
On Deftly Introducing Procedural Elements
into Unification Parsing

R. Bobrow
Lance Ramshaw

BBN Systems and Technologies Corp.
10 Moulton Street, Mailstop 6/4C

Cambridge, MA 02138

1 Introduction
Unification grammars based on complex feature structures
are theoretically well-founded, and their declarative nature
facilitates exploration of various parsing strategies. How-
ever, a straightfoward implementation of such parsers can
be painfully inefficient, exploding lists of possibilities and
failing to take advantage of search control methods long uti-
lized in more procedurally-oriented parsers. In the context
of BBN's Delphi NL system, we have explored modifica-
tions that gain procedural efficiency without sacrificing the
theoretical advantages of unification-based CFG's.

One class of changes was to introduce varieties of struc-
ture sharing or "folding" to control combinatorics. One kind
of sharing was achieved automatically by partially combin-
ing similar grammar rules in the tables used by the parser.
Another resulted from introducing a strictly limited form of
disjunction that grammar writers could use to reduce the
number of separate roles in the grammar.

The other class of changes introduced procedural elements
into the parsing algorithm to increase execution speed. The
major change here was adding partial prediction based on
a procedurally-tractable and linguistically-motivated subset
of grammar features. Appropriate choice of the features on
which to base the prediction allowed it to cut down sub-
stantially the space that needed to be searched at mntime.
We are also exploring the use of non-unification computation
techniques for certain subtasks, where the nature of the com-
putation is such that approaches other than unification can
be significantly faster but can still be integrated effectively
into an overall unification framework.

Together, the classes of changes discussed here resulted in
up to a 40-fold reduction in the amount of structure created
by the parser for certain sentences and an average 5-fold
parse time speedup in the BBN Delphi system. We believe
that they represent significant new directions for making the
theoretically elegant unification framework also an efficient
environment for practical parses.

2 Folding of Similar Structures
Major improvements were obtained by partially combining
similar structures, either automatically, by combining com-
mon elements of roles, or manually, through the use of a
limited form of disjunction.

2.1 Automatic Rule Folding
The goal here is to provide an automatic process that can take
advantage of the large degree of similarity frequently found
between different rules in a unification grammar by overlap-
ping their storage or execution paths. While the modularity
and declarative nature of such a grammar are well-served by
representing each of a family of related possibilities with its
own rule, storing and testing and instantiating each role sep-
arately can be quite expensive. If common rule segments
could be automatically identified, they could be partially
merged, reducing both the storage space for them and the
computational cost of matching against them.

We have implemented a first step toward this sort of auto-
matic role folding, a scheme that combines roles with equiv-
alent first elements on their right hand sides into rule-groups.
This kind of equivalence between two roles is tested by t ab
ing the first element of the right hand side of each role and
seeing ff they mutually subsume each other, meaning that
they have the same information content. If so, the vari-
ables in the two roles are renamed so that the variables in
the first elements on their right hand sides are named the
same, meaning that those elements in the two rules become
identical, although the rest of the right hand sides and the
left hand sides may still be different. This equivalence rela-
tion is used to divide the rules into equivalence classes with
identical first right hand side elements.

Before this scheme was adopted, the parser, working bot-
tom up and having discovered a consituent of a particular
type covering a particular substring, would individually test
each role whose right hand side began with a constituent of
that category to see if this element could be the first one in a
larger constituent using that rule. After adding role-groups,
the parser only needs to match against the common first right
side element for each group. If that unification fails, none
of the roles in the group are applicable; ff it succeeds, the
resulting substitution fist can be used to set up continuing
configurations for each of the rules in the group. Use of the
role-groups scheme collapsed a total of 1411 roles into 631
role-groups, meaning that each single test of a role-group on
the average did the work of testing between two and three
individual rules.

The success of this first effort suggests the utility of fur-
ther compilation methods, including folding based on right
side elements beyond the first, or on shared tails of roles, or

237

shared central subsequences. Note that the kind of efficiency
added by this use of role-groups closely resembles that found
in ATN's, which can represent the common prefixes of many
parse paths in a single state, with the paths only diverging
when different tests or actions are required. But because this
process here occurs as a compilation step, it can be added
without losing any of unificatinn's modularity and clarity.
While similar goals could also be achieved by rewriting the
grammar, for example, by creating a new constituent type
to represent the shared element, such changes would make
the grammar less perspicuous. The grammar writer should
be free to follow linguistic motivations in determining con-
stituent structure and the like, and let the system take care
of restructuring the grammar to allow it to be executed more
efficiently.

