
Toward a Real-Time
Spoken Language System

Using Commercial Hardware
Steve Austin, Pat Peterson, Paul Placeway, Richard Schwartz, Jeff Vandergrift

BBN Systems and Technologies Inc.
10 Moulton St.

Cambridge, MA, 02138

Abstract
We describe the methods and hardware that we are using
to produce a real-time demonstration of an integrated Spo-
ken Language System. We describe algorithms that greatly
reduce the computation needed to compute the N-Best sen-
tence hypotheses. To avoid grammar coverage problems we
use a fully-connected first-order statistical class grammar.
The speech-search algorithm is implemented on a board with
a single Intel i860 chip, which provides a factor of 5 speedup
over a SUN 4 for straight C code. The board plugs directly
into the VME bus of the SUN4, which controls the system
and contains the natural language system and application
back end.

1. Introduction
One goal of the Spoken Language System (SLS) project
is to demonstrate a real-time interactive system that inte-
grates speech recognition and natural language processing.
We believe that, currently, the most practical and efficient
way to integrate speech recognition with natural language
is using the N-Best paradigm, in which we find the most
likely whole-sentence hypotheses using speech recognition
and a simple language model, and then filter and reorder
these hypotheses with natural language. Although we claim
that this process is efficient, finding the N-Best sentences
still requires significant amounts of computation.

To accelerate the speech recognition process, several sites
have been developing special-purpose hardware, from fully-
custom VLSI [5] to custom boards based on general-purpose
processors operating in parallel [1]. However, with the rapid
changes in commercial hardware in the past few years we
felt that if we could achieve real time with commercially
available hardware we would realize a number of advan-
tages, such as decreased development time, increased relia-
bility, and better hardware and software support. We would
not have to divert attention from speech-recognition research
and our results wouM be more easily shared with the commu-
nity. We felt that these hopes were not unrealistic because,
for our algorithms in particular, which are research-oriented
and seldom have a stable, regular StlUCture, the potential
gains from custom hardware wouM not be that great.

Our strategy in developing a real-time spoken language
system has been to find appropriate commercial hardware

and then tailor our algorithms to the hardware and applica-
tion. In this context, we are trying to approach the following
goals:

1. real-time processing with a short delay

2. reasonable-cost, commercially-available hardware

3. source code compatibility with our research programs

4. computation of the N-Best sentences for large N

5. use of a robust fully-connected statistical grammar

6. practical memory requirements

7. negligible loss of accuracy

8. ability to handle large vocabulary

Two of the new algorithms used in this effort are described
in a separate paper [8]. Specifically, the Word-Dependent N-
Best search and the Forward-Backward Search. In Section
2 we describe the class of hardware that we have chosen for
this task. Section 3 reviews the reasons for using a statisti-
cal grammar and presents a new more efficient algorithm for
time-synchronous decoding with a statistical grammar. In
Section 4 we compare the accuracy of the standard Viterbi
algorithm with the time-synchronous forward search algo-
rithm that we use. And in Section 5 we give the latest
status of the speed and accuracy of our system.

2. Hardware
It is already quite straightforward to perform signal pro-
cessing in real-time on current boards with signal processor
chips. However, the speech recognition search requires a
large amount of computation together with several MB of
fast readily accessible memory. In the past there have not
been commercially available boards or inexpensive comput-
ers that meet these needs. However this is changing. The
Motorola 88000 and Intel 860 chips are being put on boards
with substantial amounts of random access memory. Most
chips now come with C compilers, which means that the
bulk of development programs can be transfered directly. If
needed, computationally intensive inner loops can be hand
coded.

72

After considering several choices we have chosen boards
based on the Intel 860 processor. The Intel 860 processor
combines a RISC core and a floating-point processor with
a peak speed of 80 MFLOPS. Currently, we have looked
at VME boards made by Sky Computer (the SkyBolt) and
Mercury (the MC860). The SkyBolt currently is available
with 4 MB of static RAM. It will very shortly be available
with 16 MB of DRAM and 256 KB of static RAM cache.
The Mercury MC860 is currently available with 16 MB of
DRAM. Most C programs that we have run on both of these
machines mn about five times faster than on a SUN 4/280.

