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ABSTRACT 

Automatic speech recognition technology will soon 
allow users to converse with their computers. This 
paper describes an approach to improve the human 
interface through speech recognition; describes how 
our research benefits the DARPA Spoken Language 
Research program; and describes some research 
results in the area of merging Hidden Markov Models 
(HMM), and Artificial Neural Nets (ANN). 

We apply ANN techniques as a post-process to HMM 
recognizers such as Sphinx. We show that treating 
ANNs as a post-process to partially recognized speech 
from an HMM pre-processor is superior to using 
ANNs alone or to hybrid systems applying ANNs 
before HMM processing. A theory explaining the 
advantages of applying ANNs as a post-process is 
presented along with preliminary results. 

IMPROVING THE HUMAN INTERFACE WITH 
SPEECH RECOGNITION 

Apple's approach is distinguished by its emphasis on 
conversational communication with personal 
computers as distinct from dictation or command and 
control only. It is further distinguished by integration 
of speech recognition into the visual "desk top" 
metaphor of personal computers. We believe that 
speech recognition will impact personal computing 
sooner and more effectively if it is integrated with 
other I/O modalities such as the mouse, keyboard, 
visual icons, dialog boxes and perhaps speech output. 
We expect to bring such integrated systems to market 
in the 1990's. 

Our approach is similar in spirit to notions of Alan 
Sears in his SLIP (speech, language icons, and 

pointing) paradigm but with some distinctive 
differences. We will use task domain constraints 
provided by particular application packages on 
personal computers to create constrained natural 
language understanding. Furthermore we will 
implement interactive voice and text response 
mechanisms such as dialog boxes and speech 
synthesis to respond to the users input. We will 
provide a conversational natural language 
understanding within narrow task domains on 
personal computers in which speech is augmented 
with pointing, typing, and mousing around. 

SPEECH UNDERSTANDING ON PERSONAL 
COMPUTERS 

A perennial problem confronting the speech 
recognition community has been lack of adequate 
computing power to perform real time recognition and 
understanding. This shortcoming is being solved, not 
so much to serve speech interests as it is to serve the 
computing needs of society at large. It is the natural 
progression of VLSI, economies of scale of mass 
produced personal computers, and computing 
infi'astructures. 

For personal computer users, speech recognition is 
particularly useful in areas where the user is 
confronted with too many options to easily manage 
with function keys or a small number of shift-key 
combinations. The current solution is to use pull 
down or pop up menus but these are fast becoming 
less convenient by shear weight of numbers of 
options. Sub-directories of sub-directories are 
becoming common. The arm motion simply to get the 
initial menu, and then each submenu, is a limitation 
on ease-of-use. Speech recognition can cut through 
the branches of the menu tree to speed throughput as 
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long as the speech recognition is fast and accurate 
enough. 

Speech recognition offers other advantages to the user 
interface by allowing many words and phrases to 
mean the same thing. If a user forgets a command or 
does not know if one exists, speech recognition 
systems can partially solve this problem by supporting 
synonyms and paraphrase. In addition, when user 
defined scripts and macros become numerous, they 
are difficult to manage with function keys and shift 
key commands. Speech recognition allows users to 
invoke these macros and scripts with a distinctive 
name or phrase and avoids function keys altogether. 

We expect to employ speech in interfaces to 
educational programs, standard computer applications 
(spreadsheet, word processing, etc.), multimedia 
systems, and telephone access systems. 

Automated language learning is another area of 
particular interest to Apple that seems to be yielding 
to DARPA sponsored research. Speech recognition 
techniques are becoming good enough to time align 
known utterances to templates for the words in the 
speech. Words that are poorly pronounced can be 
spotted and students can be directed to repeat 
offending words to mimic correctly pronounced 
words from the computer. 

COMMERCIAL APPLICATIONS OF DARPA 
TECHNOLOGY 

Our philosophy at Apple is to leverage the efforts of 
other companies and researchers by providing them a 
platform through which they can commercially 
address the needs of personal computer users. For 
example, we stay out of certain business areas such as 
selling application software in order to encourage 
independent developers to develop products in these 
areas. In the research area, we stand ready to adopt 
systems developed by DARPA contractors and offer 
them along side our internally developed systems to 
commercial outlets. 