2.2 Limited Disjunction
While in some circustances, it seems best to write indepen-
dent rules and allow the system to discover the common
elements, there are other cases where it is better for the
grammar writer to be able to collapse similar rules using dis-
junction. That explicit kind of disjunction, of course, has the
same obvious advantage of allowing a single rule to express
what otherwise would take n separate roles which would
have to be matched against separately and which could add
an additional factor of n ambiguity to all the structures built
by the parser. For example, the agreement features for a
verb like "list" used to be expressed in BBN's Delphi sys-
tem using five separate rules:

(V (AGR (1ST) (SNG)) . . .) ~ (list)
(V (AGR (2ND) (SNG)) . . .) ~ (list)
(V (AGR (1ST) (PL)) . . .) ~ (list)
(V (AGR (2ND) (PL)) . . .) ~ (list)
(V (AGR (3RD) (PL))

That information can be
role:

. . .) -~ (lisO

expressed in a single disjunctive

(V (:OR (AGR (1ST) (SNG))
(AGR (2ND) (SNG))
(AGR (1ST) (PL))
(AGR (2ND) (PL))
(AGR (3RD) (PL)))...) ~ (list)

Many researchers have explored adding disjunction to uni-
fication, either for grammar compactness or for the sake of
increased efficiency at parse time. The former goal can be
met as in Definite Clause Grartmmrs [6] by allowing disjunc-
tion in the grammar formalism but multiplying such roles
out into disjunctive normal form at parse time. However,
making use of disjunction at parse time can make the unifi-
cation algorithm significantly more complex. In Karttunen's
scheme [4] for PATR-II, the result of a unification involv-
ing a disjunction includes "constraints" that must be carried
along and tested after each further unification, to be sure
that at least one of the disjuncts is still possible, and to
remove any others that have become impossible. Kasper
[5], while showing that the consistency problem for dis-
junctive descriptions is NP-complete, proposed an approach

whose average complexity is controlled by separating out
the disjunctive elements and postponing their expansion or
unification as long as possible.

Rather than pursuing efficient techniques for handling full
disjunction within unification, we have taken quite a differ-
ent tack, defining a very limited form of disjunction that can
be implemented without substantially complicating the nor-
real unification algorithm. The advantage of this approach
is that we already know that it can be implemented with-
out significant loss of efficiency, but the question is whether
such a limited version of disjunction will turn out to be suffi-
ciently powerful to encode the phenomena that seem to call
for it. Our experience seems to suggest that it is.

Much of the complexity in unifying a structure against a
disjunction arises only when more than one variable ends
up being bound, so that dependencies between possible in-
stantiations of the variables need to be remembered. For
example, the result of the following unification

?AGR N (:OR (AGR (2ND) (SNG))
(AGR (2ND) (PL))
(AGR (3RD) (PL)))

(where "?" marks variables and "lq" means unification) can
easily be represented by a substitution list that binds ?AGR
to the disjunction itself, but the following case

(AGR ?P ?N) lq (:OR (AGR (2ND) (SNG))
(AGR (2ND) (PL))
(AGR (3RD) (PL)))

requires that the values given to ?P and ?N in the substitution
list be linked in some way to record their interdependence.
In particular, it seemed that if we never allowed variables to
occur inside a disjunction nor any structure containing more
than one variable to be matched against one, then the result
of a unification would always be expressible by a single
substitution list and that any disjunctions in that substitution
list would also be only disjunctions of constants. Thus we
required that disjuncts contain no variables, and that the
value matched against a disjunction either be itself a variable
or else contain no variables.

However, enforcing the restriction against unifying dis-
junctions with multi-variable terms turns out to be more
complex than first appears. It is not sufficient to ensure,
while writing the grammar, that any element in a rule that
will directly unify with a disjunctive term be either a con-
slant term or a single variable, since a single variable in the
role that directly matches the disjunctive element might have
already, by the operation of other roles, become partially in-
stantiated as a structure containing variables, and thus one
that our limited disjunlion facility would not be able to han-
dle.

For example, if the disjunctive agreement structure for
"list" cited above occurs in a clause with a subject NP whose
agreement is (AGR (3RD) (PL)), and in a containing VP
role that merely identifies the two values by binding them
both to a single variable, the conditions for our constrained
disjunction are met. However, if the subject NP turns out
to be pronoun with its agreement represented as (AGR ?P
?N), the constraint is no longer met.

