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Abstract 
An interaction has been found between the true source 

language model, training language model, and the test- 
ing language model. This interaction has implications 
for vocabulary independent modeling, testing method- 
ologies, discriminative training, and the adequacy of 
our current databases for continuous speech recognition 
(CSR) development. The current DARPA databases suf- 
fer from the described difficulties which suggests that  
new CSR databases are needed if we are to further ad- 
vance the state-of-the-art. 

The Interaction During Training 
When a category model (e.g. a context-free (CF) 

model such as a monophone) is used to a model a set 
of subcategories (e.g. context-dependent (CD) models 
such as triphones), the category model becomes the sub- 
category prior-probability weighted average of the sub- 
category models: 

Meat 
E PsubeatMsubcat 

where M denotes a model. (The mathematics used here 
are intended to be conceptual rather than rigorous. Thus 
models will be considered to be averages. In practice, the 
method for deriving a model from a set of sub-models or 
observations is highly dependent upon the form of model 
used.) In a field, such as speech recognition, where mod- 
els are trained from exemplars, the subcategory model 
will generally be: 

N 
1 

Msttbcat = ~ ~.= Osubeat,i 

where 08=bcat,i is an observation emitted from the sub- 
category. Mcat combines both the subcategory models 
and the prior-probability of the subcategories and simi- 
larly Msubcat combines the observations and their (sam- 
pled) prior-probabilities. 

*This work was sponsored by the Defense Advanced Research 
Projects Agency. 

In speech recognition, a phone category would contain 
some set of subcategories and a subcategory would de- 
fined by some specific set of context factors. There are 
many factors which may be used to define the subcate- 
gories [3]; a commonly used set is triphone [18] subcate- 
gories and monophone categories. Alternatively, stressed 
and unstressed phones might be combined. (Note that 
this averaging is recursive: subcategories are the combi- 
nation of some set of subsubcategories and so on...) 

We assume that  speech is generated from some "true 
source" language model. (This language model would 
change as a function of many factors such as topic, his- 
tory, and participants, but we will assume it to be con- 
stunt for each task.) This true language model is known 
for some artificial tasks such as the DARPA Resource 
Management (RM) database [16], but  can be estimated 
for naturally elicited speech and text if sufficient data is 
available. (However, current techniques for estimating 
language models are fairly rudimentary.) 

Since the acoustic realization of the phones will be a 
function of this true language model, any acoustic mod- 
els averaged over any group of subcategories will learn 
this true language model to some degree. (Learning the 
language model "to some degree" may be viewed as fa- 
voring the more likely subcategories.) Pragmatically, we 
have insufficient data to model all relevant subcategories 
separately and, even if we had sufficient data, we cur- 
rently have insufficient computational resources to pro- 
cess all of it in any practical manner. Thus, since we 
must combine subcategories into larger models, a recog- 
nition system would favor the subcategories that  were 
more commonly observed during training. 

Implications for Performance 
Testing 

Recognition is performed using some explicit language 
model. (No-grammar is a language model in which all 
following words are equally likely.) If the performance of 
a system is tested using a weaker language model than 
the true source language model, the acoustic models, if 
they have been affected by the training data language 
model, will strengthen the the total language model in 
the recognizer. Thus, one would expect better  recogni- 
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Figure 1: February 89 SD Evaluation Tests Figure 2: October 89 SI-109 Evaluation Tests 

tion performance than would be predicted by the per- 
plexity of the explicit recognition language model. 

For example, the RM database was generated from a 
set of perplexity 9 patterns.  The two official test con- 
ditions are a perplexity 60 word-pair grammar (WPG) 
and a perplexity 991 no-grammar (NG). But  since the 
training data  is perplexity 9, the acoustic training data 
includes a limited set of contexts. The explicit testing 
language model may allow a greater set of contexts, but 
the acoustic models in the recognizer are biased toward 
the contexts that  are actually observed in the training 
data. W P G  recognition performance would be expected 
to be worse if trained on data actually generated by the 
WPG. One would expect a similar effect if NG train- 
ing data  were used for NG tests. The net effect is that  
our performance testing is misleading: the performance 
obtained with the W P G  does not tell us what the perfor- 
mance would be on a true perplexity 60 task. Similarly 
the NG tests do not tell us what the performance would 
be on a true perplexity 991 task. 

In fact, rank orderings of systems tested using the RM 
database are not necessarily the same for WPG  and NG 
tests. Figures 1 and 2 show the results of selected site- 
pairs from the February 89 speaker-dependent (SD) eval- 
uation tests [11] and October 89 speaker-independent 
with 109 training speakers (SI-109) evaluation tests 
[6, 14]. The LL systems may be able to make better  
use of language model information stored in the acous- 
tic models than are the other systems. (There are other 
possible explanations, but this one cannot currently be 
ruled out.) 

