
Performing Integrated Syntactic and Semantic Parsing
Using Classification

Robert T. Kasper and Eduard H. Hovy

Information Sciences Institute of USC
4676 Admiralty Way

Marina del Rey, CA 90292-6695

Introduction
This paper describes a particular approach to parsing
that utilizes recent advances in unification-based parsing
and in classification-based knowledge representation. As
unification-based grammatical frameworks are extended to
handle richer descriptions of linguistic information, they be-
gin to share many of the properties that have been developed
in KL-ONE-Iike knowledge representation systems. This
commonality suggests that some of the classification-based
representation techniques can be applied to unification-based
linguistic descriptions. This merging supports the integration
of semantic and syntactic information into the same system,
simultaneously subject to the same types of processes, in an
efficient manner. The result is expected to be more efficient
parsing due to the increased organization of knowledge.

The use of a KL-ONE style representation for parsing and
semantic interpretation was first explored in the PSI-KLONE
system [2], in which parsing is characterized as an inference
process called incremental description refinement. The key
idea underlying this process is that a description of an object
can become increasingly more specific as additional features
are learned from multiple knowledge sources, which is es-
sentially the same idea that underlies most unification-based
approaches. Bobrow and Webber identified four crucial ca-
pabilities that a representational system should have in order
to support the process of incremental description refinement.
These capabilities, not all available to Bobrow and Webber
i n 1980, have recently been developed in the Loom knowl-
edge representation system [12] and hence enable the practical
development of the new parsing method. They are:

1. What properties of a structured object provide sufficient
information to guarantee the applicability of a description
to (some portion of) that ob jec t - - i.e., criteriality condi-
tions. Loom provides a separation of definition (neces-
sary and sufficient conditions) and constraints (implied
features).

2. What mappings are possible between classes of relations
- - e.g., how functional relationships between syntac-
tic constituents map onto semantic relationships. This
is not part of Loom, but can be captured in the inter-
relationships between a syntax-oriented grammar and a
semantics-oriented concept taxonomy.

3. Which pairs of descriptions are mutually incompatible

- - i.e., which cannot both apply to a single individual.
Loom provides more complete inference of disjointness
than previous systems in the KL-ONE family.

4. Which sub-categorizations of descriptions are exhaus-
tive - - i.e., at least one of the subcategories applies to
anything to which the more general description applies.
Loom provides inference with respect to coverings, im-
plemented by disjunctive descriptions.

This paper outlines how a parser can be built using Loom's
classifier as the primary inference operation. It first describes
the process of unification, then points out similarities between
unification and classification, then describes the process of
parsing using the classifier with an example. The integration
of semantic and syntactic information into the same system is
discussed. Finally, the efficiency benefits of the new method
are mentioned.

Constraints in Unification-based Gram-
mars
A variety of current approaches to parsing in computational
linguistics emphasize declarative representations of grammar
with logical constraints stated in terms of feature and cate-
gory structures. These approaches have collectively become
known as the unification-based grammars, because unification
is commonly used as the primary operation for building and
combining feature structures. Some of the simplest of these
grammatical frameworks, as exemplified by the PATR-II sys-
tem [16], state constraints on features entirely in terms of sets
of unifications that must be simultaneously satisfied whenever
a grammatical rule is used. In such systems all constraints on
a rule or lexical item are interpreted conjunctively. Many
of the more recent frameworks also use other general logical
connectives, such as disjunction, negation and implication, in
their representation of constraints. The utility of such logical
constraints is abundantly illustrated by linguistic models, in-
cluding Systemic Grammar (SG) [5] and Head Driven Phrase
Structure Grammar (HPSG) [14], and by computational tools
such as Functional Unification Grammar (FUG) [11]. For
example, SG and FUG even use disjunctive alternations of
features, instead of structural rules, as the primary units of
grammatical organization. While the intuitive interpretation
of these logical constraints is rather straightforward, and they

5 4

are quite natural for linguists to formulate, large-scale imple-
mentations of them have typically involved finding a balance
between expressive power and computational efficiency, not
an easy task.

