBL
look-up to parsing for sentences where an applicable rule
existed. It averaged slightly over 30, and as shown in the
diagram exceeded 10 on all queries. The average look-up
overhead on sentences for which no applicable rule existed
was less than 3%. One of the few disappointments of the
project was however the poor performance of the simplifier,
which was unable to achieve better than an average 20%
reduction in rule size; this appeared mainly to be due to the
necessity to keep all feature sets for possible later use in
semantic interpretation.

Distribution of Speed-ups

6

4

2

0
0-10 10-2020-3030-4040-5050-6060-70

Diagram 2. Distribution of speed-ups due to EBL
bypassing.

The following transcript of a short session with the
system illustrates the EBL module in action. Input
sentences are shown in bold-face, and comments in italics.
Note that the glosses for acquired rules are only very
approximate, and omit nearly all features.

EBL bypass initialized, no rules.
Does Iceland export fish?
Bypassing.
No match.
Adding a top level rule.

'~->doesNPTVNP?"
Adding 2 second level rules.

"NP-> Name"and
"NP->N:[mass=y]"

Is the Vip Club
organization?
Bypassing.

a small

255

No match.
Adding a top level rule.

"S -> is NP NP?"
Adding 2 second level rules.

"NP -> the Name" and
"NP -> DET ADJ N"

Who is a member of the Vip
Bypassing.
No match.
Adding a top level rule.

"S -> NP:[wh=y] isNP?"
Adding 2 second level rules.

'TVP -> PRO" and
'TVP -> DET N P DET NAME"

Club?

Is John a citizen of the United
States?
Bypassing.
EBL look-up succeeded.

The top-level rule used is "S -> is NP NP?", from the
second example; the second-level rules are "NP -> Name"
from the first example, and "NP -> DET N P DET
NAME"from the third.

5. Conclusions and further
directions

On the basis of the experiments reported here, we think
there are good reasons to take EBL seriously as a practical
and generally applicable way of optimizing NL query
systems; the speed-ups achieved were very considerable at a
low overhead. Even more importantly, it was possible to
apply the EBL method despite the target's having several
characteristics undesirable from this point of view; our a
priori guess at the beginning of the project was that, if it
worked here, it would work on most systems. We plan soon
to begin implementation of a similar module for a large
unification grammar for Swedish, where it should be easy to
cover both syntactic and semantic processing.

One thing that ought to be studied more is the dependence
of access time on the number of learned rules when this
number becomes large (over 500, say). It certainly seems
reasonable to hope that the pattern-matching algorithm
presented here will give approximately logarithmic
behaviour, but this is really an empirical question, since it
depends on the distribution of the common query-types in
terms of their lexical categories. Another important question
is the extent to which it is possible to compress the
generated rules. Since we are essentially trading space for
time, this is likely to define the limits of the method, since
we will eventually simply run out of space to store more
learned rules, even if we can index them efficiently.

In conclusion, it seems to us that application of the EBL
method to Natural Language offers a fruitful field for
continued investigation of both a practical and theoretical
nature.

• Acknowledgements
This project would have been impossible without the

assistance of many people at SICS and IBM Nordic
Laboratories. We would in particular like to thank Ivan
Bretan, Carl Brown, Jane Brown, Mats Carlsson, P ~
Dahlin, Mikael Eriksson, Per Kristiansson, Sten Orsvarn
and Mohammad Sanarnrad for their help and support.

References

1. Minton, S., Carbonell, J.G., Knoblock, C.A., Kuokka,
D.R., Etzioni, O. & Gil, Y., "Explanation-Based Learning:
A Problem-Solving Perspective", Artificial Intelligence 40
pp. 11-62, 1989

2. Pereira, F.N.C. Logic for Natural Language Analysis,
SRI Technical Note No 275, 1983

3. Rayner, M. "Applying Explanation-Based Generalization
to Natural-Language Processing". Proc. Intl. Conference on
Fifth Generation Computer Systems, Tokyo, 1988

4. Rayner, M. and Samuelsson, C., "Applying
Explanation-Based Generalization to Natural-Language
Processing (Part 2)". SICS Research Report 89015, 1989

256

