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Abstract 
The stack decoder is an attractive algorithm for con- 

trolling the acoustic and language model matching in a 
continuous speech recognizer. It implements a best-first 
tree search of the language to find the best match to 
both the language model and the observed speech. This 
paper describes a method for performing the optimal A* 
search which guarantees to find the most likely path (rec- 
ognized sentence) while extending the minimum number 
of stack entries. A tree search, however, is exponential 
in the number of words. A second algorithm is presented 
which linearizes the search at the cost of approximating 
some of the path likelihoods. 

Introduction 
Speech recognition may be treated as a tree network 

search problem. As one proceeds from the root toward 
the leaves, the branches leaving each junction represent 
the set of words which may be appended to the cur- 
rent partial sentence. Each of the branches leaving a 
junction has a probability and each word has a likeli- 
hood of being produced by the observed acoustic data. 
The recognition problem is to identify the most likely 
path (word sequence) from the root (beginning) to a leaf 
(end) taking into account the junction probabilities (the 
stochastic language model) and the optimum acoustic 
match (including time alignment) given that  path. 

This paper is concerned with the network search prob- 
lem and therefore correct recognition is defined as out- 
putting the most likely sentence given the language 
model, the acoustic models, and the observed acoustic 
data. If the most likely sentence is not the one spoken, 
that  is a modeling error--not a search error. This pa- 
per will assume for simplicity that  an isolated sentence 
is the object to be recognized. (The stack decoder can 
be extended to recognize continuous sentences.) 

The stack decoder [4], as used in speech, is an imple- 
mentation of a best-first tree search. The basic operation 
of a sentence decoder is as follows [1, 2]: 

1. Initialize the stack with a null theory. 

*Thi s  work  was  sponso red  by  the  Defense  Advanced  Resea rch  
Pro jec t s  Agency.  

2. Pop the best (highest score) theory off the stack. 

3. if(end-of-sentence) output  sentence and terminate. 

4. Perform acoustic and language-model fast matches 
to obtain a short list of candidate word extensions 
of the theory. 

5. For each word on the candidate list: 

(a) Perform acoustic and language-model detailed 
matches and add the log-likelihoods to the the- 
ory log-likelihood. 

i. if(not end-of-sentence) insert into stack. 
ii. if(end-of-sentence) insert into stack with 

end-of-sentence flag = TRUE. 

(note: end-of-sentence may be optional) 

6. Go to 2. 

The fast matches [2] are computationally cheap meth- 
ods for reducing the number of word extensions which 
must be checked by the more accurate, but computa- 
tionally expensive detailed matches)  (The fast matches 
may also be considered a predictive component for the 
detailed matches.) Top-N mode is achieved by delaying 
termination until N sentences have been output.  

The stack itself is just a sorted list which supports the 
operations: pop the best entry, insert new entries ac- 
cording to their scores, and (in some implementations) 
discard the worst entry. The following must be con- 
tained in each stack entry: the stack score used to or- 
der the entries, the word history (path or theory iden- 
tification), an output log-likelihood distribution, and an 
end-of-sentence flag. Since the time of exiting the word 
cannot be uniquely determined during a forward-decoder 
pass, the output log-likelihood as a function of time must 
be contained in each entry. This distribution is the in- 
put to the next word model. The end-of-sentence flag 
identifies the theories which are candidates to end the 
sentence. 

This exposition will assume discrete observation hid- 
den Markov model (HMM) word models [9, 10] with the 

1The  following d iscuss ion  concerns  t he  bas ic  s t ack  decoder  a n d  
therefore  it  will be  a s s u m e d  t h a t  t he  correct  word  will a lways  be  on  
the  fas t  m a t c h l i s t .  T h i s  can  be  g u a r a n t e e d  by  the  s chem e  ou t l ined  
in reference [2]. 
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observation log-pdfs identified as the B = bj,k matrix, 
where j identifies the arc (transition between states) and 
k identifies the observation symbol. (This can be triv- 
ially extended to continuous observation, mixture, and 
tied-mixture HMM systems.) However, it should ap- 
ply to any stochastic word model which outputs a log- 
likelihood. Similarly, a stochastic language model which 
outputs a partial sentence log-likelihood is assumed. An 
accept-reject language model will also work--its output 
is either zero or minus infinity. 