Some difficulties can be expected in developing a system
for computing with disjunctive and negative feature con-
straints, because it has been established that common op-
erations on such descriptions, such as unification and sub-
sumption, are NP-complete and require exponential time in
the worst case [15]. The most common and obvious way to
deal with disjunctive constraints is to expand the grammat-
ical description to disjunctive normal form (DNF) during a
pre-processing step, thereby eliminating disjunction from the
rules that are actually used by the parser. Though this method
works reasonably well for small grammars, it turns out to be
unsatisfactory for larger grammars.

It is possible to avoid exponential expansion for most prac-
tical grammars, and several unification algorithms for disjunc-
tive feature descriptions have been developed in recent years:
[6, 10, 4]. The latter two algorithms allow general disjunc-
tive descriptions, and avoid expansion to DNF by exploiting
logical equivalences between descriptions to produce normal
forms that allow a more compact representation. Kasper's
algorithm is based on a normal form that divides each de-
scription into definite and indefinite components. The definite
component contains no disjunction, and the indefinite compo-
nent contains a list of disjunctions that must be satisfied. The
algorithm of Eisele and Doerre uses a different normal form
that guarantees the detection of any inconsistencies during the
normalization process by selectively expanding disjunctions
that might possibly interact with other information in the de-
scription. The Kasper algorithm was first implemented as an
extension to the unification algorithm of the PATR-II parser,
and it has been further developed to handle conditional de-
scriptions and a limited type of negation [8]. These extensions
to PATR-II have been used to construct an experimental parser
for systemic grammars [9], which has been tested with a large
grammar of English called Nigel, which is part of the Penman
language generation system [13].

Although these methods for processing complex feature
constraints are generally much more efficient than expansion
to DNF, they still have several significant sources of ineffi-
ciency:

1. a large amount of structure must be copied in order to
guarantee correct unification;

2. consistency checks are required between components of
a description that do not share any features in common,
because unification cannot determine whether any de-
pendencies exist between two structures without actually
unifying them;

3. repeated computations are often required over sub-
expressions of descriptions, because the results of prior
unifications (and compatibility tests) are not saved.

These sources of inefficiency are not unique to one method
of parsing with disjunctive descriptions; similar shortcom-
ings are commonly reported for most unification-based sys-
tems. The unification literature contains several techniques

for reducing the amount of copying by structure sharing, but
these techniques appear to solve only part of the problem. A
more general approach to improving the efficiency of unifi-
cation may be available by adopting methods that are used in
classification-based systems.

Classification-based Knowledge
Representation
Unfortunately, as a grammar (or knowledge base) grows in
size and complexity, it becomes increasingly less efficient
to simply unify partial descriptions of constituents with a
description from the grammar (as in most unification-based
frameworks). Instead, it becomes preferable to classify each
partial description of a constituent with respect to the objects
that are defined by the grammar, exploiting known relation-
ships between components of the grammatical description.
Since the components of the grammar are known before pars-
ing commences, various relationships, such as subsumption
and compatibility, can be used to construct a lattice of gram-
matical objects, eliminating the need to derive those relation-
ships repeatedly at parse time.

The KL-ONE family of knowledge representation sys-
tems is based on an explicit logical formalization of many
of the constructs that have been explored in semantic net-
works and frame-based representation systems. They or-
ganize information about objects and the relations between
them into hierarchies according to specificity, with more spe-
cific objects placed below more general ones. For example,
a hierarchy of English word classes would probably contain
Verbs, Transitive-Verbs as a subclass of Verbs, and the word
"like" as an instance of Transitive-Verbs. Each hierarchy is
a subsumption-ordered lattice based upon logical properties
that can be deduced from the definitions of objects and the
facts known about them. In these systems, classification is
the operation that places a new class or object into the lattice
according to the subsumption order. A primary benefit of
classification is that it organizes large collections of knowl-
edge in such a way that properties shared by many objects
need only be represented once, yet they can still be efficiently
accessed by inheritance.

