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Introduction 
This paper presents the Unisys Spoken Language Sys- 
tem, as applied to the Air Travel Planning (ATIS) 
domain. 1 This domain provides a rich source of inter- 
active dialog, and has been chosen as a common appli- 
cation task for the development and evaluation of spo- 
ken language understanding systems. The Unisys ap- 
proach to developing a spoken language system combines 
SUMMIT (the MIT speech recognition system [6]), PUN- 
DIT (the Unisys language understanding system [3]) and 
an Ingres database of air travel information for eleven 
cities and nine airports (the ATIS database). Access 
to the database is mediated via a general knowledge- 
base/database interface (the Intelligent Database Server 
[4]). To date, we have concentrated on the language un- 
derstanding and database interface components. 

A Dialog Manager integrates the overall user-system 
interaction. The Dialog Manager accepts user requests 
in the form of strings of words and calls PUNDIT to in- 
terpret the input; it then calls the database indirectly, 
via the IDS database interface. An important  function 
of the Dialog Manager is to maintain a record of the 
discourse context, so that  the system can successfully 
process connected dialog. 

We first describe our architecture in more detail, then 
give a short discussion of dialog management, a topic we 
feel will be crucial to successful systems interacting with 
users via natural language. We conclude with the pre- 
sentation and analysis of results from the ATIS common 
evaluation task and from data  gathered at Unisys using 
our system. 
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of that  input. If no interpretation is forthcoming, the 
user is notified; otherwise the interpretation is passed to 
a module called QTIP (Query Translation and Interface 
Program), which at tempts to create a database query 
corresponding to the request. QTIP does not produce 
SQL code directly, instead, communication with Ingres 
is done via an Intelligent Database Server [4], developed 
on another DARPA contract, which we describe in the 
next section. 

I n t e l l i g e n t  D a t a b a s e  S e r v e r  
The ATIS Intelligent Database Server (see Figure 2) con- 
sists of the Intelligent Database Interface (IDI) and a 
server supporting the interaction beteen QTIP and a rela- 
tional database. The IDI provides a logic-based language 
for queries and transparent support for the actual inter- 
action with an Ingres DBMS. The server supports the 
interaction with a logic-based query generator (for PUN- 
DIT, qTIP; for the MIT system, TINA [5]). It provides 
input /output  conversion between Ingres and Prolog or 
Lisp (the languages of choice for language understanding 
systems), commands for selecting databases, informative 

Dialog ~ 

PUNDIT 

Architecture 
S y s t e m  L e v e l  A r c h i t e c t u r e  
Our system architecture (see Figure 1) is based on a Dia- 
log Manager, and is taken from a previous application for 
navigating around Cambridge, Massachusetts [1]. The 
major difference is that the module providing answers 
for direction assistance was an expert system, while here 
it is a database. The Dialog Manager, upon receiving an 
input from the user, calls PUNDIT fo r  a n  interpretation 

ZThis work was suppor t ed  by DARPA contract N000014-89- 
C0171, administered by  the Office of Naval Research. 
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Figure 1: Overall System Architecture 
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statistics and generation of comparator output. 
The Intelligent Database Interface is a portable, cache- 

based interface providing transparent, efficient access to 
one or more databases on one or more remote database 
management systems (DBMS) which support SQL. The 
IDI was designed to be compatible with a logic-based 
knowledge representation scheme and has been used to 
implement a query server supporting the ATIS database 
access for PUNDIT. The query language of the IDI is 
the Intelligent Database Interface Language (IDIL) and is 
based on a restricted subset of function-free Horn clauses 
where the head of a clause represents the target list (i.e., 
the form of the result relation) and the body is a con- 
junction of literals which denote database relations or 
operations on the relations and/or  their attributes (e.g., 
negation, aggregation, and arithmetic operations). 

The Intelligent Database Server supports QTIP's  in- 
teraction with the ATIS database, accepting IDIL queries, 
using the IDI to translate and execute the queries and 
returning results as straightforward lists of lists. The 
IDI Server supports QTIP'S interaction with a relational 
database in several specific ways; the IDI Server 

• accepts an IDIL query as input and returns Prolog 
tuples or Lisp tuples, the translated SQL query and 
statistics; 

• translates IDIL queries to SQL and executes them on 
the database; 

• manages connections transparently to the Ingres 
database; 

• converts Ingres tuple output to Prolog or Lisp tu- 
ples, and 

• produces cAs evaluation output. 

