
R e c e n t Progress on the V O Y A G E R S y s t e m

Victor Zue, James Glass, David Goodine,
Hong Leung, Michael McCandless, Michael Phillips,

Joseph Polifroni, and Stephanie Seneff
Room NE43-601

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Introduction
The VOYAGER speech recognition system, which was de-

scribed in some detail at the last DARPA meeting [9], is
an urban exploration system which provides the user with
help in locating various sites in the area of Cambridge, Mas-
sachusetts. The system has a limited database of objects
such as banks, restaurants, and post offices and can provide
information about these objects (e.g., phone numbers, type of
cuisine served) as well as providing navigational assistance be-
tween them. VOYAGER accepts both spoken and typed input
and responds in the form of text, graphics, and synthesized
speech. Since the last meeting, we have made developments
to VOYAGER that have had an impact on the usability of the
system.

In this paper, we will describe these developments and
report on evaluation results after these changes were incor-
porated into the system. Two key developments to VOYAGER

are a tighter integration of the speech and natural language
components and a pipelined hardware implementation lead-
ing to a speed-up in processing time from approximately 12
times real time to approximately 5 times real time. We also
discuss here a number of incremental improvements in the
word-pair grammar, pronunciation networks, and the back-
end capabilities.

SR/NL Integration
In our initial implementation of VOYAGER, the integration

of speech and natural language components was accomplished
by obtaining the best word sequence from the recognizer and
passing that word sequence to the natural language system.
Modifying the speech recognition component to produce a
list of the top scoring word sequences provides a convenient
means for increasing the level of integration of the speech
recognition and natural language components [2]. In this way,
the natural language system can be run successively on each
of the word sequences to find the highest scoring sequence
that passes the natural language constraints.

Two-stage N-Best search
Previously, to produce the top scoring word sequence, our

speech recognition system used Viterbi search [4,10]. This al-
gorithm provides an efficient search for the top word sequence
but does not directly provide the top N word sequences. Oth-
ers have chosen to modify this search by keeping track of the
top N word sequences at each point in the search [2]. We also

use a modification of Viterbi search to produce the top N
word sequences. In our algorithm, we first use Viterbi search
to compute the best partial paths both arriving and leaving
each lexical node at each point in time. The algorithm then
successively extracts the next best complete path by search-
ing through the precomputed matrix of partial paths to find
the highest scoring path that has not yet been extracted.

To extract the N highest scoring paths from the precom-
puted matrix of partial paths, this two-stage N-Best search
utilizes the fact that each new path must either contain a new
node-pair (a given lexical node at a given point in time) or
must be some combination of portions of the paths found
so far. So, the search must keep track of the best path
passing through each node-pair (which is the sum of the
scores of the best arriving and leaving paths computed by
the Viterbi search) and must also keep track of all combina-
tions of the complete paths found so far. The next highest
scoring path can be found by taking the highest scoring path
either through a new node-pair or from some combination of
previous paths.

The computation of the partial paths either arriving or
leaving each lexical node at each point in time is the same as
needed for the forward Viterbi search for the top scoring word
sequence. Therefore, the total computation needed for this
algorithm is two times the Viterbi search plus the amount
of computation we need to extract the paths from the pre-
computed matrix. We have measured the computation time
and memory use of our implementation of this algorithm as
a function of the number of sentence hypotheses. This re-
source use is plotted as the open symbols in Figure 1. This
experiment was performed on 495 utterances with a test set
word-pair perplexity of 73 and a vocabulary size of 350 words.

