
Developing an Evaluation Methodology 
for Spoken Language Systems 

Madeleine Bates, Sean Boisen and John Makhoul 

BBN Systems and Technologies Corporation 
10 Moulton Street 

Cambridge, MA 02138 

Abstract 
There has been a long-standing methodology for 

evaluating work in speech recognition (SR), but until 
recently no community-wide methodology existed for either 
natural language (NL) researchers or speech understanding 
(SU) researchers for evaluating the systems they developed. 

Recently considerable progress has been made by a 
number of groups involved in the DARPA Spoken 
Language Systems (SLS) program to agree on a 
methodology for comparative evaluation of SLS systems, 
and that methodology is being used in practice for the first 
time. 

This paper gives an overview of the process that was 
followed in creating a meaningful evaluation mechanism, 
describes the current mechanism, and presents some 
directions for future development. 

1. A Brief History 
The work reported in this paper began in 1988, when 

people working on the DARPA Spoken Language Systems 
program and others working on other aspects of natural 
language processing met at a workshop on NL evaluation 
[1]. At that meeting, considerable time was devoted to 
clarifying the issues of black-box evaluation and glass-box 
evaluation. 

Since that meeting, the SLS community formed a 
committee on evaluation, chaired by Dave Pallett of NIST. 
The charge of this committee was to develop a methodology 
for data collection, training data dissemination, and testing 
for SLS systems under development (see [2] and [3]). The 
emphasis of the committee's work has been on automatic 
evaluation of quefies to an air travel information system. 

The first community-wide evaluation using the first 
version of methodology developed by this committee took 
place in June, 1990. It is reported in [4]. 

2. The Issues 
Why are systems for NL understanding, or speech 

understanding, more difficult to evaluate than SR systems? 
The key difference is that that the output of speech 
recognition is easy to specify -- it is a character string 
containing the words that were spoken as input to the 

system - and it is trivially easy to determine the "fight" 
answer and to compare it to the output of a particular SR 
system. Each of these steps, 

1. specifying the form that output should take, 
2. determining the right output for particular input, and 
3. comparing the fight answer to the output of a particular 

system, 
is very problematic for NL and SU systems. 

~mU~ I 

i i  

Recognition Ur ding 

Meaning ReI :~sea t~ i~  

I Application [ 
Code 
Generator 

SQL Commands~ 

to User ,.4-I Response 
CGener~t~ 

Applimtlon 
Sysw.m 
~DBMS) 

Answer 1 

Figure 1: A Typical Speech Understanding System 

3. The Goal 
The goal of the work was to produce a well-defined, 

meaningful evaluation methodology (implemented using an 
automatic evaluation system) which will both permit 
meaningful comparisons between different systems and also 
allow us to track the improvement in a single NL system 
over time. The systems are assumed to be front ends to an 
interactive application (database inquiry) in a particular 
domain (ATIS - an air travel information system). 

The intent is to evaluate specifically NL understanding 
capabilities, not other aspects of a system, such as the user 
interface, or the utility (or speed) of performing a particular 
task with a system that includes a NL component. 

102 



4. The Eva luat ion  F r a m e w o r k  
The methodology that was developed is very similar in 

style to that which has been used for speech recognition 
systems for several years. It is: 

1. Collect a set of  data as large as feasible, under 
conditions as realistic as possible. 

2. Reserve some of that data as a test set, and distribute 
the rest as a training set. 

3. Develop answers for the items in the test set, and an 
automatic comparison program to compare those "right" 
answers with the answers produced by various systems. 

4. Send the test set to the sites, where they will be 
processed unseen and without modifications to the system. 
The answers are then returned and run through the evaluation 
proc~ure, and the results reported. 

Figure 2 illustrates the relationship between an SLS 
system and the evaluation system. 

Evaluat ing  body  Developer  provides  provides  
I 

~ SLSkernel 
I 

I I I 

I I 
I I 

Comparator 1- 

=1 

* C A S  = C o m m o n  
Answer  Specification 

Figure 2: The Evaluation Framework 

4.1 Collecting Data 
A method of data collection called "Wizard scenarios" was 

used to collect raw data (speech and transcribed text). This 
system is described in [5]. It resulted in the collection of a 
number of  human-machine dialogues. This data exhibits 
some interesting characteristics. 

Because much of the data in the database is represented in 
encoded form (e.g., "L" for "Lunch", and "F" for "First 
Class"), and because the names of the database fields (which 
show up as column headers in the answers shown to the 
users) are often abbreviated or cryptic, many of  the users' 
questions centered on finding out the meaning of some code 
which was printed as part of  the answer to a previous 

question. 1 This is a characteristic of this particular database, 
and is not necessarily shared by other databases or domains. 