Apple encourages outside vendors to produce ASR 
systems to be promoted or sold by Apple. We prefer 
to work with those DARPA contractors that make 

their research freely available, but we will also 
consider licensing technology from the outside if it is 
better than internally developed technology. We 
actively seek partners to supply components to be 
used in our own internal ASR systems. 

For example, we currently have SPHINX working on 
a MAC which we call MACSPHINX. This is not 
currently scheduled to be shipped as a product, but a 
product may be based on MACSPHINX at a later 
time. 

As our contribution to the underlying technology, we 
intend to extend Sphinx to give it a speaker dependent 
mode in which it can learn new words "on the fly". 
We will initially do this by augmenting Sphinx with 
ANNs as described below. 

As another example of partnering, we expect to begin 
building on Victor Zue's work with VOYAGER. We 
will receive VOYAGER from MIT in a month or two 
running on a MAC platform. We expect to modify it 
to run faster and with an order of magnitude less 
computing power. 

THE PLUS SPEECH ACCELERATOR PROJECT: 
In order to make it easier for DARPA contractors to 
use MACINTOSH computers, and to build speech 
recognition systems that would control applications 
on MACINTOSHs, we have supported and 
encouraged Roberto Bisiani to design a "speech 
accelerator" for more than a year. The goal was to 
allow a MAC to have intimate control over an 
accelerator processing unit that would offer between 
50 and 200 MIPS economically and with broad base 
of software support. This was achieved in an external 
box, named PLUS by its designer Roberto Bisiani, 
which has a SCSI interface as well as higher speed 
NU BUS connection to a MAC. The SCSI interface 
allows the box to be programmed by other computers 
such as SUN computers as well as using a MAC. 
However, the high speed NU BUS interface to the 
MAC will allow tighter integration with the MAC 
than other computers. The box itself contains 
Motorola 88000s, one to ten in a single box; and the 
boxes may be daisy chained. We hope many of the 
DARPA contractors in attendance here will use the 
accelerator box to make their spoken language 
communication systems available to MAC 
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FIG. 1 Nodes in a canonica l  HMM topology poin t ing  to t ime in tervals  in speech 
t ime series and  also to the input  nodes in an ANN. The poin ters  to the t ime 
in tervals  are  es tabl ished using well known techniques  as par t  of the HMM 
process ing in step 1. S t a nda rd  ANN techniques  are  then appl ied  in step 2 to the 
speech which has now been t ime al igned to fixed s t ruc tu re  of the HMM. 

applications. Development of this box is currently 
funded by DARPA and will probably be available 
later this year. 

A N N  P O S T  P R O C E S S  T O  H M M  

The Hidden Markov Model (HMM) approach is the 
dominant speech recognition paradigm in the ASR 
field today. Millions of dollars have been spent in 
dozens of institutions to explore the contributions of 
HMM techniques to speech recognition. Artificial 

Neural Net (ANN) technology is newer, but it has 
also become heavily funded and widely investigated. 
It has been only within the last year or two that the 
possibility and need to combine techniques from these 
two fields has emerged. It is very likely that 
numerous proposals for merging HMMs and ANNs 
will be presented in the next few years. 

George White has proposed a new and previously 
unpublished, technique for combining HMMs and 
ANNs. We refer to this technique as the ANN 
"postprocessing technique" by which we mean that 
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ANNs should be applied to speech "after" HMMs 
have been applied. The HMM processing determines 
where in time words should be located in the acoustic 
input data. More to the point, input nodes in an ANN 
structure may be connected to states inside the finite 
state machines that form HMMs, which are then 
connected to time intervals in the unknown speech. 
The HMMs accomplish non-linear time warping, 
otherwise known as "dynamic time warping," of time 
domain acoustic information to properly match the 
rigid structure of a neural net template (see Fig 1). 
We postulate that there is great significance to 
bringing inputs from HMM states that span several 
time units to provide input to the neural nets. 