The  A* Stack Criter ion 
A key issue in the stack decoder is the scoring crite- 

rion. (All scores used here are log-likelihoods or log- 
probabilities.) If one uses the raw log-likelihoods as 
the stack score, a uniform search [7] will result. This 
search will result in a prohibitive amount of computa- 
tion and a very large stack for any large-vocabulary high- 
perplexity speech recognition task because the score de- 
creases rapidly with path length and thus short paths 
will be "carried along". A better scoring criterion is 
the A *  criterion [7]. The A* criterion is the difference 
between the actual log-likelihood of reaching a point in 
time on a path and an upper bound on the log-likelihood 
of any path reaching that point in time: 

hi(t)  = Li(t)  - ubL(t) (1) 

where Ai(t) is the scoring function, Li(t)  is the output 
log-likelihood, t denotes time, i denotes the path (tree 
branch or left sentence fragment) and ubL(t) is an upper 
bound on Li(t). The stack entry score is 

StSci =max  hi(t) .  (2) 
t 

If ubn(t) >_ lubL(t), where lubL(t) is the least upper 
bound on L, the stack search is guaranteed to be ad- 
missible, i.e., the first output sentence will be the cor- 
rect (highest log-likelihood) one [7] and, in addition, 
the following sentences in top-N mode will be output 
in log-likelihood order. In general, the closer ubL(t) is 
to lubL(t), the less computation. If ubL(t) = lubL(t), 
the search is guaranteed to be optimal [7], i.e., a mini- 
mum number of stack entries will have to be popped and 
extended. If ubL(t) becomes less than lubL(t), longer 
paths will be favored excessively and the first output 
sentence may not have the highest log-likelihood, i.e., a 
search error may occur. (Note that  ubL(t) is constant 
for any t and therefore does not affect the relative scores 
of the paths at any fixed t ime--i t  only affects the com- 
parison of paths of differing lengths and the resultant 
order of path expansion.) 

The basic problem is obtaining a good estimate of 
ubL(t) in a time-asynchronous decoder. (Note that 
lubL,tat~(t) over the states is easily computed in a time- 
synchronous decoder and that  Astate(t) is the value com- 
pared to the pruning threshold in a beam search [6].) 

One estimate of ubL(t) is 

ubL(t) = - a t .  (3) 

where a is some constant greater than zero. This ap- 
proach attempts to cancel out the average log-likelihood 
per time step. If a is too large, it will underestimate 
the bound and risk recognition errors. If a is small the 
search will be admissible, but will require an excessive 
amount of computation. (In fact, a = 0 is the uni- 
form search mentioned above.) An intermediate value of 
a will achieve a balance between the two extremes and 
produce the winner with reduced computation. Unfortu- 
nately no single value of a is optimum for all sentences or 
all parts of a single sentence. Thus a conservative value 
is generally chosen. One way of altering the tradeoff is 
to run in top-N mode and sort the output  sentences by 
score. If a is slightly high, the sentences may be output 
out of order, but the sort provides a recovery mechanism. 
This scheme may also require additional computation to 
produce the additional output sentences. 

The criterion of equation 3 can be improved by nor- 
malizing the observation probabilities by the A* crite- 
rion: 

t 

ubL(t) = ~ n~ax bj,o r - at  (4) 
r = l  

where ot is the observation at time t. This helps, but 
basic problems of equation 3 still remain. Both of these 
corrections can be precomputed by modifying the B ma- 
trix: 