The amount of data shown to the user influences the 
range of subsequent queries. For example, when the user 
asks for a list of flights and the answer includes not just the 
flight numbers but also the departarture and arrival times and 
locations, the meal service, and so on, there is never any 
need for a follow-up question like "When does flight AA123 
get in?" or "Is lunch served on that flight?". 

The language obtained in Wizard scenarios is very 
strongly influenced by the particular task, the domain and 
database being used, and the amount and form of data 
returned to the user. Therefore, restricting the training and 
test sets to data collected in Wizard scenarios in the AIrS 
domain means that the language does not exhibit very many 
examples of some phenomena (such as quantification, 
negation, and complex conjunction) which are known to 
appear frequently in database interfaces to other domains. 

4.2 Classifying Data 
One of the first things to become clear was that not all of 

the collected data was suitable as test data, and thus it was 
desirable that the training data be marked to indicate which 
queries one might reasonably expect to find in the test set. 

The notion emerged of having a number of classes of 
data, each more inclusive than the last, so that we could 
begin with a core (Class A) which was clearly definable and 
possible to evaluate automatically, and, as we came to 
understand the evaluation process better, which could be 
extended to other types of queries (Classes B, C, etc.). 

Several possible classification systems were presented and 
discussed in great detail. The one which has been agreed on 
at this time, Class A, is defined in Appendix A; Classes B, 
C, etc. have not yet been defined. 

4.3 Agreeing on Meaning 
How do you know whether a system has given the fight 

answer to a question like "List the mid-day flights from 
Boston to Dallas", "Which non-stop flights from Boston to 
Dallas serve meals?", or "What's the fare on AA 167?" 

It is necessary, for cross-site comparisons, to agree on the 
meaning of terms such as "mid-day", "meals" (e.g., does that 

1For example, 23 of the 90 queries in the June 1990 test 
set were requests for the meaning of an abbreviation or code. 

103 



mean any food at all, or does it include full meals but 
exclude snacks), and "the fare of a flight" (because in this 
database, flights don't have simple fares, but a flight 
together with a class determine the fare). 

The process of defining precisely what is meant by many 
words and phrases is still not complete, but Appendix B 
lists the current points of  agreement. Without this 
agreement, many systems would produce very different 
answers for the same questions, all of  them equally fight 
according to the systems' own definitions of the terms, but 
not amenable to automatic evaluation. 

4.4 Developing Canonical A n s w e r s  
It is not enough to agree on meaning, it is also necessary 

to have a common understanding of what is to be produced 
as the answer, or part of the answer, to a question. 

For example, if a user asks "What is the departure time of 
the earliest flight from San Francisco to Atlanta?", one 
system might reply with a single time and another might 
reply with that time plus additional columns containing the 
carrier and flight number, a third system might also include 
the arrival time and the origin and destination airports. 
None of these answers could be said to be wrong, although 
one might argue about the advantages and disadvantages of 
terseness and verbosity. 

It was agreed that, for the sake of automatic evaluation, a 
canonical answer (the minimum "fight" answer) should be 
developed for each Class A query in the training set, and that 
the canonical answer should be that answer retrieved by a 
canonical SQL expression. That is, the fight answer was 
defined by the expression which produces the answer from 
the database, as well as the answer retrieved. This ensures 
A) that it is possible to retrieve the canonical answer via 
SQL, B) that even if the answer is empty or otherwise 
limited in content, it is possible for system developers to 
understand what was expected by looking at the SQL, and C) 
the canonical answer contains the least amount of  
information needed to determine that the system produced the 
fight answer. 

Thus it was agreed that for identifying a "flight" the 
unique flight id would be used, not the carrier and flight 
number (since there may be several different flights called 
AA 123 connecting different cities with different departure 
times andother characteristics). 

What should be produced for an answer is determined both 
by domain-independent linguistic principles [2] and domain- 
specific stipulation (Appendix B). The language used to 
express the answers is defined in Appendix C. 

4.5 Developing Comparators 
A final necessary component is, of  course, a program to 

compare the canonical answers to those produced by various 
systems. Two programs were constructed to do this, one 

written in Common Lisp by BBN and one written in C by 
NIST. Their functionality is substantially similar; anyone 
interested in obtaining the code for these comparators should 
contact Bill Fisher at NIST or Sean Boisen at BBN. 