The IDI architecture also contains a cache; the IDI 
currently caches results of database queries. Our caching 

concept also includes the notion of advice provided to the 
cache. While we have not used it in this application to 
date, we believe that there are many useful heuristics in 
the travel planning domain that can lead to optimized 
DB retrieval strategies, using the cache for query gen- 
eralizations, pre-fetching and replacement. We plan to 
collect statistics on ATIS transactions which could then 
be used to define an effective advice language and strat- 
egy. 

Overview of the Dialog Manager  
The Dialog Manager oversees the interaction of the sys- 
tem with the user. It also oversees the communication 
between the language understanding subsystem and the 
database, via QTIP. QTIP reports back to the Dialog 
Manager, returning both the IDIL query and the zero or 
more tuples which it received from the IDS (or a diag- 
nostic message containing information explaining why it 
didn't make a database call). The Dialog Manager then 
does two things: it presents the answer to the user, using 
information from the IDIL query to format the tuples in 
the answer and to generate column headings for them; 
and it retains the answer in a data structure representing 
the discourse context. The latter action is what makes it 
possible for our system to handle certain types of refer- 
ence by the user to material in answers. The basic idea 
of having the Dialog Manager store responses was de- 
veloped for the direction-assistance application. In that 
task, the expert system responded in English sentences, 
and the responses were processed by PUNDIT and their 
interpretations stored in the discourse context. For ATIS, 
the DB answers are kept, and mechanisms for referenc- 
ing data in that form have been added to PUNDIT, to 
enable it to interpret subsequent inputs in the context 
of both previous user queries and previous system re- 
sponses. This is illustrated in the next section. 
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Dialog Management 
Reference Resolution 
PUNDIT has for some time had the ability to  resolve 
anaphoric references of various kinds, including pronom- 
inal reference ("that one") and definite noun anaphors 
("the Delta flight", "those flights"). This capability was 
used in the direction-assistance application, and it is 
present also for ATIS. We have made no major exten- 
sions to this capability for ATIS. 

Deixis 
Presenting tabular responses encourages the user to re- 
fer to  entries in those responses. This introduces the 
need for a different kind of contextual reference. For in- 
stance, the code "LH" is used in the ATIS DB both for 
a (relatively rare) fare class and for Lufthansa German 
Airlines. If a user asks what "LH" means, the coopera- 
tive response is not to give both interpretations, but to 
give the interpretation corresponding to its use in a pre- 
vious response, which will be in an "airline" column or 
a "fare class" column, rarely both. A more interesting 
example involves expressions like "Delta flight 123". In 
the general case, that flight has several legs, say from 
Cityl to City2 to City3. If a user has asked for flights 
from Cityl to  City2, and then asks for fares for one of 
them, it is not cooperative to respond with fares not only 
from Cityl to City2, but also from City2 to City3 and 
from Cityl to City3, just because the fight in question 
goes on to  City3. It is quite clear from the context that 
the user wants only fares from Cityl to  City2; specifi- 
cally, Delta flight 123 will have been found in a previous 
answer tuple for just the Cityl to City2 leg. Both of 
the previous examples involve examination of entries in 
previous responses. Our system has been extended to 
handle the "Delta flight 123" example as a demonstra- 
tion of this kind of capability; we plan to  add the ability 
to  handle other such contextual references in the near 
future. 

The mechanisms involved in handling such contextual 
references can be illustrated by how the "Delta flight 
123" example proceeds. When the table with flights 
from Cityl to  City2 is returned, a discourse entity repre- 
senting it  is added to  the discourse context, but without 
representing any individual flights as discourse entities. 
A semantics for the table is also provided, which cor- 
responds to something like "table of Delta flights from 
Cityl to City2". When "Delta flight 123" is subsequently 
referred to, PUNDIT tries to find a flight in the context 
with that flight number and airline (we can also handle 
just "flight 123"), by searching the tables in the discourse 
context whose semantics are consistent with those of the 
flight referred to. 