The fundamental postulate of HMM or DTW 
(Dynamic Time Warping) is that the speech sound 
similarity scores in adjacent time intervals may be 
simply summed up provide a global match score. 
This is rationalized by assuming that the probability 
of global match over all time intervals, 
P(tl,t2,t3 .... tn), is equal to the product of the 
probabilities of the matches for each individual time 
interval. 

In other words, the fundamental assumption behind 
HMM or DTW is: 

P(tl,t2,t3,...tn)=P(tl)P(t2)P(t3)...P(tn) Eq.1 

This may be acceptable when there is no practical 
alternative but it is not accurate and can lead to 
recognition errors when when subtle differences 
between words matter. 

ANNs can circumvent this problem if they are trained 
on the global unit spanning tl,t2,t3 .... tn. The 
fundamental motivation behind our approach to 
merging ANNs and HMMs is that 

ANNs compute P(tl,t2,t3,...tn) directly 

and thus avoid the error of Eq 1. 

For example, the HMM approach to scoring word 
sized units sums scores for phonemes which in turn 
sum scores over elemental time units, typically 10 ms 
in duration, which assumes statistical independence 
between the phonemes and also between the 10 ms 
domain units. Since these units are usually not 

statistically independent, some are typically over- 
weighted. ANNs spanning word sized units overcome 
some of these limitations. 

Previous work on the general subject of merging 
HMMs and ANNs includes, "Speaker-Independent 
Word Recognition Using Dynamic Programming 
Neural Networks", by Sakoe, Isotani, and Yoshida 
(Readings in Speech Recognition, edited by Alex 
Waibel & Kai-Fu Lee). Other work includes 
"Merging Multilayer Perceptrons and Hidden Markov 
Models: Some Experiments in Continuous Speech 
Recognition" (ICSI, TR-89-033, July 1989), which 
evidently applies MLP (a form of ANN) to individual 
states inside HMM models. While this is a merger of 
ANN and HMM techniques, it falls short of the power 
of an ANN post process which overcomes the lack of 
statistical independence between adjacent time 
intervals. 

Other work includes "Speaker-Independent 
Recognition of Connected Utterances Using 
Recurrent and Non-recurrent Neural Networks" 
(IJCNN, June 1989). This work, like the one 
mentioned above, doesn't propose to achieve time 
alignment by HMM techniques as a precursor to 
applications of ANNs which is the basis of our 
proposal. Instead, it proposes to apply ANN 
technology first and then apply HMM techniques. 
This necessarily precludes the beneficial effects of 
HMM guided dynamic time warping from being 
realized by the inputs to the ANNs. 

Other related work in this area may be considered as 
special cases of one of the two above mentioned 
approaches. 

GENERAL COMMENTARY ON ANN 

While we advocate the use of ANN in conjunction 
with HMM or DTW, we do not at all endorse the 
notion that ANNs should be used alone, without DTW 
or HMM or other segment spotting approaches. 
Internal time variability in word pronunciation in 
multiple pronunciations of the same word must be 
managed and ANNs have no easy way to handle 
temporal variability without extraordinary 
requirements for silicon area. 

To handle the time variability problem with 
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accuracies competitive with HM, neural net structures 
must store intermediate results inside the neral net 
structures for each time interval. For problems as 
complex as speech recognition, this is not practical on 
silicon because of the number of interconnections is 
limited by the two dimensional nature of the surfaces 
of silicon chips. Trying to simulate the needed 
structures on Von Neumann machines, with DSPs for 
example, will result in optimal solutions similar to the 
Viterbi search currently used in HMM systems. In 
other words, as long as we are restricted to two 
dimensional chips and Von Neumann architectures, 
ANN simulations will necessarily need to employ 
search strategies that are already core technologies in 
the speech community. It would be misguided for the 
ANN community to ignore these refined search 
techniques. It is not likely that the need search 
strategies can be circumvented as long as the dynamic 
allocation of cpu operations is needed and it will be 
needed until we achieve three dimensional 
interconnections between ANNs. We should expect 
that hybrid combinations of HMMs (or DTW based 
approaches) and ANNs will be superior to pure ANN 
systems until an entirely new process for producing 
three dimensional integrated circuits is invented, and 
this will probably be a long time. 