KL-ONE and similar frameworks have been used for se-
mantic interpretation in some natural language processing sys-
tems [18], but usually in a way that is quite separate from the
grammatical parsing process (an exception is the aforemen-
tioned PSI-KLONE system). Recent research indicates that
it may be advantageous to make use of a classification-based
framework for processing grammatical knowledge as well.
Many formal properties are shared by the feature descrip-
tions used in unification-based grammars and the termino-
logical definitions used in KL-ONE. Generally speaking, lin-
guistic categories correspond to concepts, and their features
(or attributes) correspond to binary relations in the knowl-
edge representation system. The similarity between these
two types of descriptions has been most clearly documented
by Smotka [17] in his development of a logic that integrates a
significant combination of their expressive capabilities. Many
theoretical results have also been based on the observation that

5 5

feature structures can be implicitly organized into a subsump-
tion lattice of types according to their information content.
In most unification-based systems the lattice is not explicitly
constructed, but a classification-based system can be used to
place the feature structures of a grammar and lexicon into
a structure-sharing lattice, potentially improving both space
and time efficiency.

Despite the underlying similarities between the KL-ONE
framework and unification-based grammars, there are signifi-
cant differences in the expressive capabilities that are usually
provided. In particular, the knowledge representation systems
typically have general constraints on relations with multiple
values, whereas most unification-based systems do not pro-
vide a direct representation for features with set values. On
the other hand, complex logical constraints involving dis-
junction and negation have been more extensively developed
in unification-based systems than in classification-based sys-
tems. The Loom system [12], which has been developed at
USC/ISI, appears to be the first in the KL-ONE family to
have included general disjunction and negation in its concept
definition language. The implementation of classification for
disjunctive concepts has been based on several refinements of
a strategy that was originally developed for unification with
disjunctive feature descriptions [10]. The implementation
of classification for concepts defined by negation is still in
progress. With these extensions, the Loom system is able to
handle a much fuller range of constraints that have been used
in actual linguistic descriptions of feature structures.

An Experiment in Classification-based
Parsing
In order to explore a strategy for parsing based on classifica-
tion, we have to represent Penman's grammar in Loom and
replace the existing unification component of our parser [9]
with activations of Loom's classifier. Motivating this action
are two primary goals:

1. to investigate the extent to which classification can be
used to organize the knowledge contained in linguistic
descriptions so that it can be more efficiently accessed
during the parsing process;

2. to develop a suitable architecture for integrating seman-
tic information into the parsing process, in a way that
knowledge specific to application domains does not have
to be re-organized for parsing.

It is straightforward to convert the feature constraints of
the grammar into a set of definitions that can be processed by
Loom, because of the underlying correspondences between
Loom's concept definitions and linguistic feature descriptions
that we have already described. It is also straightforward
to perform an operation that is equivalent to the unification
of feature structures within Loom. This is accomplished by
forming an object having a type that is defined as the conjunc-
tion of the types corresponding to the feature structures. Con-
junction of types yields a type which captures the unification
of descriptions in a non-destructive way. Loom also supports

merging of instances, corresponding to destructive unifica-
tion, which is necessary in order to satisfy feature equivalence
constraints. When two instances are merged, the resulting in-
stance has a type which is a conjunction of the types of the
two original instances.

A disjunction is represented in Loom by an object that gen-
eralizes (i.e., classifies above) each of the disjuncts. It is
important to note that a disjunctive description entails more
than a simple generalization. It is possible to satisfy a gener-
alization without satisfying any of the disjuncts, but in order
to satisfy a disjunction, an object must satisfy one of the dis-
juncts.

Instead of unifying a partial description of a constituent
with a grammatical description, we classify the description of
the constituent with respect to an object-oriented representa-
tion of the grammar, in which each object stores information
and constraints associated with a particular type of grammati-
cal constituent. The classifier determines which grammatical
classes the constituent instantiates, and the constraints asso-
ciated with these classes can be used to give a more complete
(grammatical, semantic, pragmatic) description of the con-
stituent.