This algorithm is somewhat different from the frame- syn-
chronous algorithm described previously [2], and has a num-
ber of advantages and disadvantages. An important advan-
tage for VOYAGER is that we do not have to choose N before
performing the search. In the system, we are able to check
each word string as it is produced by the recognizer and tell
the system to quit as soon as one of the sentences passes the
natural language constraints. Also, at least in our segment
based system, this algorithm is quite efficient. This efficiency
advantage may not hold for frame-based systems. As de-
scribed above, it is necessary to keep track of pointers for the
partial paths for the entire node-pair matrix. This is not a

206

large problem in our system, since the nodes are at a segment
level rather than at a frame level. Furthermore, we needed
to keep track of these pointers for the forward pass in the
Viterbi search anyway, and so the memory requirements only
increase by a factor of two. A disadvantage of this approach,
at least when implemented on a per utterance-basis as de-
scribed, is that more than two-thirds of the search cannot
be started until the end of the utterance is reached. There-
fore, this part of the processing cannot be pipelined with the
incoming speech.

A* search
Passing the top N word sequences to the natural language

system is an improvement over passing only the single best
scoring sequen6e, but our goal is to make better use of the
natural language constraints at an early stage of the search.
The A* search algorithm can Provide a flexible mechanism for
making use of natural language constraints because it keeps a
stack of partial paths that are extended based on an evalua-
tion function. Non-probabilistic natural language constraints
can be used to prune partial hypotheses either before they
are put on the stack or before they are extended. Prediction
capability of the natural language system can be used to pro-
pose ways of extending partial paths. Finally, probabilities
of partial paths provided by the natural language system can
be incorporated into the evaluation function.

The A* search evaluation function is defined as

if(p) = g(p) + h*(p),

where f*(p) is the estimated score of the best path con-
taining partial path p, g(p) is the score for the match from
the beginning of the utterance to the end of the partial path
p, and h*(p) is an estimate of the best scoring extension of
the partial path p to the end of the utterance [1]. This search
is admissible if h*(p) is an upper bound on the actual best
scoring extension of partial path p to the end.

To efficiently apply A* search to spoken language sys-
tems, it is important to have as tight a bound as possible for
ha(p) since a looser bound results in increased computation.
We can use Viterbi search to compute this upper bound by
searching back from the end of the utterance to find the best
score to the end for each lexical node at each point in time.
If the constraints we use in the Viterbi search to compute the
best score to the end are a subset of the full natural language
constraints, this estimate of the best score to the end is guar-
anteed to be an upper bound on best score to the end given
the full constraints.

The A* search allows a large amount of flexibility in when
to apply the natural language constraints. For example, we
can wait until we have entire sentence hypotheses before ap-
plying the full natural language constraints. This turns the
A* search into an N-best algorithm [3] and allows us to com-
pare it directly to the other N-best algorithms. We computed
processing time and memory use for our implementation of
this algorithm and plotted it in Figure 1. For the top 1 word
sequence, this algorithm requires about the same amount of
resources as our implementation of Viterbi search and the

IC
U
L

6

oo

II

4 .~

E 2

I O I Two-Stage N-Best CPU Time
Two-Stage N-Best Memory Usage
A* CPU Time ~ i ,

2~ £ ~: 3'0
N

!00

F i g u r e 1: This figure compares the CPU and
Memory usage of the A* N-Best search with the
Two-Stage N-Best algorithm as a function of N. All
quantities are relative to the resource use of our im-
plementation of Viterbi search for the top scoring
word sequence.

amount of resources increases approximately linearly with N
at least for small N.

We have begun to perform experiments to determine which
natural language constraints to apply at an earlier stage of
the A* search. There is a tradeoff between the cost of apply-
ing the constraint and the amount of other computation that
is saved by the application of the constraint. Since we are
able to apply word-pair constraints at a very small cost (by
precompiling them into the lexical network), we have been
applying word-pair constraints at the lowest levels in all of
these experiments.

Word pair constraints
In our initial implementation of VOYAGER, the search was

constrained by a word-pair language model obtained directly
from the. training utterances. This word-pair language model
had a perplexity of 22 and a coverage of 65%. However, this
word-pair language model was obtained without considera-
tion of the constraints from TINA and, therefore, did not
match the capabilities of the full system. Utterances that
TINA could accept as well-formed were sometimes rejected by
the word-pair language model.