I m p l i c a t i o n s  for  D i s c r i m i n a t i v e  
T r a i n i n g  

Discriminative training (training for the right an- 
swer rather than for the "most accurate model") is per- 
formed in the context of the training data which consists 
of samples from true source language model. In some 
forms, including corrective training [2], it is performed 

in the additional context of an explicit training language 
model. (Corrective training uses a recognition pass to 
obtain possible confusions with the correct answer and 
the training language model is applied in this recognition 
pass. It is the only form of discriminative training that  
has been shown to improve performance on large vocab- 
ulary recognition tasks [2, 7].) Errors or near misses are 
used to perturb the acoustic models to lessen the possi- 
bility of error. But these errors are a strong function of 
the true source model of the training data  and the train- 
ing language model. Thus, these techniques increase the 
amount of the true source and training language models 
that  are included in the acoustic models. 

One of the stated advantages of discriminative train- 
ing is that  it corrects for an incorrect (form of) model. It 
does this by altering the trainable factors (parameters) 
of the model to account both for improper choice of func- 
tion and for aspects of the true source which have not 
been included in the model. The second effect is exactly 
the above stated problem. 

Evidence showing that  corrective training inserts the 
training language model into the acoustic models has ap- 
peared in results reported using the CMU SPHINX sys- 
tem operating on the RM database. It was found that 
an NG corrective-trained set of models, which improved 
NG recognition performance, damaged W PG recogni- 
tion performance compared to a maximum likelihood 
trained set of models [8]. 

I m p l i c a t i o n s  for  V o c a b u l a r y  I n d e -  
p e n d e n c e  

The above suggests that  any training methods that 
average over a number of contexts and/or  use discrimi- 
native techniques include the true source language model 
in the acoustic models. Thus any set of acoustic mod- 
els would be optimized for that  specific task and there- 
fore would be inferior when tested upon another task. 
CMU has investigated this problem and found RM mod- 
els to yield poor performance on a different task [5]. We 
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have also performed some informal experiments which 
at tempted to port  RM triphones to our flight demonstra- 
tion task (28 word vocabulary, perplexity 7 finite-state 
grammar) and found inferior performance compared to 
task-trained models. 

W h a t  c a n  b e  d o n e ?  
Several things can be done to minimize the damage 

done to the acoustic models by the true source language 
model and any training language models. Since we have 
techniques which implement the language model inde- 
pendently of the acoustic model, it would help if the 
acoustic models were as free as possible from biases due 
to the training environment. 

The first technique is to use a source of training data 
with a rich and realistic true language model. (The rich- 
ness can be further increased by using data from a num- 
ber of different sources.) This will provide a rich set of 
contexts to allow our systems to see the full range of con- 
texts in which a real system will have to operate. CMU 
has already shown that  a richer data source improves 
one's ability to produce task independent acoustic mod- 
els [5] 

A second technique is to minimize averaging across 
contexts in order to limit the ability of the acoustic mod- 
els to model the language. A number of sites have al- 
ready moved in this direction by changing from context- 
independent phone (monophone) models to left and right 
context dependent phone (triphone) models [18]. h fur- 
ther step along this line has been the inclusion of cross- 
word triphone models [7, 10, 13] which has minimized 
the ability of the acoustic models to learn the bigram 
language model. 1 These changes have improved recogni- 
tion performance when trained and tested on the same 
database, but their effects on vocabulary independence 
have not been tested. 

A third technique is to use larger training datasets. 
("There  is no data  like more data.").  This allows us to 
train more contexts and minimize the smoothing (aver- 
aging) required to train models. Comparisons of per- 
formance with increased amounts of training data us- 
ing the RM1 database for speaker-independent training 
(109 vs. 72 speakers) and the RM2 database for speaker- 
dependent training (2400 vs. 600 sentences per speaker) 
have shown improved results [15] within task. The CMU 
vocabulary-independence experiments showed improved 
cross-task performance [5], but since the amount of data 

1 If sufficient training data is available to train the cross-word- 
context phone models without averaging, cross-word-context- 
dependent phone modeling will clearly minimize the effects of the 
bigram language model. However, the training data for the ref- 
erenced systems was sufficiently limited that  it was necessary to 
smooth (weighted average) some phone models for robustness and 
it was necessary to use cross-word-context-independent (i.e. aver- 
aged over observed word-boundary phones) phone models for the 
unobserved cross-word phone models needed by the recognizer. 
The net effect for limited training data is unknown-- the  cross-word 
phone models may increase the bigram language model learning for 
limited amounts of training data. Definitive experiments isolating 
this effect have not been reported. 

and the richness of the data  were increased simultane- 
ously, it is not currently possible to separate the two 
effects. We currently use less than ten hours of training 
data. In comparison, a typical school age child has heard 
thousands of hours of speech. 