Classification provides a way of decomposing a large de-
' scription into types, and organizing these types into a lattice

so that they can be efficiently searched. Thus, it can provide
a more efficient mechanism for unifying large descriptions.
Two immediate benefits of the lattice representation are:

1. the descriptions of the grammar do not need to be copied
each time that they are unified with a constituent, and

2. each constituent does not need to have an explicit repre-
sentation of a complete set of its grammatical features,
because many of these are entailed by its type.

Classification has the effect of abstracting frequently used
combinations of features into a type hierarchy. By factoring
descriptions of types of objects out of the feature structures
that represent constituents, it is often possible to reduce the
numbers of features that need to be unified (recursively) when
the constituent is used as a role-filler (in multiple parses),
because the type encapsulates restrictions on those features.

A Simple Example
In an example, consider how classification with respect to a
simple grammar may be used in parsing the sentence: David
likes computers. Assume that a lexical/morphological ana-
lyzer gives the following type membership information for
each word:

David: Noun.

computers: Noun.

likes: Verb Transitive Present.

Also assume that a rather simple context-free grammar can
be used to recognize possible constituents, and that it can be
annotated to assign grammatical functions 1. In the example

1 Using the classification-based approach outlined here, it is theoretically
possible to perform the parsing completely using only classification. How-
ever, such a parser would have to examine all substrings of the input in order

56

sentence, this grammar proposes a constituent c with the type
Cl au s e and the following grammatical functions:

subject : david
process : likes
dobject : computers

This initial description of the constituent, c, is then given
to the classifier, which deduces the most specific types that it
belongs to. The classifier begins by considering types that are
directly below the initial type, i.e., Int rans-Clause and
Trans-Clause. The definition of Intrans-Clause
states that it is a Clause with a process of type
I n t r a n s i t i v e . This definition is not satisfied by c, be-
cause it does not have a process of type I n t r a n s i t i v e .
Next, the classifier considers T r a n s - C l a u s e , which has a
definition stating that it is a C l a u s e with a p r o c e s s of
type T r a n s i t i v e . This definition is satisfied by c. In ad-
dition, T r a n s - C l a u s e has a constraint: it implies the type
A c t i v e OR P a s s i v e , which means thatany object which
is a member of Trans-Clause must also be a member of
Active OR Passive (that is, Active and Passive
form a disjoint covering of Trans-Clause). Therefore,
Active OR Passive is added to the list of types that c
belongs to.

BecauseActive OR Passiveisadisjunction,itispos-
sible to infer membership in one of the disjuncts by prov-
ing incompatibility with all other disjuncts, c is compatible
with all of the constraints of A c t i v e , but it is not compat-
ible with the constraints of P a s s i v e : it has a p r o c e s s
of type Present, Passive requires a process of type
PastPart, and the types Present and PastPart spe-
ciaiize the disjoint types, Finite and Nonfinite. By
eliminating the P a s s ive disjunct from consideration, mem-
bership in the Active disjunct can be inferred. Active is
the most specific type that can be inferred for c, because it
specializes all other types that c belongs to (and there are no
more specific types defined in this simple example).

As a consequence of acquiring membership in the type
A c t i v e , c inherits all constraints that are associated with
A c t i v e . These constraints require that the a c t o r and
s u b j e c t roles are identical (i.e., that the values of these two
roles should be unified), and that the g o a l and d o b j e c t
roles are identical. Satisfying these constraints yields the
following information about the roles of c:

actor : david
goal : computers

Thus, given the initial assumption that c is a clause
with particular constituents filling the grammatical functions
proces s, subject and dob ject, classification deduces:

1. a more specific type: that c is an active clause;

to find all possible constituents, unless sufficient constraints on constituent
ordering can be applied early enough in the parsing process. By performing
a sha/low structural parse before starting the deep classification-based parse,
one gains a large improvement in efficiency, because even a skeletal context-
free grammar can provide the basic segmentation of the input sentence into
its major constituents. Thus, a simple context-free parsing component was
used for this purpose with success in the prototype system.