Bj,k = Bj,k-- max bj,k + a.  (5) 
a 

This stack criterion allows estimation of the most- 
probable partial-path exit time. Ai(t) now exhibits a 
peak whose location is the estimate of the exit time of 
the word. (The stack decoder only implements the for- 
ward decoder--finding the exact most-probable exit time 
requires information from the decode of the remainder 
of the sentence.) Therefore the estimated exit time is: 

tmaz,i =argmax Ai(t). (6) 
t 

The  Opt imal  A* Stack Decoder  
The upper bounds of equations 3 and 4 are fixed ap- 

proximations to the least upper bound and therefore 
force a tradeoff of computation and probability of search 
error. It is, however, possible to compute the ezact least 
upper bound and so perform an optimal A* search. The 
primary difficulty is that  only the "lub so far" can be 
computed, i.e., only the upper bound of the currently 
computed paths can be obtained. This creates two diffi- 
culties: 

1. Since the estimate of the lub (lub) is changing, the 
stack order may change as a result of an update of 
lubL(t). 

2. A degeneracy in determining the best path may oc- 
cur since the current bound may equal Li(t) for 
more than one i (path). 

Problem 1 is easily cured by reevaluating score S tSc  
every time lubL(t) is updated and reorganizing the stack. 
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This is easily accomplished if the stack is stored as a 
heapL The reorganization is accomplished by scanning 
the heap in addressing order and, at each entry, reevalu- 
ating the score, and if the score is greater than that  of its 
parent,  successively swapping the entry with its parent 
until the next parent has a higher score than the current 
entry. Once the first sentence is output ,  lubL(t) will be 
stable. 

Problem 2 occurs because two or more theories may 
dominate different parts of the current upper bound. 
Thus all of these theories will have a score of zero. If 
the longest theory is extended, its descendents will also 
dominate the bound and will in turn be extended. This 
will, of course, result in search errors because the shorter 
theories will never have a chance to be extended. The 
cure is to extend the shortest theory. One could choose 
the shorter theory in the case of a tie or a simpler way 
of doing this is to use a slightly modified criterion: 

Ai(t) = Li ( t )  - lubL(t) - et (7) 

where lt~bL(t) is the least upper bound so far and e is 
a very small number greater than zero. (The value of 
e need only be large enough to avoid being lost in the 
system quantization error and therefore the loss of op- 
timality of the search criterion can be ignored.) The et 
term serves as a tie-breaker in favor of the shorter theory 
in a manner which is compatible with equation 2. Note 
that  this criterion completely accounts for all factors: 
the language model, the reduction of the log-likelihood 
as paths grow, any B matr ix normalization (equation 
5), and any effects due to the restrictions on the HMM 
state sequences in the word models. (In fact, this cri- 
terion makes Ai(t) invariant to any fixed normalizations 
such as those of equation 5 - -a  fact that  will allow both 
the A* search and the above definition of tm~, be used 
in the search linearizing algorithm described below.) 

Reorganizing the stack immediately preceding each 
pop if the least upper bound has been updated,  adding a 
miniscule length dependent penalty, and using the max- 
imum of the normalized log-likelihood as the stack score 
for each theory results in a computationally-optimal ad- 
missible implementation of the stack decoder. Further- 
more, it guarantees that  when the stack decoder is used 
in top-N mode, the sentences will come out in decreasing 
log-likelihood order. 

What  is the advantage of the A* stack decoder over 
the time-synchronous beam search? Both, after all, end 
up using a least upper bound to control the search. The 
two lub's are different-- the time synchronous search gen- 
erally computes its lub over all states and the pruning 
will be affected by the location in the network in which 
the language-model log-likelihoods are added (at the be- 
ginning of the word, at the end, or spread out along 

2 A h e a p  is a row-wise l inear ly-addressed  b inary- t ree  d a t a  s t ruc-  
ture ,  whose tree r ep resen ta t ion  resembles  a py ramid .  T h e  score of  
a pa ren t  is g rea te r  t h a n  or equal  to the  scores of i ts  chi ldren and  
each  pa r en t  is loca ted  in the  row above  i ts  children.  A pa ren t  al- 
ways  ha s  a lower address  t h a n  i ts  child. T h e  h ighes t  scor ing en t ry  
resides a t  the  roo t  of  the  t ree  ( top  of the  py ramid )  wh ich  is s to red  
in  t he  first loca t ion  of t he  a r r ay  [5]. 