Figure 1 illustrates the hardware configuration that we
have built. The host will be a SUN 4/330. The microphone
is connected to an external preamp and A/D converter which
connects directly to the serial port of the Sky Challenger.
The Sky Challenger with dual TMS320C30s will be used for
signal processing and vector quantization (VQ). The SkyBolt
will be used for the speech recognition N-Best search. The
boards communicate with the host and each other through the
VME bus, making high speed data transfers easy. However
currently the data transfer rate between the boards is very
low. The SUN 4 will conlrol the overall system and will
also contain the natural language understanding system and
the application back end.

SkyBolt 860

Sky Dual C30

Control, [
Application,

NL Understanding

f N-Best answeN

Forward.Backward Decoder I

f VQ indlcea
I An~ysI* I

Figure 1: Real-Time Hardware Configuration. The Sky
Challenger Dual C30 board and the Intel 860 board plug
directly into the VME bus of the SUN 4.

We use all three processors during most of the computa-
tion. When speech has started the C30 board will compute
the signal processing and VQ in real-time. The SUN 4
will accumulate the speech for possible long-term storage or
playback. Meanwhile, the Intel 860 will compute the for-
ward pass of the forward-backward search. When the end
of the utterance has been detected, the SUN will give the
1-Best answer to the natural language understanding system
for parsing and interpretation. Meanwhile the Intel 860 will

search backwards for the remainder of the N Best sentence
hypotheses. These should be completed in about the same
time that the NL system requires to parse the first answer.
Then, the NL system can parse down the list of alternative
sentences until an acceptable sentence is found.

Currently, the computation required for parsing each sen-
tencce hypothesis is about 1/2 second. The delay for the N-
Best search is about half the duration of the sentence. This is
expected to decrease with further algorithm improvements.

2. Time-Synchronous Statistical Lan-
guage Model Search
We know that any language model that severely limits what
sentences are legal cannot be used in a real SLS because
people will almost always violate the constraints of the lan-
guage model. Thus, a Word-Pair type language model will
have a fixed high error rate. The group at IBM has long
been an advocate of statistical language models that can re-
duce the entropy or perplexity of the language while still
allowing all possible word sequences with some probability.
For most SLS domains where there is not a large amount of
training data available, it is most practical to use a statisti-
cal model of word classes rather than individual words. We
have circulated a so called Class Grammar for the Resource
Management Domain [3]. The language model was simply
constructed, having only first-order statistics and not distin-
guishing the probability of different words within a class.
The measured test set perplexity of this language model is
about 100. While more powerful "fair" models could be
constructed, we felt that this model would predict the diffi-
culty of a somewhat larger task domain. The word error rate
is typically twice that of the Word-Pair (WP) grammar. One
problem with this type of grammar is that the computation
is quite a bit larger than for the WP grammar, since all 1000
words can follow each word (rather than an average of 60
as in the WP grammar).

During our work on statistical grammars in 1987 [6], we
developed a technique that would greatly reduce the compu-
tational cost for a time-synchronous search with a statistical
grarnmar I . Figure 2 illustrates a fully-connected first-order
statistical grammar. If the number of classes is C, then the
number of null-arcs connecting the nodes is C 2. However,
since the language models are rarely well-estimated, most
of the class pairs are never observed in the gaining data.
Therefore, most of these null-arc transition probabilities are
estimated indirectly. Two simple techniques that are com-
monly used are padding, or interpolating with a lower order
model. In padding we assume that we have seen every pair
of words or classes once before we start training. Thus we
estimate p(c2lel) as

N(ct, c2) + 1
p(e2lel) - N(el) + 6'

1We should note that we have heard that this algorithm was indepen-
dently arrived at by Andres Santos from the University of Madrid while on
sabbatical at SRI in 1989.

72

Figure 2: Fully Connected First-Order Statistical Grammar.
Requires U 2 null arcs.

In interpolation we average the first-order probability with
the zeroth-order probability with a weight that depends on
the n.mher of occurrences of the first class.

~e2lcl) = ~(cx)f~e21el) + [1 - - ~(cl)]p(c2)

where

and

~ c 2 1 c l) - - -
N(cl,e2)

I V (c 1)

N(c2)
f~c2) = N(all words)

In either case, when the pair of classes has never occurred,
the probability can be represented much more simply. For
the latter case of interpolated models, when N(el, c2) = 0
the expression simplifies to just

[1 - 3~(cl)]/~(c2)

The first term, 1 - A(el), depends only on the first class,
while the second term, ~e2), depends only on the second
class. We can represent all of these probabilities by adding
a zero-order state to the language model. Figure 3 illustrates
this model. From each class node we have a null transition to
the zero-order state with a probability given by the first term.
Then, from the zero-order state to each of the following class
nodes we have the zero-order probability of that class.