238

This problem with our fast but limited disjunction turned
up, for example, when a change in a clause rule caused
agreement features to be unbound at the point where dis-
junctive matching was encountered. The change was intro-
duced to allow for queries like "Do United or American have
f l ights. . ." , where the agreement between the conjoined sub-
ject and the verb does not follow the normal rules. The so-
lution to that problem was to introduce a constraint node [1]
pseudo-constituent, placed by convention at the end of the
role, to compute the permissible combinations of agreement
values, with the values chained from the subject through
this constraint node to the VP. Unfortunately, because of
the placement of that constraint node in the rule, this meant
that the agreement features were still unbound when the VP
was reached, which caused our disjunctive unification to fail.

In our current implementation, the grammar writer who
makes use of disjunction in a rule must also ensure that the
combination of that rule with the existing grammar and the
known parsing strategy will still maintain the property that
any elem_ent to be unified with a disjunctive element will
be either a constant or a single variable. Mistakes result
in errors flagged during parsing when such a unification is
attempted. We are not happy with this limitation, and are
planning to expand the power of our disjunction mechanism
using Kasper's methods [51 insofar as we can do so while
maintaining efficiency. Nevertheless, the result of our work
so far has been a many-fold reduction in the amount of struc-
ture generated by the parser without any significant increase
in the complexity of the unification itself.

3 Procedural Algorithmic Elements
A second class of changes in addition to those that fold
together similar structures are changes in the parsing algo-
rithm that reduce the size of the search space that must be
explored. The major type of such control was a form of
prediction from left context in the sentence.

3.1 P r e d i c t i o n

A form of prediction for CFG's was described by Graham,
Harrison, and Ruzzo [3] that was complete in the sense that,
during its bottom-up, left-to-right parsing, their algorithm
never tries to build derivations at word w using role R un-
less there is a partial derivation of the left context from the
beginning of the sentence up to word w - 1 that contains a
partially matched rule whose next element can be the root
of a tree with R on its left frontier. This is done by comput-
ing at each position in the sentence the set of non-terminals
that can follow partial derivations of the sentence up to that
point.

While this style of prediction works well for CFG's,
simple extension of that method to unification grammars
founders due to the size of the prediction tables required,
since a separate entry in the prediction tables needs to be
made not just for each major category, but also for every
distinct set of feature values that occurs in the grammar.
One alternative is to do only partial prediction, ignoring
some or all of the feature values. (The equivalent for CFG's

would be predicting on the basis of sets of non-terminals.)
This reduces the size of the prediction tables at the cost
of reducing the selectivity of the predictions and thus rel-
atively increasing the space that will have to be searched
while parsing.

The amount of selectivity available from prediction based
on particular sets of feature values depends, of course, on
the structure of the particular grammar. In the BBN Delphi
system, we found that prediction based on major category
only, ignoring all feature values, was only very weakly se-
lective, since each major category predicted almost the full
set of possible categories. Thus, it was important to make
the prediction sensitive to at least some feature values. We
achieved the same effect by splitting certain categories based
on the values of key features and on context of applicabil-
ity. Prediction by categories in this adjusted grammar did
significantly reduce the search space.

For example, our former grammar used the single category
symbol S to represent both matrix (or too0 clauses and sub-
ordinate clauses. This had the effect on prediction that any
context which could predict a sub-clause ended up predict-
ing both S itself and everything that could begin an S, which
meant in practice almost all the categories in the grammar.
By dividing the S category into two, called ROOT-S and S,
we were able to limit such promiscuous prediction. Further-
more, the distinction between root and non-root clauses is
well estabfished in the linguistic literature (see e.g. Emonds
[2]). Having this distinction encoded via separate category
symbols, rather than through subfeatures, allows us to more
easily separate out the phenomena that distinguish the two
types of clause. For example, root clauses express direct
questions, which are signalled by subject-anx inversion ("Is
that a non-stop flight?") while subordinate clauses express
indirect questions, which are signalled by "if" or "whether"
("I wonder if/whether that is a non-stop flight.") Thus it
seems that the distinction needed for predictive precision at
least in this case was also one of more general linguistic
usefulness.

A further major gain in predictive power occurred when
we made linguistic trace information useable for prediction.
The presence of a trace in the current left context was used
to control whether or not the prediction of one category
would have the effect of predicting another, with the result
of avoiding the needless exploration of parse paths involving
traces in contexts where they were not available.