the word model). In contrast,  the stack decoder only 
computes its lub at the end of the words and all places 
for adding the language-model log-likelihoods are equiv- 
alent. The stack decoder lub can also be bet ter  (but 
never worse) than the time-synchronous lub because it 
is computed only for the word ends. (On the other hand, 
a time-synchronous decoder can prune parts of words- -  
the stack decoder, as described here, treats words as in- 
divisible units.) Finally, the effective pruning threshold 
for the A* stack is continuously adapt ive-- i t  only ex- 
tends theories which have a chance of winning while the 
pruning threshold for a time-synchronous decoder is de- 
termined by the worst case (which may be rare). An 
unbounded stack has been assumed--stack size will be 
discussed later. (Note that  typically only a relatively 
small number of theories are actually popped from the 
stack and ex tended-- the  majori ty are abandoned when 
decoder terminates.) 

Linearizing the Search 
The basic stack decoder is exponential in the length of 

the input because it is a tree search with the consequence 
that  identical subtrees must be searched as many times 
as there are distinct histories. (This section will initially 
deal with the acoustic matching part  of the decode and 
will therefore assume no language model--adding lan- 
guage models will be discussed once the acoustic issues 
have been described.) There is, however, a method for 
combining identical subtrees which depends only on the 
last word of the theory to be extended and tm~  (equa- 
tion 6). This limits the maximum number of theories to 
V T  where V is the number of vocabulary words and T is 
the length of the input. Thus the search will be O ( T )  or 
linear in the length of the input. This method involves a 
minor approximation for the lower likelihood of the two 
joined paths. 

Given that: 

1. the last word of the history for each of the two the- 
ories is the same 

2. and the trnax'S of equation 6 are the same 

the lower likelihood theory can be pruned because it, as- 
suming the approximation to be correct, can never beat 
the higher likelihood path. (Entensions to top-N will be 
given later.) This is true because probability as a func- 
tion of time of transitioning between the the left word 
(last word of the history for the theory) and the next 
word is only a very weak function of words preceding 
the left word. (Any two words having the same acous- 
tic model are considered equal herc so if, for instance, 
stress is being modeled, then the stressed and unstressed 
word models are considered different.) The assumption 
that  the weak function is not a function of the words 
preceding the left word is the approximation. Obviously, 
this approximation is more accurate for longer left words 
or can be made more accurate if left word groups are used 
as the matching context. 
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This algorithm is easily implemented in the stack de- 
coder. For any new theory about to be inserted onto the 
stack (comparisons for a match are made by the above 
two criteria): 

1. If the new theory matches a theory on a list of past 
theories popped from the stack, discard it. It, by 
definition, has a lower likelihood than the theory on 
the list. 

2. If the new theory matches a theory currently on the 
stack, save the more likely theory, discard the less 
likely theory and, if necessary, reorganize the stack. 

This algorithm saves both stack space and computation. 
(It is the analog of a path join in a time-synchronous 
decoder.) 

To extend this theory to a top-N decoder, instead of 
discarding the less likely theory, at tach a link from the 
more likely theory to the less likely theory, record the 
difference in the likelihoods, and store the less likely the- 
ory off the stack. Whenever an end-of-sentence theory is 
popped from the stack, follow the links and: 

1. apply the likelihood differences to reconstruct the 
likelihoods, 

2. reconstruct the word sequences, and 

3. place the word sequences on a secondary heap or- 
dered by their likelihoods. 

Once reconstructed theories have been placed on the sec- 
ondary heap, the pop operation must check both the 
stack and the secondary heap for the most likely theory 
to pop. This algorithm will be exact for theories which 
stay on the stack, but  the likelihoods will be approxi- 
mate for the reconstructed theories from the secondary 
heap. 

This algorithm can also be extended to include lan- 
guage models. Unigram and bigram language models [1] 
are t r ivial-- the unigram model is not a function of the 
left context and the bigram model is a function of the 
same word which was used in determining a match. Thus 
both can be inserted directly into the linearizing algo- 
r i thm without modification. A trigram language model 
[1] would insert directly if the left matching context was 
two words rather than one word. 