Now that we are moving towards tighter integration of
the speech and natural language components, we are not so
dependent on the constraints of a simple language model.
However, if it is possible to automatically extract the local
constraints of the natural language system, we can save com-
putation by making use of them. Even in a tightly integrated
speech and natural language system, it is possible to compile
these constraints directly into a lexical network. The overall
accuracy will not suffer as long as we can guarantee that the

207

constraints of the local language model are a subset of the
full constraints.

A useful facility for deriving inexpensive recognizer con-
straints from a natural language system would be a mecha-
nism to extract an exhaustive word-pair language model auto-
matically from the parent grammar. To this end, we explored
a number of procedures to discover all legitimate two word
sequences allowed by TINA. We assessed the resulting lan-
guage models by measuring coverage and perplexity on our
designated development set of about 500 sentences.

The simplest approach is to exhaustively generate all ter-
minal -pairs directly from the context-free rules, without ap-
plying any other semantic or syntactic constraints. We tried
this approach, and, as expected, it gave 100% coverage on the
test set, but with a very high perplexity (~ 200). In an at-
tempt to reduce the perplexity, we tried some permutations
of this method. We first discarded any rules that did not
show up in our set of 3000 training sentences. This resulted
in a loss of coverage on 10% of the test sentences, so this idea
was abandoned. A second, more conservative, idea was to
allow the disappearance of trace nodes only within those rule
contexts that showed up in the training set. This resulted
in a slight reduction in perplexity to 190, and the coverage
remained at 100%.

The other approach we tried was to make use of TINA'S
generation capability to generate sentences at random, and
then use the resulting terminal pairs to update the word-
pair language model. This approach has the disadvantage
that it can never be guaranteed that TINA's language model
is exhaustively covered. However, it permits the incorpora-
tion of local syntactic and semantic constraints. We decided
to discard semantic match requirements in the trace mecha-
nism, so that a sentence such as "(What restaurant)i is it (ti)
from MIT to Harvard Square?" would be accepted. We did
away with the trace mechanism in generation since these long
distance constraints are generally invisible to the word-pair
language model. This was necessary because, when seman-
tic matches are required, generation usually picks the wrong
path and aborts on constraint failure. As a consequence,
paths with traces are rarely visited by the generator and may
not show up in our word-pair language model.

This method was quite successful. TINA can generate
100,000 sentences in an overnight run, and the resulting word-
pair language model had a perplexity of only 73 with a single
missed word-pair in the test set. We therefore decided to in-
corporate this word-pair language model into the recognizer.

Increased Coverage
As we have described previously [9], the command gener-

ation component translates the natural language parse to a
functional form that is evaluated by the system. This compo-
nent has been made more flexible, in part due to our experi-
ence with developing an ATIS system [6]. We have extended
the capabilities of the back-end functions to handle more com-
plex manipulations. Some of these changes were motivated
by an examination of our training data. In other cases, we

were interested in knowing if our framework could handle ma-
nipulations commonly used in other database query systems.
For this reason we included conjunction and negation, even
though they are rarely used by subjects (except by those with
a natural language processing background!). As a result of
these modifications, the system is now capable of handling
queries such as "Show me the Chinese or Japanese restau-
rants that are not in Central Square," or "Do you know of
any other restaurants near the main library?"

Pronunciation Networks
Pronunciation networks and their expansion rules were

modified as a result of the increased amount of training data.
An effort was made to modify both the networks and the rules
as consistently and minimally as possible. The V O Y A G E R dic-
t ionary was periodically reviewed to insure that pronuncia-
tions were consistent in terms of both segmentals and the
marking of stressed and unstressed syllables. When phoneti-
cally labelling the VOYAGER corpus, unusual or new pronun-
ciations were noted by the labelers, who conferred on pho-
netic transcriptions. New pronunciations were entered into
the dictionary or added to the lexical rules when it was felt
that the phenomena they represented were sufficiently gener-
alizable to the corpus as a whole. Aberrant pronunciations
or mispronunciations were not included.