2. values for previously unspecified roles: actor and
goal.

The classifier uses the lattice representation of defined types
to guide its search for types that are satisfied by a given object.
It does not need to consider any types that fall below a type
that the object is known not to specialize, such as all types
below Intrans-Clause and Passive for the object c.

The power of using this kind of classification scheme may
be further exploited by associating semantic and pragmatic
constraints with each grammatical type, in addition to the
grammatical constraints which have been illustrated.

Integrating Semantic Information into
the Parsing Process
One of the greatest advantages of this method of parsing is
the possibility of performing integrated semantic and syntactic
processing. KL-ONE systems such as Loom were tradition-
ally developed to represent semantic information, and with
the inclusion of syntactic information as required for the work
described here, both types of knowledge reside in the same
system and are accessible to a single classification process.

The advantages for processing are clear. By being able op-
portunistically to access both semantic and syntactic knowl-
edge at any point during the process, the parser can resolve
ambiguities sooner than in the traditional pipeline model, in
which syntactic parsing is completed before semantic parsing
commences. Many of the structural ambiguities that arise
during parsing are only resolvable by semantic knowledge,
and pipeline parsers have to maintain all the syntactic possi-
bilities until the semantic parsing phase. Non-pipelineparsers
have to perform a complex interweaving of semantic and syn-
tactic processing, requiring increased bookkeeping and more
complex system architecture. In the method outlined in this
paper, the parser's single call to the classifier will result in the
most appropriate information - - both semantic and syntactic
- - being found and being reconciled, if possible by the normal
action of the classifier.

Another benefit is the increased portability provided by a
knowledge representation paradigm used in the Penman sys-
tem. In order to achieve greater portability, Penman contains
a general taxonomic ontology of concepts called the Upper
Model [1], under which the concepts from various application
domains are subordinated. By inheriting information from
the Upper Model, domain concepts can be handled appropri-
ately by the Penman language generator without the generator
ever having to be explicitly informed of their individual na-
ture. Similarly, the parser can exploit inherited Upper Model
information when trying to place words appropriately into
structures. More information can be found in [7].

Efficiency Considerations
The classification-based architecture used by Loom solves
a whole class of related efficiency problems by explicitly
constructing and maintaining a subsumption-ordered lattice
with inheritance. In particular, it may provide substantial
improvements for some of the abovementioned sources of

5 7

inefficiency that have been observed with unification-based
parsers:

Structure Sharing: In most unification-based parsers, it is
necessary to make new copies of the feature structures that are
associated with lexical items or grammatical rules whenever
they are used in building a description of a sentence (or one
of its constituents). In a classification-based system the entire
structure does not need to be copied, because the description
of a constituent can contain pointers to the classes of objects
that it instantiates. This representation not only saves space,
but it also allows the parser to make use of information that has
already been precomputed (during the classification process)
for classes of objects in the grammar and lexicon. Hence
the organization of descriptions into a lattice automatically
provides a great amount of structure sharing.

Indexing Dependencies: Theprocess ofclassification also
keeps track of dependencies between different objects, elimi-
nating the need for checking consistency between components
of a description that have no features in common. In effect, an
index is incrementally constructed from features to descrip-
tions that contain them. This contrasts with most unification-
based systems, in which feature structures are represented by
directed graphs (or by first order terms, as in Prolog).