The task of  answer comparison is complicated 
substantially by the fact that the canonical answer is 
intentionally minimal, but the answer supplied by a system 
may contain extra information. Some intelligence is needed 
to determine when two answer match (i.e. simple identity 
tests won't work). 

4.6 Choosing a Test Set 
For the first evaluation, a test set of 90 Class A queries 

was chosen from dialogues collected by 4 subjects who were 
not represented in the training set. We believe that makes 
the test set harder than necessary, since it is clear that there 
is not enough training data to illustrate many of  the 
linguistic forms used in this domain, and there is also a 
strong indication that new users tend to stick with a 
particular way of asking questions. 

4.7 Presenting Results 
Expressing results can be almost as complicated as 

obtaining them. Originally it was thought that a simple "X 
percent correct" measure would be sufficient, however it 
became clear that not all systems could answer all questions, 
and that there was a significant difference between giving a 
wrong answer and giving no answer at all, so the results 
were presented as: Number fight, Number wrong, Number 
not answered. How harshly systems should be judged for 
giving wrong answers was not determined. 

5. Strengths  of this Methodology  
It forces advance agreement on the meaning of  critical 

terms and on at least minimal information to be included in 
the answer. 

It is objective, to the extent that a method for selecting 
testable queries can be defined, and to the extent that the 
agreements mentioned above can be reached. 

It requires less human effort (primarily in the creating of 
canonical examples and answers) than non-automatic, more 
subjective evaluation.. It is thus better suited to large test 
sets. 

Flexible comparison means system developers need not 
develop a completely separate system for evaluation 
purposes.  With only minor  format t ing changes,  
substantially the same system can be used for other 
purposes. 

It can be easily extended, as discussed in section 7 below. 

104 



6. Weaknesses of this Methodology 
It does not distinguish between merely acceptable answers 

and very good answers (although the comparators could be 
made to take this into account if multiple canonical answers 
with associated acceptability levels could be provided). 

It does not distinguish between some cases, and may thus 
give undue credit to a system that "over answers". For 
example, if the system prints out the carrier, flight number, 
arrival and departure times and locations, and meal service 
every time it is asked about a flight, then the answers to 
"What is the arrival time of AA 123", "What is the 
destination of AA 123", "What meal is served on AA 123" 
and "List flight AA 123" could all produce exactly the same 
answer and be scored correct on all of them, since the 
canonical answers would be a subset of the information 
printed (note that it still must correctly distinguish flight 
AA 123 from other flights). 

It cannot tell if a system gets the right answer for the 
wrong reason. This is an" 11 unavoidable problem with 
"black-box" evaluation, but it can be mitigated by use of 
larger test sets. 

It does not adequately measure the handling of some 
phenomena, such as extended dialogues. 

7. Suggestions for The Future 
Our experience thus far has shown that the methodology 

of developing well-defined test set criteria, combined with 
automatic evaluation of canonical answers, is a useful one. 

7.1 Challenge Training S e t  
One of the strongest needs of the SLS community at this 

time is more training data. Instead of a few hundred training 
queries, several thousand are needed. One way of obtaining 
more data is simply to continue to run Wizard scenarios to 
collect them, but this process is rather slow, and tends to 
yield numerous examples of very similar queries. 

We suggest that a separate training set, called the 
Challenge Set be created. To form this set, each of the five 
system-developing sites would create, using any means they 
wish, 500 Class A queries, together with canonical SQL and 
answers for them. Each site would be encouraged to include 
queries that show the scope of their system and that create a 
challenge for other sites to match. Every site would then be 
required to report on the results of running their system on 
the challenge set. This use of "crucial examples" is similar 
to more traditional linguistic methods. 

7.2 B e y o n d  C l a s s  A 

7.2.1Context 
The existing Class A definition excludes all sentences 

whose interpretation requires context outside the sentence 
itself, i.e. "Which of those flights are non-stop?". The only 

obstacle to including such sentences is agreement on what 
discourse phenomenon to allow, what the meanings in 
context should be, and when the context should be reset 
(because sentences have been excluded for other reasons). 
The existing evaluation framework naturally extends to such 
cases, assuming the system can produce answers without 
user interaction. 

A proposal has been made [6] to standardize output 
displays in an attempt to reset context for the evaluation of 
discourse. This would make it possible to evaluate queries 
containing references that are display-specific, but not many 
queries in the training data are of this type, and we believe 
that there are simpler ways of evaluating common discourse 
phenomena. 

