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Introduction 
Understanding spontaneous speech presents several 

problems not found in processing read speech input. Spon- 
taneous speech is often not fluent. It contains stutters, filled 
pauses, restarts, repeats, interjections, etc. Casual users do 
not know the lexicon and grammar used by the system. It is 
therefore very difficult for a speech understanding system 
to achieve good coverage of the lexicon and grammar that 
subjects might use. 

The Air Travel Information Service task is being used to 
develop and evaluate speech understanding systems for 
database query like tasks. In the ATIS task, novice users 
are asked to perform a task that requires getting infor- 
marion from the Air Travel database. This database con- 
tains information about flights and their fares, airports, 
aircraft, etc. Users compose the questions themselves, and 
are allowed to phrase the queries any way they choose. No 
explicit grammar or lexicon is given to the subject. 

At CMU, we are developing a system, called Phoenix, 
to understand spontaneous speech. We have implemented 
an initial version of this system for the ATIS task. This 
paper presents the design of the Phoenix system and its 
current status. We also report results for the first ATIS 
evaluation set distributed by NIST. 

The Phoenix System 
The problems posed by spontaneous speech can be 

divided into four categories 

• User noise - breath noise, filled pauses and other user 
generated noise 

• Environment noise - door slams, phone rings, etc. 

• Out-of-vocabulary words - The subject says words 
that the system doesn't know. 

• Grammatical coverage - Subjects often use 
grammatically ill-formed utterances and restart and 
repeat phrases. 
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Non-verbal sound models 
Models for sounds other than speech have been shown 

to significantly increase performance of HMM-based 
recognizers for noisy input. [5] [7] In this technique, ad- 
dirional models are added to the system that represent non- 
verbal sounds, just as word models represent verbal 
sounds. These models are trained exactly as if they were 
word models, but using the noisy input. Thus, sounds that 
are not words are allowed to map onto tokens that are also 
not words. 

Out-of-vocabulary word model 
In order to deal with out-of-vocabulary words, we are 

using a technique essentially the same as the one presented 
by BBN. [1] We have an explicit model for out-of- 
vocabulary words. This model allows any triphone (context 
dependent phone) to follow any other triphone (given of 
course that the context is the same) with a bigram prob- 
ability model. The bigrams are trained from a large diction- 
ary of English pronunciations. 

Flexible parsing 
We use a frame based parser similar to the DYPAR 

parser used by Carbonell, et al. to process ill-formed 
text, [2] and the MINDS system previously developed at 
CMU. [8] Semantic information is represented by a set of 
frames. Each frame contains a set of slots representing 
pieces of information. In order to fill in the frames, we use 
a partitioned semantic phrase grammar. The grammar is a 
semantic grammar, non-terminals are semantic concepts in- 
stead of parts of speech. The grammar is also written so 
that phrases can stand alone (be recognized by a net) as 
well as being embedded in a sentence. Strings of phrases 
which do not form a grammatical English sentence are still 
parsed by the system. The grammar is compiled into a set 
of finite-state networks. Networks can "call" other net- 
works, thereby significantly reducing the overall size of the 
system. These networks are used to perform pattern 
matches again.~t word strings. The grammar is partitioned, 
instead of one big network, there are many small networks. 
Each slot type is represented by a separate network which 
specifies all ways of saying the meaning represented by the 
slot. This general approach has been described in an earlier 
paper. [6] 

The operation of the parser can be viewed as "phrase 
spotting". A beam of possible interpretations are pursued 
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Table 1: 

Source Number True Number False No Answer Percent Correct 

Transcript 45 47 1 48 

Speech 36 57 0 39 

Results as scored by NIST. 

Source Number True Number False No Answer Percent Correct 

Transcript 60 32 1 65 

Speech 39 54 0 42 

Table 2: Rescored results 

simultaneously. An interpretation is a frame with some of 
its slots filled. The finite-state networks perform pattern 
matches against the input string. When a phrase is recog- 
nized, it attemps to extend all current interpretations. This 
amounts to dynamic programming on series of phrases. 
The score for an interpretation is the number of input words 
that it accounts for. At the end of the utterance, the best 
scoring interpretation is output. 