Current Implementat ion
In the initial implementation of VOYAGER, the system ran

on a Sun 4/280 using a Macintosh II with four DSP32Cs as a
front-end. That system was not pipelined and took approx-
imately 12 times real time before the top-choice utterance
appeared. Since that time we have developed a pipelined im-

plementation of VOYAGER on a new set of hardware as illus-
trated in Figure 2. We are using four signal processing boards
made by Valley Enterprises, each of which has four DSP32C's.
Each processor has 128Kbytes of memory and operates inde-

pendently of the others (in the board configuration that we
have been using). Communication with the host is through
the VME bus of the host. The host may read from any loca-
tion of any of the DSP32C's memory while the DSP processor
is running. The host may simultaneously write to any com-
bination of the four DSP32C's memories. For speech input
and playback, we are using an A/D D/A made by Atlanta
Signal Processing Inc. This has a high speed serial interface
which connects to the serial port of one of the DSP32Cs. We
are currently using a Sun4/330 with 24Mbytes of memory as
a host. We are running the natural language and response
generation components on a separate Sparcstation. These
parts of the system are written in Lisp; they have fairly large
memory requirements and would slow down the processing if
run simultaneously on the same host as the speech recogni-
tion system. Also, our Sun4/330 has no display. The entire
system could easily run on a single host with more memory
plus a display.

It has been straightforward to divide the processing for
VOYAGER's front-end [9] into subsets which can each be per-
formed in real-time by a single DSP32C and which do not
require excessive amounts of intercommunication. The au-
ditory model can be broken up by frequency channel and

208

Ethemet

I
Su.u . .4 /~O [SPARCeS~t, ion I

• Data Capture • Auditory Modelling * Natural Language

• Phonetic Recognition * Response Generation

• Lex:[cal Access

F i g u r e 2: This figure shows the current hardware
configuration of the VOYAGER, system.

With further optimization of DSP code, we believe that
the processing through phonetic classification will run in real
time in the present hardware configuration. When combined
with lexical access, the entire system will run in approxi-
mately 3 times real time on a Sun4/330 and in approximately
2 times real time on a Sun 4/490.

E v a l u a t i o n s
At the October 1989 DARPA meeting, we presented a

number of evaluations of our initial version of VOYAGER [8]
and we have used the same test set to measure the effects of
the changes made since that time. To measure the effects of
multiple sentence hypotheses, we allowed the system evalu-
ated in [8] to produce the top N word sequences rather than
the highest scoring word sequence. Its performance is plot-
ted as a function of N in Figure 3. For each utterance, we

therefore the current representation could be run on up to 40
different processors. The dendrogram computation is difficult
to divide among processors, but fortunately it runs in under
real time on a single DSP32C. The computation of acoustic
measurements and phonetic classification is done on a seg-
mental basis and could be broken up by segment if necessary.

We have implemented each processor-sized subset of the
computation for the DSP32C with a circular input and output
buffer. Each of these processes monitors the input and output
buffers, and runs as long as the input buffer is not empty and
the output buffer is not full. The host keeps larger circular
buffers for each of the intermediate representations aud fills
the input buffers and empties the output buffers of the DSP
processors as the data become available. We have used the
same general mechanism for each part of the system, allow-
ing us to easily change the various parts of the system as new
algorithms are developed. All parts of the system before nat-
ural language processing are written in C with the exception
of a small number of hand-optimized DSP32C functions.

The lexical access component is using a reversed version
of the A* N-Best search as described above and in [3]. So,
rather than using Viterbi search to compute the best com-
pletion of partial paths and A* search to search forward, we
use Viterbi search to find the best path from the beginning
of any partial path and use A* search to find the best path
from the end. This allows us to pipeline the Viterbi search
with the incoming speech.

We are still in the process of optimSzing the code on the
DSP32C's, so we are not sure what the final configuration will
be, but we are currently using one processor for data capture,
one processor for input normalization, eight processors for the
auditory model, two processors for some additional represen-
tations, one processor for the dendrogram, one processor for
acoustic measurements, and two processors for phonetic clas-
sification. The current implementation computes these parts
of the system in 2.3 times real time. When we combine lex-
ical access on the same host the total processing time for
VOYAGER is 5 times real time to completion.