7.2.2Ambiguity 
A simple extension to the language for expressing 

answers would allow more than one answer to be returned 
for a query. At a minimum, this could be used to give 
several alternatives: an answer matching any alternative 
would then be scored as correct. For example, the answer to 
the query "What is the distance from the San Francisco 
airport to downtown" could be either the distance to San 
Francisco or the distances to San Francisco and Oakland 
(since both of those cities are served by the San Francisco 
airport). A more sophisticated approach would be to assign 
different weights to these alternatives, so systems obtaining 
the preferred reading would score the highest. 

References 
1. Palmer, M., T. Finin and S. Walter, Report on the 
Workshop on the Evaluation of  Natural Language 
Processing Systems, unpublished report of a RADC 
sponsored workshop, 1988. 

2. Boisen, Scan, Lance A. Ramshaw, Damaris Ayuso, and 
Madeleine Bates, A Proposal for SLS Evaluation, in 
Proceedings of the DARPA Speech and Natural Language 
Workshop, October 1989. 

3. Ramshaw, Lance A and Sean Boisen, An SLS Answer 
Comparator. SLS Note No. 7, BBN Systems and 
Technologies Corporation, Cambridge, MA, May 25, 1990. 

4. Pallett, David S., et al, DARPA ATIS Test Results June 
1990, this volume 

5. Hemphill, Charles, TI Implementation of Corpus 
Collection, this volume. 

6. Hirschman, Lynette, et al, Beyond Class A: A Proposal 
for Automatic Evaluation of Discourse, this volume. 

7. Pallet, David S., William M. Fisher, Jonathan G. Fiscus, 
Tools for the Analysis of Benchmark Speech Recognition 
Tests, Proceedings of ICASSP 1990, p. 97. 

105 



Appendix  A: The Current :  
Def ini t ion of  "Class  A" 

Class A queries will be identified by exception. Class A 
queries will be those that are none of the following: 

1. context dependent 
2. vague, ambiguous, disambiguated only by context, or 

otherwise failing to yield a single canonical db answer 
3. grossly ill-formed 
4. other unanswerable queries 
5. queries from a noncooperative subject. 

These exclusionary categories are described below. 

A.1. Context dependent 
There seem to be two broad subeategories here: 

a. queries containing explicit  reference to a 
preceding answer or question, such as "What classes of  
service are available on those flights?" 

b. queries whose scope is implicitly assumed to be 
limited by a preceding answer or question, such as "Which 
flights go to Dallas?" in a context that limits attention to 
some particular set of flights to Washington DC. 

It is noted that some queries in the second subcategory 
could, is isolation, also receive a reasonable context- 
independent interpretation. For example, in context, "Please 
list an interpretation of the classes," is likely to mean the 
classes displayed in the preceding answer, and thus is context 
dependent. It also could have a reasonable use referring to 
all classes. Such queries will be specially marked in the 
process of selecting class A queries. 

A.2. Vague, ambiguous, disambiguated 
only by context, or otherwise failing to 
yield a single canonical  da tabase  answer.  

Some of the particular cases noted so far include: 

a. attachment ambiguities. These will be excluded 
ONLY if it is not possible for an ordinary person to pick the 
preferred reading (without resort to context). 

b. "What does X mean?" These are out, unless X 
is an abbreviation code that has a table that expands the code 
into a descriptive word, phrase, or set of attributes. The 
query is not acceptable, however, if X is a code that has 
more than one possible meaning according to what field it 
appears in, unless there is disambiguating context WITHIN 
the query, such as "What does fare code X mean?" 

2 As distributed by Robert Moore of  SRI on May 10, 
1990. 

c. "Give me information about X." These queries 
could be allowed, if someone will produce a table of 
allowable instances of  X together with what information 
should be provided. Pending that happening, these queries 
are out. 

A . 3 .  G r o s s l y  ill-formed queries 
As long as the query is interpretable, only utterances that 

appear not to be attempts to speak normal conversational 
English will be excluded. For example, we should exclude 
attempts to speak some imagined form of "computerese" 
rather than normal English: "Origin Dallas, destination 
Boston, list flights." 

A.4. Other unanswerable queries 

a. queries not given a database answer by the 
wizard. This may include some queries that pass all our 
tests, but if the wizard did not generate a DB query, then we 
don't have anything to evaluate on. 

b. utterances that cannot be interpreted as queries, 
or that are incoherent. 

c. queries that request information not in the 
database. 

d. queries that refer to the way that information is 
presented. 

e. "meta queries" about system capabilities or 
structure or limits of the database. 