Diagnoses 
The Dialog Manager is also responsible for enhancing 
the cooperativeness of the system. It  has a primitive 
generation capability (based on sentence templates and 

keywords) to provide English diagnoses of failures. For 
instance, if a user asks for flights leaving after "eight 
o'clock", QTIP doesn't know if the DB query should spec- 
ify 8 a.m. or 8 p.m. The optimum action is to request the 
user to resolve the ambiguity. Our system at least tells 
the user it couldn't decide between a.m. or p.m. An- 
other example involves queries "just outside" or "on the 
fringe of '  the database. The DB contains information 
on ground transportation between cities and the airports 
serving them, but not on ground transportation between 
two cities or between two airports. If a query requesting 
information of the latter kind is properly understood, it 
is preferable for the system to tell the user as specifically 
as possible why the query cannot be answered, rather 
than to go through the motions of making a call to  the 
database and returning a LLtable" with no tuples. Our 
system issues a message stating that ground transporta- 
tion is between an airport and a city, not between two 
cities or airports. 

Evaluation 
Common Evaluation 
The first experiment using our system that we report 
on is the common evaluation task. Most of the discourse 
features we discussed in the previous section do not come 
into play for this task, because it involves testing the sys- 
tem on requests which are entirely self-contained, within 
the bounds of the domain, and unambiguous-so-called 
"class A" sentences. Thus there is no need for resolu- 
tion of anaphoric expressions, reference to previous an- 
swer tables, or diagnoses of out-of-domain requests for 
the June 1990 common evaluation. Furthermore, the an- 
swers for evaluation of sentences in context were not uni- 
formly available for the June evaluation. For these rea- 
sons, we will not report on an evaluation of sentences in 
context a t  this time. In the following section, we present 
our results for the common ATIS evaluation task, along 
with an analysis of the data. 

The common task data consisted of 90 queries, of 
which our system obtained correct ("True") answers for 
48, or 53%. Of the remainder, 10 resulted in DB calls 
which obtained inappropriate ("False") information, and 
32 resulted in no DB call at all ("NA"). We consider in- 
correct answers to  be even worse than no answers, and 
the greater than 10% "false alarm" rate experienced on 
this task to be beyond the acceptable rate for such errors. 

The 42 queries that were not successfully processed 
can be further subclassified as follows. 5 contained items 
that were not in our lexicon. 9 either did not parse, 
or did not obtain a usable parse. 10 either obtained 
no semantic/pragmatic analysis, or an incomplete one. 
QTIP, though given a complete interpretation of the in- 
put, could not create a call to  the DB for 12 more, and 
created an incorrect call 6 times. Our results are summa- 
rized in Table 1; there we show the error source for the 
incorrect ("False") answers and the unanswered (LLNA") 
questions separately. From this table we note that PUN- 

DIT performed quite well. QTIP was directly responsible 



Pundit 

QTIP 

Outcome 
lexicon 
parsing 

semantics 
QTIP-no  call 

True False NA 
1 4 

9 
3 7 

12 
QTIP-cal l  48 6 

Totals [ 4 s [  x0 [~2 

Table 1: Common Evaluation Task Results 

for nearly half (18 of 42) of the cases where an input 
query was not processed correctly. 

Even among the queries for which our system obtained 
the correct answer, there were 5 cases where the input 
was not processed entirely correctly. These cases can 
be subdivided into two groups, those where the unpro- 
cessed material was irrelevant to the handling of the re- 
quest, and those where the unprocessed material could 
well have resulted in an error. An example of the former 
is the query Under the category ground transportation 
what is transport A ? Our system ignored the redundant 
"under the category ground transportation". An exam- 
ple of the latter type is the query What is ~he fare on 
flight eleven forty nine from continental airlines? Our 
system failed to process "from continental airlines", but 
since no other airline has a flight number 1149 in the 
ATIS DB, the correct answer was obtained anyway. 

Speaker Success Rate 
bd 
bf 

bm 
bp 
bw 

50% 
71% 
26% 
46% 
87% 

Table 2: Success Rate by Speaker 

It is interesting how much variance there is between 
speakers. There were 5 different speakers in the common 
task data, and our system's success rate for them ranged 
from 26% to 87%, as shown in Table 2. 