Now that the probabilities for all of the estimated transi-
tions has been taken care of we only need the null transitions
that have probabilities estimated from actual occurrences of
the pairs of classes, as shown in Figure 4. Assuming that,
on average, there are B different classes that were observed
to follow each class, where B < < C, the total number of
transitions is only C(B + 2). For the 100-class grammar
we find that B = 14.8, so we have 1680 transitions instead
of 10,000. This savings reduces both the computation and
storage associated with using a statistical grammar.

,

....

Figure 3: Zero-state within first-order statistical grammar.
All of the transitions estimated from no data are modeled by
transitions to and from the zero-state.

It should be clear that this technique can easily be ex-
tended to a higher order language model. The unobserved
second-order transitions would be removed and replaced
with transitions to a general first-order state for each word
or class. From these we then have first-order probabilities
to each of the following words or classes. As we increase
the order of the language model, the percentage of transi-
tions that are estimated only from lower order occurrences
is expected to increase. Thus, the relative savings by using
this algorithm will increase.

3. T i m e - s y n c h r o n o u s F o r w a r d S e a r c h vs

V i t erb i
The search algorithm that is most commonly used is the
Viterbi algorithm. This algorithm has nice properties in that
it can proceed in real time in a time-synchronous manner,
is quite amenable to the beam-search pruning algorithm [4],
and is also relatively easy to implement on a parallel pro-
cessor. Another advantage is that it only requires compares
and adds (ff we use log probabilities). Unfortunately, the
Viterbi algorithm finds the most likely sequence of states
rather than the most likely sequence of words.

To correctly compute the probability of any particular se-
quence of words requires that we add the probabilities of all
possible state sequences for those words. This can be done
with the "forward pass" of the forward-backward training
algorithm. The only difference between the Viterbi scoring
and the Forward-pass computation is that we add the prob-
abilities of different theories coming to a state rather than
taking the maximum.

We presented a search algorithm in 1985 [7] that em-
bodied most of this effect. Basically, within words we add
probabilities, while between words we take the maximum. It
was not proven at that time how much better, if any, this al-
gorithm was than the simpler Viterbi algorithm, and whether
it was as good as the strictly correct algorithm that computes

74

1- ~.~CI) ~ / ~ ¢

/ 71 \ \ \ \ f

.... a ° " " ' ~ l I

.... "" '"t ~'~" c 5 - - - - , . , kxx . . ___ , , ~ ~, - - - -7 . ~ - - ~y

Figure 4: Sparsely Connected First-Order Statistical Gram-
mar with zero-state requires many fewer null arcs.

the score of each hypothesis independently.

When we compared these two algorithms under several
conditions, we found that there was a consistent advantage
for adding the probabilities within the word. For example,
when we use the class grammar, we find that the word error
rate decreases from 8% to 6%.

To be sure that the time-synchronous forward search gives
us the same performance as the ideal forward score is some-
what more complicated. We must guarantee that we have
found the highest scoring sentence with the true forward
probability score. One way to find this is to use the exact
N-Best algorithm [2]. Since the exact N-Best algorithm sep-
arates the computation for any two different hypotheses, the
scores that result are, in fact, the correct forward probabili-
ties, as long as we set N to a large enough value. A second,
much simpler way to verify the time-synchronous algorithm
is to see if it ever gets a wrong answer that scores worse
than the correct answer. We ran a test in which all incorrect
answers were rescored individually using the forward proba-
bility. We compared these scores to the forward probability
for the correct answer. In no case (out of 300 sentences) did
the time-synchronous forward search ever produce a wrong
answer that, in fact, scored worse than the correct answer.

The reason that this whole discussion about the Viterbi
algorithm is relevant here is that the Viterbi algorithm is
faster than the forward search. Therefore, we use the inte-
ger Viterbi algorithm in the forward-pass of the Forward-
Backward Search. Since the function of the forward-pass is
primarily to say which words are likely, it is not essential
that we get the best possible answer. The backward N-Best
search is then done using the better-performing algorithm
that adds different state-sequence probabilities for the same
word sequence.