Like the role-groups described earfier, prediction brings
to a bottom-up, unification parser a kind of procedural effi-
ciency that is common in other parsing formalisms, where
information from the left context cuts down the space of
possibilities to be explored. Note that this is not always an
advantage; for parsing fragmentary or ill-formed input, one
might like to be able to turn prediction off and revert to a
full, bottom-up parse, in order to work with elements that
are not consistent with their left context. However, it is easy
to parameterize this kind of predictive control for a unifica-
tion parser, so as to benefit from the additional speed in the
typical case, but also to be able to explore the full range of
possibilities when necessary.

239

3.2 Non-Unification Computations
We are also exploring the integration of non-unification com-
putations into the parser, where these can still provide the
order-independence and other theoretical advantages of uni-
fication. There are some subproblems that need to be solved
dunng parsing that do not seem well-suited to unification,
but for which there are established, efficient solutions. We
have built into our parser an "escape" mechanism that allows
these limited problems to be solved by some other computa-
tional scheme, with the results then put into a form that can
fit into the continuing unification parsing. While our work
in this area is still at an early stage, the following are the
kinds of uses we intend to make of this mechanism.

For example, there is a semantic "indexing" problem that
arises in parsing PP attachment, which involves access-
ing the elements of a relation that can be schematized as
(MATRIX-CLASS PREP MODIFIER-CLASS), for exam-
ple, that "flights" can be "from" a "city". This becomes an
indexing problem because different elements of the relation
can be unknown in different circumstances. Either class, for
example, can be unknown in questions or anaphors. While
unification can certainly handle such bidirectionality, it may
not do so efficiently, since it will typically do a linear search
based on a particular argument order, while efficiency con-
ceres, on the other hand, would suggest a doubly or even
triply indexed data structure, that could quickly return the
matching elements, regardless of the known subset.

Another example, also semantic in nature, is the task of
computing taxonomic relations. There are various ways of
encoding such information in unification terms, including
one devised by Stallard [7] that is used in the Delphi sys-
tem. However, that approach is limited in expressivity in
that disjointness can only be expressed between siblings and
it also suffers from practical problems due to the size of the
encoding structures and to the fact that any change in the
taxonomy must be reflected in each separate type specifier.
Thus there are many reasons to believe that it might be bet-
ter to replace unification for computing taxonomic relations
with another known method, given that it is not difficult to
reformulate the answers from such a component to fit the
ongoing unification process.

The computations described here are all cases that could
be implemented directly in terms of unification, but expand-
ing the unification framework in these cases to allow direct
use of other computational approaches for these limited sub-
problems should be able to significantly increase efficiency
without threatening the desireable features of the framework.

between the purely declarative and the more procedural, can
help us build fast and usable unification-based NL systems
without compromising the theoretical elegance and flexibil-
ity of the original formalism.

Acknowledgements
The work reported here was supported by the Advanced Re-
search Projects Agency and was monitored by the Office
of Naval Research under Conlract No. N00014-89-C-0008.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency
or the United States Government

References
[1] R. Bobrow, Robert Ingria, and David Stallard. Syntac-

tic and Semantic Knowledge in a Unification Grammar.
Proceedings of the June 1990 DARPA Speech and Natu-
ral Language Workshop, to appear.

[2] Ernonds, J. E. A Transformational Approach to English
Syntax: Root, Structure-Preserving, and Local Transfor-
mations, Academic Press, New York, 1976.

[3] Susan L. Graham, Michael A. Harrison, and Walter L.
Ruzzo. An Improved Context-Free Recognizer. ACM
Transactions on Programming Languages and Systems
2 (1980), 415-462.

[4] Lauri Karttunen. Features and Values. Proceedings of the
International Conference on Computational Linguistics
1984, 28-33.

[5] Robert T. Kasper. A Unification Method for Disjunctive
Feature Descriptions. Proceedings of the Association for
Computational Linguistics 1987, 235-242.

[6] F. C. N. Pereira and D. H. D. Warren. Definite Clause
Grammars for Language Analysis--A Survey of the For-
realism and a Comparison with Augmented Transition
Networks. Artificial Intelligence 13 (1980), 231-278.

[7] David Stallard. Unification-Based Semantic Interpreta-
tion in the BBN Spoken Language System. Speech and
Natural Language, Proceedings of the October 1989
DARPA Workshop, Morgan Kaufmann, 39-46.

4 Conclusions
We have described a number of approaches toward increas-
ing the efficiency of a unification-based parser. A compi-
lation step can merge common rule elements automatically,
while a limited but efficient form of disjunction allows the
grammar writer to combine roles by hand. Prediction us-
ing a tuned set of categories can cut down the search space
without excessive overhead, and the use of non-unification
Computation for certain subproblerns can add further effi-
ciency. Careful design of this sort, exploring the Iradeoffs

240