C o m m o n  E v a l u a t i o n  A n a l y s i s  
Successful handling of only slightly more than half of the 
input queries, and class A queries at that, indicates that 
this system is a long way from being an operational sys- 
tem. However~ these data were gathered with maximal 
co-operativeness (and therefore permissiveness). From 
our experiences with the direction-assistance applica- 
tion, we suspect that  that  the ATIS method of gathering 
the input data decreased the success rate of our (and 
anybody else's) system, since the Wizard coped with 
nearly all inputs, giving a user no reason to change mode 
of expression. By contrast, if user bm had been using 
our system, his or her lack of success in getting answers 

might well have led to exploration with alternative ways 
of phrasing queries, with the result that  a larger percent- 
age of inputs would have been processed correctly over 
the entire session. In the next section, however, we will 
see that the" diagnoses, etc. from our system are not yet 
good enough to enable such an adaptation to take place 
for all users. 

The bot tom line is that our system has not yet 
achieved a satisfactory level of performance, and it is 
not hard to understand why. First and foremost, it is 
an incomplete system, in the middle of its development, 
and the results of the common task are simply a measure 
of our progress so far, and in no sense a measure of the 
level of achievement that our system will attain when 
fully developed. In fact, in the few weeks before the 
test, we confined our attention to a subset of about 550 
class A queries from development data available to us, 
and had achieved a success rate of 65% on those. So we 
were pleasantly surprised to succeed on as many as 53% 
of new, previously unseen utterances. We believe that 
this is evidence that our development work is indeed of 
general applicability for this domain, as opposed to con- 
sisting of a collection of ad hoc tricks to make specific 
inputs get through the system. 

On the other hand, why can our system correctly pro- 
cess only 65% of the training input? Why could we 
not have achieved a greater success rate by now? We 
suspect that the answer involves the wide range of ex- 
pressions different people use to make essentially the 
same requests in this domain. Indeed, in a later sec- 
tion we quantify this observation, comparing vocabulary 
growth and grammar growth in this domain with that 
in the direction-assistance domain. To return to a point 
touched on earlier, it may be significant that  the data in 
the ATIS domain was collected using a Wizard arrange- 
ment which bypassed not only the speech recognition 
component but ALSO the automated natural language 
understanding component; such was not the case for the 
direction-assistance experiment. 

Our widely different rates of success for the different 
speakers in the common task data supports the observa- 
tion that there are a large number of different ways to 
ask essentially the same questions. And if this is really 
the case, it means that a natural language understanding 
system will have to be trained on much larger volumes of 
data for the ATI$ domain. In the direction-assistance do- 
main, we reported having to train on 1000 sentences to a 
success rate of over 80% before our system could achieve 
70% new sentence coverage. It is an open question how 
many more than 1000 sentences will be necessary for the 
ATIS domain; currently we have worked with less than 
1000 sentences and have achieved (with comparable ef- 
fort) only a 65% coverage on the class A subset of the 
training corpus (and about 50% coverage of the entire 
corpus). It would be informative to train to an 80% 
coverage and reassess coverage on test data. 

Individual examples of successes and failures of our 
system on the common task data seem not to be of suf- 
ficient general interest to report in this paper, given the 
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Figure 3: Incremental growth of grammar in ATIS and direction-assistance domains 

current limits of our system. We do, however, feel that  
even these experiments with this partially developed sys- 
tem point to a need to work in the ATIS domain at a task 
level as well as at a sentence level. So, even with the defi- 
ciencies of our system in its present state of development, 
we have begun experiments along those lines, which we 
discuss in the next section. 

U n i s y s  D a t a  a n d  E v a l u a t i o n  

In order to explore issues in evaluation particularly 
from the user's perspective, we designed a data collec- 
tion/evaluation task using the system as a tool to collect 
data from users. Seven subjects were asked to use the 
Unisys ATIS system to solve travel planning scenarios. 
They were given the same instructions as the ATIS sub- 
jects at TI, the same scenarios, and the same follow up 
questionaire. In addition, in order to measure user sat- 
isfaction, after the session was over, the subjects were 
also asked to score each response from the system on a 
zero to five scale of satisfactoriness. A total of 206 typed 
inputs were collected, 2 of which 38% were processed cor- 
rectly. The mean user satisfaction was 2.4 on the 0 to 
5 scale. Although we had planned to collect other data, 
such as time to complete task, very few of the subjects 
actually completed the task. This was because of the 
incomplete development of the system and the difficulty 
of the scenarios. Consequently we were unable to collect 
this data. 