4. Speed and Accuracy
When we started this effort in January, 1990, our unop-
timized time-synchronous forward search algorithm took
about 30 times real time for recognition with the WP gram-
mar and a beamwidth set to avoid pruning errors. The class
grammar required 10 times more computation. The exact
N-Best algorithm required about 3,000 times real time to
find the best 20 answers. When we required the best 100
answers, the program required about 10,000 times real time.
Since January we have implemented several algoritiams, op-
timized the code, and used the Intel 860 board to speed up
the processing. The N-Best pass now runs in about 1/2 real
time. Below we give each of these methods along with the
factor of speed gained.

Statistical grammar algorithm 5
Word-Dependent N-Best 5
Forward-Backward Search 40
Code Optimization 4
Intel 860 Board 5
Total reduction in computation 20,000

As can be seen, the three algorithmic changes accounted
for a factor of 1,000, while the code optimization and faster
processor accounted for a factor of 20. We expect any ad-
ditional large factors in speed to come from algorithmic
changes. When the VLSI HMM processor becomes avail-
able, the speed of the HMM part of the problem will increase
considerably, and the bottleneck will be in the language
model processor. We estimate that the language model com-
putation accounts for about one third of the total computa-
tion.

Our current plan is to increase the speed as necessary and
complete the integration with the natural language under-
standing and application backend by September, 1990.

Accuracy
It is relatively easy to achieve real time if we relax our
goals for accuracy. For example, we could simply reduce
the pruning beamwidth in the beam search and we know
that the program speeds up tremendously. However, if we
reduce the beamwidth too much, we begin to incur search
errors. That is, the answer that we find is not, in fact, the
highest scoring answer. There are also several algorithms
that we could use that require less computation but increase
the error rate. While some tradeoffs are reasonable, it is
important that any discussion of real-time computation be
accompanied by a statement of the accuracy relative to the
best possible conditions.

In Table I below we show the recognition accuracy results
under several different conditions. All results use speaker-
dependent models and are tested on the 300 sentences in the
June '88 test set. For each condition we state whether the
forward pass would mn in less than real time on the SkyBolt
for more than 80% of the sentences - - which is basically
a function of the pruning beamwidth. The backward pass
currently runs in less than 1/2 real time, and we expect it
will get faster. We don't yet have a good feeling for how
much delay will be tolerable, but our goal is for the delay in

computing the N Best sentences to be shorter than the time
needed for natural language to process the first sentence, or
about 1/2 second. The accuracy runs were done on the SUN
4/280. Based on our speed measurements, we assume that
anything that runs in under five times real-time on the SUN
4 will run in real-time on the Intel 860 board. For a similar
CG condition whose forward pass ran in under five times
real-time on the SUN 4, we verified real-time operation on
a 4 MB SkyBolt.

Grammar RT? Word 1 20 100
Err Best Best Best

WP-XW N 1.9

WP N 3.9 19.7 2.3 2.0

WP Y 3.9 20.0 2.7 2.7

CG-XW N 4.7

CG N 8.2 38.7 7.0 4.0

CG 1.2 8.5 39.3 8.7 5.7

CG Y 9.1 40.0 11.7 9.3

Table 1: Word and sentence error rates for the real-time N-
Best algorithm compared with the best non-real-lime condi-
tions.

For each condition we give the word error, I-Best sen-
tence error, and N-Best sentence error for N of 20 and
100. "N-Best sentence error" Results are given for the
Word-Pair (WP) grammar and for the Class (CG) Gram-
mar. The conditions WP-XW and CG-XW were done us-
ing cross-word triphone models that span across words and
have been smoothed with the triphone cooccurence smooth-
ing. These conditions were only decoded with the 1-Best
forward-search algorithm, and so produced only word er-
ror statistics for reference. The models that do not use
cross-word triphones also do not use triphone cooccurence
smoothing. Since the forward pass is done using the Viterbi
algorithm, this affects the word error rate and the 1-Best
sentence error rate, which are measured from the forward
pass only.

Currently we have not run the cross-word models with
the N-Best algorithm. These models require more memory
than is available on the board, and the computation required
in the forward pass is too large. We intend to solve this by
using the cross-word models only in the backward direction.
Another alternative would be to use the cross-word models
to rescore all of the N-Best hypotheses, which could be
done relatively quickly. In any case, we decided to make
the system work with cross-word models only after we had
achieved real time with simpler non-cross-word models.