RESULTS 

These ideas have been adapted by Parfitt at Apple for 
application to Sphinx. Parfitt modified the Sphinx 
recognition system to generate input to a three layer 
perception, a type of ANN as shown in Figures 1 and 
2. The following describes his implementation: The 
Sphinx system is initially trained in the traditional 
manner using the forward/backward algorithm. 
However, during training and recognition, a modified 
Viterbi/beam search is used. A record with 
backpointers is maintained for all nodes that are 
visited during the search. When the last speech 
interval is processed, the best final node identifies the 
optimum path through the utterance. The mapping of 
the speech data to the optimum path is used to 
establish word boundaries and derive a set of time 
aligned paramaters to pass to the ANN. 

A separate ANN is used for each word in the 
vocabulary. Each word in the vocabulary is 
represented by one or more triphone models. 

Although each triphone has seven states, only three 
are unique states. Because the HMM models contain 
skip arcs, the speech can skip one, two or all three of 
the states. The model also contains self-loop arcs for 
each of the states. The speech may match a given 
state an arbitrary number of times. When several 
speech samples match a given state, the middle 
sample is used to supply input to the ANN. When an 
even number of samples match, the left middle sample 
is used. When no speech samples match a given state, 
zero is used as input to the ANN. 

The ANN uses different input parameters than the 
HMM triphone in SPHINX. The SPHINX recognizer 
works on three VQ symbols per window. The 
windows are twenty milliseconds wide and are 
advanced by ten millisecond increments. The VQs are 
derived from three sets of parameters, twelve Cepstral 
Coefficients, twelve Delta Cepstral Coefficients, and 
Power/Delta-Power. However, the ANNs do not 
receive VQs. Instead, they receive the same three sets 
of parameters before they are vector quantized except 
that each parameter is linearly scaled to range between 
minus one and plus one. 

As shown in Figurel, the ANN models have one 
hidden layer and a single output node. Words are 
constructed from a sequence of triphones. For 
example, for the word "zero", there are four input 
triphones. Each triphone has three unique HMM 
nodes and each node has twenty-six input parameters 
for a total of 78 inputs per triphone. Hence, the word 
"zero" has 312 inputs to the ANN. The 78 inputs per 
phone are fully interconnected to 25 nodes in the 
hidden layer. All the hidden layer nodes are fully 
interconnected to the single output node. 

ANN TRAINING: Each word ANN is trained from 
time aligned data produced by the modified SPHINX. 
Two sets of data are used to train the ANNs. One set 
of data represents the "in class" utterances. The ANN 
is trained to be plus one when this first set of data is 
presented. The second set of data represents "out of 
class" utterances and is composed of other words. For 
this case, the output of the ANN is trained to be minus 
one. The ratio of "out of class" utterances to "in class" 
utterances is 3.5. The ANNs tend to converge to 
100% accuracy on the training data after about 300 
passes through the data. Back propagation is used for 
training. 
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ANN RECOGNITION: The time normalized data for 
each word from the utterance is fed as input into each 
of the neural nets. If the best path word is shorter than 
a given neural nets' input, additional data is taken 
from the rest of the best path. Silence is always 
skipped. If the end of the utterance is reached before 
enough data is collected, nulls are input to the neural 
net. For recognition, the individual neural nets are 
connected together and the output which is most "on" 
is used to indicate what word. 

The system was tested on TI Connected Digits 
Database. Six male speakers from two different 
dialects were used for training. Three males, MKR, 
MRD, and MIN were taken from the Little Rock, AR 
dialect. The other three male speakers, MBN, MBH, 
MIB, were taken from the Rochester, NY, dialect. 

The current modifications to Sphinx only produce 
pointers to the best candidate words during 
recognition. There are three classes of errors: 
insertions, deletions, and substitutions. When the 
HMM scores correctly, the ANN was tested and is in 
agreement 100% of the time. For the three classes of 
errors, only substitution errors have been tested with 
the ANN. From a set of 385 utterances, the Rochester 
male speakers, nine substitution errors were made by 
Sphinx. The ANNs corrected four of the nine errors. 

CONCLUSIONS: A larger set of data needs to be 
tested before any strong conclusions can be drawn. 
The initial reduction in error rate by 44% of an 
already highly tuned system is promising. 
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