One question which we wished to address was what 
factors affect user satisfaction in a spoken language sys- 
tem. For example, we were interested in how coverage 
affects user satisfaction. Coverage is clearly the most im- 
portant component of user satisfaction, although it does 
not completely determine it. In comparing user satis- 
faction on the queries that were handled to those which 

2 This data is available from the authors upon request. 
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were not handled, we found a mean rating of 4.8 (on a 
0-5 scale) for the queries that were handled and a mean 
rating of .98 for the queries that were not handled. Some 
inputs which were not handled received a relatively high 
score (4) from the users because the error messages were 
perceived to be useful. For example, the query From 
Oakland to Boston, what is the fare ¢. was answered with 
the error message Sorry, could you rephrase that ¢. which 
indicates that it wasn't parsed, but it nevertheless got 
a rating of 4 from the user. On the other hand, some- 
times a query which was completely understood got a 
relatively low rating because the user didn't  like how 
the information was presented. For example, the query 
How much does a flight from San Francisco cost? was 
answered correctly, but received a score of 3 because the 
fares presented were not associated with specific flights. 

Aneedotally, we noted that response time, which is 
independent of coverage, is also an important  component 
of user satisfaction. Nearly all the Unisys subjects said 
that the system was too slow, and 28/53 or 53% of the 
TI  subjects also said that the system they were using 
was too slow. ~ This data lead us to believe that there 
may be important trade-offs in coverage and informative 
error messages vs. speed that can lead to increased user 
satisfaction and usability of the system. 

S y s t e m  G r o w t h  a s  a F u n c t i o n  o f  T r a i n i n g  

D a t a  
One of our most interesting findings was our ability to 
quantify the lack of convergence of the ATIS data, both in 
terms of grammar rules and in terms of lexicon. Starting 
with the direction-assistance application, we developed 
techniques for quantifying the growth of the system as 

~This data was collected from the TI debriefing questionaires. 
We thank Charles Hemphill of TI for making these questionaires 
available to u s .  
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Figure 4: Incremental  growth of lexicon in ATIS  and direction-assistance domains 

a function of training data.  We recorded the rate of 
growth in terms of g rammar  rules and lexical items as 
a measure of convergence for both ATIS  and direction- 
assistance ([1],[2]) versions of PUNDIT. Our expectation 
is that  the rate of growth should level off as more and 
more training is seen. To the extent that  it does not, 
significant gaps in coverage can be expected. Figure 3 
shows the incremental growth of the grammar  for both 
domains and Figure 4 shows the incremental growth of 
the lexicon. It  is interesting to note that  after 600 sen- 
tences from the direction-assistance domain the rate of 
growth in both grammar  and vocabulary is quite slow, 
indicating that  this amount  of training data  is enough 
to provide a good sample of the kinds of constructions 
used in the domain. In contrast, we do not see any level- 
ing off in ATIS growth after 600 sentences. From this we 
can conclude that  a larger set of da ta  will be required 
to provide a good sample of the constructions needed 
for ATIS. It is impor tant  for future evaluations to de- 
velop some better  methods for estimating the amount  
of training data needed for a given application. Since 
the vocabulary growth curve is similar to the grammar  
growth curve in both applications it may be that  sim- 
ple measurement  of vocabulary convergence would serve 
as a crude measure of amount  of training data  needed. 
We are just  beginning to assemble some data  points in 
terms of training da ta  for multiple applications. The 
direction-assistance vs. A T I S  applications illustrate that  
two seemingly similar kinds of applications can have very 
different characteristics, perhaps reflecting how the ac- 
tual da ta  collection was carried out. As we look at more 
spoken language applications, our ability to make rea- 
sonable estimates on training da ta  should improve sig- 
nificantly. 
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