100

90

8 0 ¸ '

70 ~

60"

50"

~ 40~

~, 30 ~

20

10

0

-----4=!---- (b)
(c)
(d)
(e)

. !

10
N

100

F i g u r e 3: This figure shows the overall performance
on the test set as a function of the number of word
strings produced by the speech recognition compo-
nent. Curve (d) shows the percentage of utterances
where the correct word string is found. Curve (c)
shows the percentage where the correct response
is generated (see text for definition of "correct").
Curve (b) shows the percentage of utterances where
VOYAGER produces any response. The horizontal
line (e) shows the percentage of utterances where a
response would have been produced if the correct
word string had been found by the speech recogni-
tion component. Finally, curve (a) shows the per-
centage of utterances where either a response was
produced from the top N word sequences from the
recognition, or a response would have been produced
given the correct word string.

took the highest scoring word string accepted by the natu-
ral language component of VOYAGER. The lower curve shows
the percentage of these strings that are identical (after ex-
panding contractions such as "what 's") to the orthographic

209

transcription of the utterance• The next curve shows the
percentage that produce the same action in VOYAGER as the
action produced by the correct word string; these are the ut-
terances that are "correct" at a functional level. The next
curve shows the percentage of utterances that produced any
response from VOYAGER. The difference between curve (c)
and curve (b) indicates the number of incorrect responses
(with "incorrect" meaning that the utterance produces a dif-
ferent response from the one that would have been produced
with the correct word string). The remaining utterances, in-
dicated by the area above curve (b), produce an "I 'm sorry,
I didn' t understand you" response from VOYAGER. Of these
remaining utterances, we found the number that would have
produced a response if the system was given the correct word
string. This is plotted as the difference between curves (b)
and (a). The horizontal line (e) shows the percentage of ut-
terances that produce an action given the correct word string.
The difference between curves (a) and the horizontal line is
the percentage of utterances that produce a response from
VOYAGER when given the speech input but do not produce a
response given the correct word string. These responses were
judged either correct or incorrect by the system designers.

There are a number of things to learn from this figure.
If we search deeper (either by increasing N or by incorporat-
ing the natural language constraints earlier in the search), we
still increase the number of utterances that produce a correct
response but at the expense of producing more incorrect re-
sponses. The difference between curves (a) and (b) shows the
number of utterances that will produce a response if we can
only find the correct word string with the search. So, this
difference is the most that we can hope to gain by increasing
the depth of the search (although this is not quite true since
it is possible to find a word string that parses and produces
the correct response even if the correct word string does not
parse).

The previous results were computed using the perplexity
22 word pair grammar. As discussed previously, we have
produced a word pair grammar with perplexity 73 that better
matches the constraints of the natural language system. A
comparison of these two sets of constraints can be seen in
Figure 4. In this figure, we have plotted the upper three
curves of Figure 3 for both the perplexity 22 grammar and
the perplexity 73 grammar. It can be seen that while the
perplexity 73 grammar has slightly lower performance, this
degradation decreases as N increases above 10. We would
hope that even with less constraint in the speech recognition
component, the performance will be better than the tighter
constraints as we search deeper. This should be true since
the constraints match the natural language constraints much
better.

Summary/Future Plans
The evaluations show that compared to passing only the

top scoring word string to the natural language system, the
performance of the overall system is much improved by in-
creasing the degree of integration of the speech recognition
and natural language systems. However, the evaluations also
show that there is not much to be gained in our system by

I00

90-

80-

70~

60-

40"

30'

20'

IO-

-- PERP=73 (b)
at. PERP=73 (c)

+ PERP=-22 (a)
PERIX=-22 (b)
PERP=22 (c)

. 1 0

N
100

F i g u r e 4: This figure shows the difference in per-
formance for two different sets of speech recognition
constraints. The curves are the same as the upper
three curves in Figure 3 for perplexity=22 and per-
plexity=73.

increasing the depth of the search (either by increasing N
in an N-Best search or by integrating the natural language
constraints at an earlier stage of the search) since this will
increase the number of incorrect responses faster than in-
creasing the number of correct responses. What is needed
are new sources of information for the search. Fortunately,
our natural language system is capable of providing probabil-
ities that we have not yet utilized. These probabilities have
been shown to reduce the perplexity by at least a factor of
three [9] and therefore should allow an increase in the depth
of the search with a smaller number of incorrect responses.