A.5. Queries from a noncooperative 
subject 

Utterances that are clearly designed to try to break the 
system should be excluded: "Given that city A is Oakland 
and city B is Fort Worth show me all flights from A to B." 

A.6. Additional Comments 

Minor syntactic or semantic ill-formedness -- if the query 
is interpretable, it will be accepted, unless it is so ill-formed 
that it is clear that it is not intended to be normal 
conversational English. 

Presupposition failures -- all presuppositions about the 
number of answers (either existence or uniqueness) will be 
ignored. These are the only types of presupposition failures 
noted to date. Any other types of presupposition failure that 
make the query truly unanswerable will presumably result in 
the wizard being unable to generate a database query, and 
will be ruled out on those grounds. 

Multi-sentence utterances -- These will not automatically 
be ruled out. The examples cited so far are clearly 
interpretable as expressing multiple constraints that "can be 
combined into a single query. 

106 



Appendix B: Current Definitions of 
Key Concepts in the ATIS Domain 

B.1 Basics 
A large class of tables in the database have entries that 

can be taken as defining things that can be asked for in a 
query. In the answer, each of these things will be identified 
by giving a value of the primary key of  its table. These 
tables are: 

Table Name English Term(s) Primary Key 
aircraft aircraft, equipment aircraftcode 
airline airline airline_code 
airport airport airport_code 
city city ci tycode 
compound_class service classes fareclass 
day names of the days day_code 
fare fare far ,code 
flight flight flight_code 
foocl_service meals meal_code 
ground_service ground transportation city_code, 

airportcode, 
transportcode 

month months monthnumber  
restriction restrictions restrict_code 
state names of states stat~code 
time_zone time zones time_zone_code 
transport transport code transport_code 

B.2 Special meanings 
In this arena, certain English expressions have special 

meanings, particularly in terms of the database distributed by 
TI in the spring of 1990. Here are the ones we have agreed 
on: (In the following, "A.B" refers to field B of table A.) 

B.2.1. Flights.  
A flight "between X and Y" means "from X to Y". 

In an expression of the form "flight number N", where N 
is a number, N will always be interpreted as referring to the 
flight number (flight.flight_number). "Flight code N" will 
unambiguously refer to flight.flight_code. "Flight N" will 
refer to flight.flight_number if N is in the range 0 <= N <= 
9999 but to flight.flight_code if N >= 100000. 

A "one-way" flight is a flight with a fare whose one-way 
cost is non-empty. 

Principle: if an attribute "X" of a fare, such as "one-way" 
or "coach", is used as a modifier of a flight, it will be 
interpreted as "a flight with an X fare". 

B.2.2. Fare (classes). 
A "one-way" fare is one with a non-empty one-way cost. 

In determining what is the "cheapest fare", one-way fares 
will be included. 

A "coach" fare is one whose compound_class.class_type = 
"COACH". Similarly, the fare modifiers "first class", 
"business class", and "thrift class" refer to values of the 
compound_class.class_type field. 

A reference to ranking of fares, e.g. "fares that are Y class 
or better", will be interpreted as a reference to the rank of the 
associated base fare (class_of_service.rank). 

A " d i s c o u n t e d  f a r e "  is 
compound_class.discounted = "YES". 

o n e  w h o s e  

An "excursion fare" is one with a restriction code 
(fare.restrict_code) that contains the string "AP", "EX", or 
I t  ~ j T ' L ~ I I  e 

A "family fare" is the same thing as an "excursion fare". 

A "special fare" is one with a non-null restriction code 
(fare.restrict_code). 

B.2.3. Time. 
The normal answer to otherwise unmodified "when" 

queries will be a time of day, not a date or a duration. 

The answer to queries like "On what days does flight X 
fly" will be a list of day.day_code fields, not a flight_days 
string. 

B.2.4. Units.  
All units will be the same as those implicit in the 

database (e.g. feet for aircraft.wing_span, but miles for 
aircraft.range_miles, durations in minutes). 

B.2.5. Meals.  
For purposes of determining flights "with meals/meal 

service", snacks will count as a meal. 

"List the types of meal" should produce one tuple per 
meal, not a single meal_code string. 

B.2.6. "With"-modification clauses. 
"Show me all the flights from X to Y with their fares" 

will require the identification of both flights and their fares 
(so if there are 2 flights, each with three fares, the answer 
will have 6 tuples, each with at least the flight_code and 
fare_code). In general, queries asking for information from 
two or more separate tables in the database will require the 
logical union of fields that would identify each table entry 
separately. 