Language models with left contexts too long to be 
efficiently incorporated directly into the linearizing al- 
gorithm could be handled by by caching the acoustic 
matches according to the above path joining criterion. 
Whenever a cache match is found, use the cached next 
word output  likelihoods to avoid recomputation. (Note 
that the acoustic detailed match must use only the word 
list from the acoustic fast match. Otherwise the cached 
set of word extensions will be limited by the language- 
model context in effect at the time of caching. The 
language-model fast match can then be applied after the 
acoustic detailed match.) This will make the acoustic 
computation linear, but  will not reduce the language- 
model computation. (Some language-model algorithms 

may also be able to use similar mechanisms to avoid re- 
peating computations.) This approach extends trivially 
to top-N mode without the use of the links or the sec- 
ondary heap. 

A final method of using language models with a long 
left-context dependency is to simply operate the lin- 
earized stack decoder with a bigram, unigram or no lan- 
guage model, and output  the top-N sentences to a de- 
coupled language-model analyzer. This is the decoupled 
mode of reference [8]. 

Limiting the Stack Size 
One difficulty of the stack decoder is the stack size. 

The A* search algorithm reduces the stack size, but it 
can still grow exponentially. The first linearizing algo- 
r i thm places an upper bound of VT (or V2T for the 
tr igram language model) on the stack size, but the sec- 
ondary heap can grow exponentially. To minimize these 
problems, a pruning threshold can be applied to the 
stack insertion operations and the secondary heap gener- 
ation. Any theory whose StSc from equation 2 is below a 
threshold is discarded. (Since lubn(t)  can only increase 
as the decoder operates, no discarded theory would be 
accepted by a later value of StSc. Note also that  the 
stack reorganizing operation can also discard any entries 
that  fall below the threshold according the the new val- 
ues of StSc.) While this pruning threshold may seem 
similar to the time-synchronous decoder pruning thresh- 
old, a conservative value only increases the stack size, 
but not the computation in the basic stack decoder. A 
conservative value would also increase the link tracing 
computation and the secondary heap size, but  the com- 
putation is minor compared to the basic stack computa- 
tion. 

A second method of limiting the stack size is, a-priori 
choosing some reasonable size and when it is about to 
overflow, discard the worst theory. This, in effect, dy- 
namically chooses a pruning threshold. (It can be viewed 
as a fail-soft stack overflow.) The standard heap does 
not support  efficient location of the worst theory. (Lo- 
cating the worst theory in a full heap requires searching 
the bot tom row or about half the heap.) It is possible 
to modify a heap from its usual pyramid shape to a di- 
amond shape by attaching an upside down pyramid to 
the bot tom of the first pyramid. This structure would 
have the best theory at the top and the worst theory at 
the bottom. This would complicate the stack operation 
somewhat, but it would probably be as efficient as most 
other data  structures. 

Conclusion 
Two algorithms have been presented for accelerating 

the operation of a stack decoder. The first is a method 
for computing the true least upper bound so that  an op- 
timal admissible A* search can be performed. The sec- 
ond is a set of methods for linearizing the computation 
required by a stack decoder. The A* search has been 
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implemented in a continuous speech recognizer simula- 
tor and has demonstrated a significant speedup. The 
linearizing algorithm has been partially implemented in 
the simulator and has also shown significant computa- 
tional savings. 

A d d e n d u m  
Jim Baker conjectured that the optimal A* search as 

described above might not be admissible when a lan- 
guage model is used due to an interaction between the 
acoustic and the language model likelihoods [3] which 
can prevent lubL(t) from becoming the true lub. Such 
a loss of admissibility can result in the sentences being 
output out of likelihood order. This was tested by run- 
ning the simulator in top-N mode with and without a 
language model. The test used 600 sentences from the 
DARPA Resource Management task and the word-pair 
language model. No recognition errors (the most likely 
sentence was not the first output) were observed for the 
no language model case and two errors were observed in 
the word-pair language model case. This verifies Baker's 
conjecture, but suggests that the problem may be rela- 
tively rare. It also offers empirical evidence that the no 
language model case is admissible. 
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