S y s t e m  S t r u c t u r e  
The overall structure of the system is shown in Figure 1. 

We use the Sphinx system as our recognizer module. [4]. 
Currently, it is a Top-1 system. That is, the recognizer and 
parser are not integrated. The grammar used by the parser 
is used to generate a word pair grammar. The recognizer 
uses the word pair grammar in decoding the speech input. 
The recognizer produces a single best hypothesis. This 
hypothesis is then passed to the frame-based parser which 
assigns word strings to slots in a flame as explained above. 

The slots in the flame are then mapped to canonical 
form. This puts all dates, times, names, etc. in a standard 
form for the routines that build the database query. At this 
step ellipsis and anaphora are resolved using current ob- 
jects built as a result of previous utterances. Objects con- 
sist of currently active constraints, the set of flights that 
meet the constraints and a list of individual flights in focus. 
Resolution of ellipsis and anaphora is relatively simple in 
this system. We are aided greatly by the fact that the slots 
in frames are semantic, thus we know the type of object 
needed for the resolution. The canonical flame represents 
the information that was extracted from the utterance. It is 
then used to build a database query. This query is sent to 
the SYBASE database management system and the 
returned results are displayed to the user. 

R e s u l t s  
Our current system has a 484 word vocabulary and a 

word pair grammar with perplexity 85. We use the 
Vocabulary-independent phone models generated by Hon. 
[3] We have not yet added the non-verbal and out-of- 

vocabulary models to the system. The only technique cur- 
rently used to cope with spontaneous speech is a word pair 
grammar and a flexible parser. 
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Figure 1: Structure of the Phoenix system 

The test data consists of a total of 93 utterances taken 
from five speakers. The data was gathered by TI and dis- 
tributed by NIST. All utterances were "Class-A". Both 
transcript and speech input were processed. The database 
output in CAS format was sent to NIST where it was 
scored against the reference database answers. Table 1 
shows the results of the NIST evaluation. 

As a result of errors in generating the output to be 
scored, a significant number of utterances that parsed cor- 
rectly were scored as incorrect. Most of these were of three 
types that resulted from a misunderstanding on my part as 
to what was to be generated. 

• Dates - Our system generated dates relative to the 
time the system was run instead of relative to when 
the corpus was gathered. 



Sourc Subs 

Word 25 

String 97 

Table 3: Recognition error rates (percentages) 

Del Ins Error 

15 zt 4.4 

97 

* Abbrevations - We printed codes or abbreviations 
rather than the full text description as an answer. 

• Round-trip - The test for round-trip fares (of flights) 
was incorrectly apphed. 

Output in these situations was correct given the (incor- 
rect) assumptions that I used. In order to understand the 
system's behavior, it is useful to look at the scores if the 
three bugs were fixed. This more fully reflects the true 
abilities of the system. After sending our output to NIST, I 
fixed these three bugs (total time under three hours) and 
reprocessed the test data. Table 2 presents the same test 
data after these changes. 

Analysis of trace ouput for the data showed that 75 per- 
cent of the transcript utterances parsed correctly. The ad- 
ditional degradation to 65 percent is a result of other errors 
in generating database queries. 

It is also interesting to examine the word and string error 
rates for the recognizer output. These are shown in Table 3. 
A string error rate of 97 percent means that only three 
percent of the utterances contained no errors. However, 42 
percent of the utterances gave correct answers. This il- 
lustrates the ability of the parser to handle minor misrecog- 
nifions in the recognized string. The word error rate of 44 
percent is poor given the high quality of the basic recog- 
nizer and relatively low perplexity of the word pair gram- 
mar. We feel that this will improve considerably with the 
addition of non-verbal and out-of-vocabulary models and 
with better lexical and grammatical coverage. 
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