As we can see, the results using the WP grammar are
quite good. Even without the cross-word models, we find
the correct sentence 97.6% of the time within the first 20
choices and 98% of the time within the first 100 choices.

When we use a beamwidth that gives us real time, we see
only a very slight degradation in accuracy. However, as we
stated earlier in this paper, the WP grammar is unrealistically
easy, both in terms of recognition accuracy and computation.
We show these results only for comparison with other real-
time recognition results on the RM corpus.

Recognition with the class grammar is much harder due to
higher perplexity and the fact that all words are possible at
any time. The word error with cross-word models is 4.7%.
For the N-Best conditions with the CG grammar we note a
larger difference between the sentence errors at 20 and 100
choices. In contrast to the WP grammar in which there are
a limited number of possibilities that can match well, here
more sequences are plausible. We give the N-Best results
for three different speed conditions. The first has a very
conservative beamwidth. The second runs at 1.2 times real-
time, and the third runs faster than real time. We can see
that there is a significant degradation due to pruning errors
when we force the system to run in real time.

There are several approaches that are available to speed
up the forward pass considerably. Since the forward pass
is used for pruning, it is not essential that we achieve the
highest accuracy. In those rare cases where the N-Best finds
a different top choice sentence than the forward pass, and
this new top choice also is accepted by natural language,
we will simply have a delay equal to the time taken for the
N-Best backward search. The most promising method for
speeding up the forward search is to use a phonetic tree in
which the common word beginnings are shared. Since most
of the words are pruned out after one or two phonemes,
much of the computation is eliminated.

Conclusion
We have achieved real-time recognition of the N-Best sen-
tences on a commercially available board. When we use a
WP grammar, there is no loss in accuracy due to real-time
limitations. However, currently, when using a class gram-
mar there is a degradation. We expect this degradation to
be reduced as planned algorithm impruverr~mts are imple-
mented.

Most of the increase in speed came from algorithm modi-
fications rather than from fast hardware or low-level coding
enhancements, although the latter improvements were sub-
stantial and necessary. All the code is written in C so there
is no machine dependence. All told we sped up the N-Best
computations by a factor of 20,000 with a combination of
algorithms, code optimization, and faster hardware.

Acknowledgement
This work was supported by the Defense Advanced Research
Projects Agency and monitored by the Office of Naval Re-
search under Contract No. N00014-89-C-0008.

References
[1] Bisiani, R., "Plans for PLUS hardware". Proceedings

76

of the DARPA Speech and Natural Language Workshop
Cape Cod, October 1989 (1989).

[2] Chow, Y-L. and Schwartz, R.M., "The N-Best Algo-
rithm: An Efficient Procedure for Finding Top N Sen-
tence Hypotheses". Procee&'ngs of the DARPA Speech
and Natural Language Workshop Cape Cod, October
1989.

[3] Derr, A., and Schwartz, R.M., "A Simple Statistical
Class Grammar for Measuring Speech Recognition Per-
formance". Proceedings of the DARPA Speech and Nat-
ural Language Workshop Cape Cod, October 1989.

[4] Lowerre, B., "The Harpy Speech Recognition System",
Doctoral Thesis CMU 1977.

[5] Murveit, H., "Plans for VLSI I-IMM Accelerator". Pro-
ceedings of the DARPA Speech and Natural Language
Workshop Cape Cod, October 1989.

[6] Rohlicek, J.A., Chow, Y-L., and ROUCOS, S., "Statis-
tical Language Modeling Using a Slna|l Corpus from
an Application Domain". Proceedings of the DARPA
Speech and Natural Language Workshop Cambridge,
October 1987. Also in Proceedings of the ICASSP 88,
pp. 267-270, April, 1988.

[7] Schwartz, R.M., Chow, Y., Kimball, O., Roucos, S.,
Krasner, M., and Makhoul, J. Context-Dependent Mod-
eling for Acoustic-Phonetic Recognition of Continu-
ous Speech". Proceedings of the ICASSP 85, pp. 1205-
1208, March, 1985.

[8] Schwartz, R.M., and Austin, S.A., "Efficient, High-
Performance Algorithms for N-Best Search". Proceed-
ings of the DARPA Speech and Natural Language Work-
shop Hidden Valley, June 1990.

77