B.2.7. Itinerary. 
The "itinerary" of a flight refers to the set of all non-stop 

legs of that flight. When an "itinerary" is asked for, each 
leg of the flight will be identified by the origin and 
destination cities for that leg, e.g. (CBOS" "ATL") CATL" 
"DFW")). 

107 



B.2.8. "What kind of". 
"What kind of X is Y" queries, where Y is clearly a kind 

of X, will be interpreted as equivalent to "what does Y 
mean?", where Y is a primary key value for the table referred 
to by X (see 10 below). 

B.2.9. Classes of Service 
References to classes of service will be taken as referring 

to the contents of the compound_class table (not the 
class of service table). 

Queries about (unmodified) "class X", e.g. "What is class 
X?", will be interpreted as referring to the set of  
compound_class.fare_class entries for which "X" is the 
fare_class, not the base_class, e.g. ' (CX")) ' ,  not 
'(("XA")("XB"))'. 

B.2.10. Requests for meaning. 
Requests for the "meaning" of something will only be 

interpretable if that thing is a code with a canned definition 
in the database. Here are the things so defined, with the 
fields containing their decoding: 

Table Key Field Decoding Field 
aircraft aircrafucode aircraft_type 
airline airline_code airline_name 
airport airporucode airporUname 
city city_code city_name 
cede_description code description 
column_table heading column_description 
day daycode dayjaame 
foodservice meal_code meal description 
interval period begin_time, 

end_time 
month month_number month_name 
state stat~code state_name 
time_zone time_zone_code time_zone_name 
transport lransporUcode transporUdescfipfion 

B.2.11. Stops. 
A request for a flight's stops will be interpreted as asking 

for the final stop in addition to intermediate stops. 

B.2.12. Yes/no Questions. 
Literal yes-or-no questions, that is, queries that in normal 

discourse would be best answered with "yes" or "no" if taken 
literally, may be answered by either a boolean value 
("YES/TRUE/NO/FALSE") or a relation, expressed as a 
table. Any non-null relation will be considered equivalent to 
"YES" or "TRUE" and the null relation will be considered 
equivalent to "NO" or "FALSE". 

B.2.13. Near. 
A city and an airport will be considered "near" (or 

"nearby") each other iff the city is served by the airport, and 
two cities will be considered "near" (or "nearby") each other 
iff there is an airport that serves them both. 

B.2.14. American. 
When it is clear that an airline is being referred to, the 

term "American" by itself will be taken as unambiguously 
referring to American Airlines. 

B.2.15. Vague Queries. 
Vague queries of the form "Give me information about 

X" or "Describe X" or "What is X", where X refers to a 
table, will be interpreted as equivalent to "Show me X". 
When X is an attribute or attribute value, such queries will 
be interpreted as "What does X mean?". 

Appendix C: Current Definition of 
CAS Answers 

The following BNF describes the syntax of the Common 
Answer Specification (CAS) for the ATIS domain: 

answer--> scalar-value I relation I NO ANSWER 
boolean-value --> yes I true I no I false 
number-value --> integer I real-number 
relation --> ( tuple* ) 
scalar-value --> boolean-value I number-value I string 
tuple --> ( value + ) 
value --> scalar-value I NIL 

We assume as primitives the values integer, real-number, 
and string. Integers and reals are not distinguished, and only 
non-exponential real numbers are allowed. Strings must 
always be enclosed in double quotes (e.e., "DFW"), are case- 
sensitive, and should be upper-case (since strings in the 
ATIS database are). The special tokens yes, no, true, 
false, no_answer,  and nil are not case-sensitive. 

Answer relations must be derived from the existing 
relations in the database, either by substituting and 
combining relations or by operations like averaging, 
summation, etc. NIL as the representation of missing data 
is allowed as a special case for any value, so a legal answer 
indicating the costs of ground transportation in Boston 
would be: 

( ( "L" 5.00 ) CR" nil ) CA" nil ) CR" nil ) ) 

Empty tuples are not allowed (but empty relations are). 
All the tuples in a relation must have the same number of 
values, those values must be of the same respective types 
(boolean, string, or number), and the types in the answer 
must be the same as the types in the database (i.e., database 
values like "1335" cannot be converted from strings to 
numbers in answer expressions). 

Acknowledgement 
This work was supported by the Defense Advanced 

projects Agency and monitored by the Office of Naval 
Research under Contract No. N00014-89-C-0008. 

108 