A fourth technique is to limit discriminative train- 
ing to cases where the language model and vocabulary 
are known at training time. Discriminative training ex- 
plicitly alters the acoustic models to reflect the true 
source and training language models. This may im- 
prove within task performance, but will not help and 
may impair cross-task performance. (The phone models 
have, in effect, been made fragile with respect to vo- 
cabulary and task.) However, it is not clear that this 
within-task advantage will be maintained with a good 
language model and bet ter  acoustic modeling techniques 
using non-discriminative training on adequate amounts 
and kinds of data. 

A final technique is to test with a good language 
model. Testing with intentionally weakened language 
models asks the acoustic modeling to perform a task 
that  it has not been trained to do. While the simplicity 
of no-grammar testing may be attractive, it is also the 
most misleading test condition and does not always pre- 
dict the performance of a system with a good language 
model. If a realistic language model is used with prop- 
erly trained acoustic models, the language model will 
perform the word sequence modeling and the acoustic 
models will perform the acoustic modeling without each 
trying to do the other's job. 

Given an adequate amount  of adequately rich data to 
train the acoustic models and an appropriate language 
model for the task, it should be possible to obtain good 
recognition performance using vocabulary and task in- 
dependent acoustic models. 

A P r o p o s a l  for  a R i c h  a n d  R e a l i s -  
t ic  D A R P A  C S R  D a t a b a s e  

None of the CSR databases currently available to the 
DARPA community meets all of the above requirements. 
The RM database was a good database for its time, but 
we have since found a number of weaknesses (and created 
some by improving our recognizers.) It was, however, 
a focal point around which much progress in CSR was 
achieved and if we design and produce a successor prop- 
erly, we can initiate a similarly productive era. (The 
following proposed database serves a different purpose 
than and should be recorded in addition to the DARPA 
Air Traffic Information System (ATIS) database [4, 17].) 
A list of desirable features for a CSR database are: 

1. Should be based on real human communication to 
insure richness and realism 

(a) Should be based on a large corpus of text or 
transcribed speech 

(b) Transcriptions should be available to the re- 
search community to allow language modeling. 
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2. A good standardized stochastic language model (or 
set of models) 

3. A large amount of acoustic data 

(a) Both SD and SI training data 

(b) Standardized training, development test, and 
evaluation test data 

(c) A large number of test speakers to minimize 
the effects of speaker variation. 

4. The task should be difficult enough to have a suf- 
ficiently high error rate even with a good language 
model. 

(a) We make the best progress when our tasks have 
a moderate error rate 

(b) We need enough errors for statistically signifi- 
cant experiments. 

5. Extendibility to more difficult acoustic tasks to al- 
low future growth (e.g. larger vocabularies). 

The standardized language models and acoustic datasets 
are essential to allow rigorous inter-site system compar- 
isons. If the language model training data is available, 
sites will also be able to work on improved language mod- 
eling. 

The specific proposal is: 

1. The ACL/DCI contains several large text databases 
[9]. The best one for our purposes is probably the 
transcriptions of Canadian parliamentary hearings 
part of the Canadian Hansard database. (Other vi- 
able alternatives are the parliamentary debate por- 
tion of the Hansard database or the Wall Street 
Journal texts.) This is the transcription of about 
50M words of speech. It should be possible to de- 
rive a good bigram or trigram language model from 
this text and several other databases are available 
to facilitate cross-database language model investi- 
gations. The data is available to the research com- 
munity. 

2. 5000 words is probably a good vocabulary size given 
the current state of the art. We could use the 
5000 most common words in the text database. 
If we set aside a block of about 10% of the text 
for CSR testing, we can obtain in-vocabulary CSR 
test sets and CSR test sets which include out-of- 
vocabulary words. This would also allow for ex- 
tension to larger vocabularies when the CSR tech- 
nology has improved sufficiently. The training sen- 
tences need not be limited to the chosen vocabulary. 

3. The database would consist of read speech. This is 
fast and cheap to enable us record sufficient acous- 
tic data. It would not attempt to cover extem- 
poraneous speech phenomena. (Extemporaneous 
speech phenomena can be explored using the ATIS 
database. The ATIS database, however, does not 
have sufficient text backup to generate a good sta- 
tistical language model.) 

A cheaper, but less useful alternative is the continuous 
speech version of the IBM 5000 word vocabulary office 
correspondence (OC-5000) database [1]. This database 
has a good bigram language model, has sentence lists 
(but the test list is only 50 sentences), and has acoustic 
data which has already been recorded. However, the 
underlying text is not available and the availability of 
the language model and the acoustic data is currently 
uncertain due to unsettled legal issues [12]. 

Conclus ion  
Our training methods have been found to include a 

language model bias into our acoustic models. This bias 
causes misleading test results and impairs the vocab- 
ulary independence of our models. Richer and larger 
acoustic databases, context dependent modeling, avoid- 
ing discriminative training methods, and good testing 
language models all will serve to minimize this bias. A 
speech database based upon one of the ACL/DCI text 
databases would provide a good arena for continued CSR 
development while minimizing problems due to the train- 
ing biases. 
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