We may also gain some performance by incorporating
some form of explicit rejection criterion. Currently we re-
ject an utterance based on the number of word strings that
fail to produce a response (by choosing an upper bound on
N in the N-Best search). If we used a more explicit rejection
criterion (by taking into account the scores of the top N word
strings for example) we may be able to decrease the ratio of
incorrect response to correct responses.

There have been a number of developments in the speech
recognition components that we intend to incorporate into
the VOYAGER system. These are discussed in more detail
in [7].

We would like to begin exploring dynamic adaptat ion of
the natural language constraints. For example, we would like
to increase the objects in VOYAGER's database to a much
more complete set. In our current implementation, this would
increase the perplexity of the speech recognition and result
in poor performance. However, if we limit the vocabulary
based on the discourse history, it is likely that we can make
large increases in the size of the VOYAGER domain without

210

significant increases in perplexity.

Since we are interested in improving performance in the
interactive use of the system, we have implemented a mecha-
nism for automatically generating tasks for the user to solve
with the help of the system [5]. This has allowed us to be-
gin testing the system in a goal-directed mode and compare
results obtained in such a mode to results obtained on data
collected in a simulation mode.

Acknowledgements
We would like to thank Dave Goddeau and Kirk John-

son for their help with the modifications made to VOYAGER
described above.

References
[1] Barr, A., E. Feigenbaum, and P. Cohen, The Handbook

of Artificial Intelligence, 3 vols., William Kaufman
Publishers, Los Altos, CA, 1981.

[2] Chow, Y, and R. Schwartz, "The N-Best Algorithm:
An Efficient Procedure for Finding Top N Sentence
Hypotheses", Proc. DARPA Speech and Natural
Language Workshop, pp. 199-202, October, 1989.

[3] Soong, F., and E. Huang, "A Tree-Trellis Based Fast
Search for Finding the N-best Sentence Hypotheses in
Continuous Speech Recognition", these proceedings.

[4] Viterbi, A., "Error Bounds for Convolutional Codes
and an Asymptotically Optimal Decoding Algorithm",
IEEE Trans. Inform. Theory Yol. IT-13, pp. 260-269,
April, 1967.

[5] Whitney, D. Building a Paradigm to Elicit a Dialog
with a Spoken Language System, Bachelor Thesis, MIT
Department of Electrical Engineering and Computer
Science, Cambridge, MA, 1990.

[6] Zue, V., J. Glass, D. Goodine, H. Leung, M. Phillips, J.
Polifroni, and S. Seneff, "Preliminary ATIS
Development at MIT", these proceedings.

[7] Zue, V., J. Glass, D. Goodine, H. Leung, M. Phillips, J.
Polifroni, and S. Seneff, "Recent Progress on the
SUMMIT System", these proceedings.

[8] Zue, V., N. Daly, J. Glass, D. Goodine, H. Leung, M.
Phillips, J. Polifroni, S. Seneff, and M. Soclof, "The
Collection and Preliminary Analysis of a Spontaneous
Speech Database", Proc. DARPA Speech and Natural
Language Workshop, pp. 126-134, October, 1989.

[9] Zue, V., J. Glass, D. Goodine, H. Leung, M. Phillips, J.
Polifroni, and S. Seneff, "The VOYAGER Speech
Understanding System: A Progress Report", Proc.
DARPA Speech and Natural Language Workshop, pp.
51-59, October, 1989.

[10] Zue, V., J. Glass, M. Phillips, and S. Seneff, "The MIT
SUMMIT Speech Recognition System: A Progress
Report," Proc. of DARPA Speech and Natural
Language Workshop, February, 1989.

211