Avoiding Redundant Computations: With un-typed fea-
ture structures, each unification is performed on a pair of struc-
tures without reference to any stored knowledge, i.e., there is
no way for simple unification to use the results of previous
unification and subsumption computations, even if many ob-
jects with identical features have already been unified. By
explicitly representing the types of objects in a lattice, infor-
mation can be stored for classes of objects, making it possible
to avoid repeated computations for multiple objects having
the same type (or any more specific type). Thus the first
time a component of a description is classified, it is placed
into the lattice containing all other descriptions in the knowl-
edge base. Since the lattice explicitly represents the types of
objects, it makes full-depth consistency checks unnecessary
between objects that are known to be in a subsumption rela-
tionship, and subsumption (success) and consistency (failure)
tests only need be computed once for all objects that belong
to the same types.

Using Classification as a Grammar Compiler: In sum-
mary, classification can be seen as providing a capability
similar to that provided by compilers in programming sys-
tems. Although a simpler unification-based system may
provide acceptable results with somewhat less overhead
than a classification-based approach on a limited scale, a
classification-based system is almost certainly to be preferable
for applications that are necessarily knowledge-intensive.

Concluding Remarks
This work is part of an effort to provide the Penman sys-
tem at ISI/USC with full natural language input and output
capabilities. An experimental prototype of this parser using
unification and a feature structure representation of part of
Penman's grammar has been completed successfully. Most
of the work in constructing a parser using the classification-
based architecture of Loom and to reproduce the functionality

of the unification-based system, now operating on the whole
of the grammar, has been completed.

If successful, this experiment should enable a comparison
of classification and unification as mechanisms for parsing.
The classification scheme appears to provide a way of sub-
stantially reducing several of the most general sources of inef-
ficiency that are observed in current unification-based parsers.
However, this conjecture needs to be examined by performing
experiments with several real grammars and applications.

In addition to providing an efficient engine for processing
the constraints of linguistic feature descriptions, we also ex-
pect this type of information organization to provide a strong
basis for integrating semantic knowledge and knowledge spe-
cific to particular applications into the parsing process.

Acknowledgment
This research was sponsored in part by the United States
Defense Advanced Research Projects Agency under contract
MDA903-87-C-641 and in part by the United States Air Force
Office of Scientific Research under contract F49620-87-C-
0005. The opinions expressed here are solely those of the
authors.

Thanks to Bob MacGregor for many cooperative discus-
sions and help with a partial implementation of these ideas
using Loom.

References
[1] Bateman, J.A., Kasper, R.T., Moore, J.D., Whitney, R.A.

A General Organization of Knowledge for Natural Lan-
guage Processing: The Penman Upper Model. USCBSI
Technical Report, Marina del Rey, 1990.

[2] Bobrow, Robert and Webber, Bonnie. Knowledge Rep-
resentation for Syntactic/Semantic Processing. In Pro-
ceedings of AAAI-80, The First National Conference on
Artificial Intelligence, Stanford, CA, August 1980.

[3] Brachman, Ronald and Schmolze, James. An Overview
of the KL-ONE Knowledge Representation System.
Cognitive Science, Vol. 9:2, 1985.

[4] Eisele, Andreas and Doerre, Jocben. Unification of Dis-
junctive Feature Descriptions. In Proceedings of the 26th
Annual Meeting of the Association for Computational
Linguistics, Buffalo, NY, June 1988.

[5] Halliday, Michael. System and Function in Language.
Kress G., (ed.), Oxford University Press, 1976.

[6] Karttunen, Lauri. Features and Values. In Proceedings
of the lOth International Conference on Computational
Linguistics: COLING 84, Stanford, CA, July 1984.

[7] Kasper, Robert. A Flexible Interface for Linking Ap-
plications to Penman's Sentence Generator. In Proceed-
ings of the DARPA Workshop on Speech and Natural
Language, Philadelphia, PA, February 1989.

5 8

[8] Kasper, Robert. Conditional Descriptions in Functional
Unification Grammar. In Proceedings of the 26th Annual
Meeting of the Association for Computational Linguis-
tics, Buffalo, NY, June 1988.

[9] Kasper, Robert. An Experimental Parser for Systemic
Grammars. In Proceedings of the 12th International
Conference on Computational Linguistics, Budapest,
August 1988.

[10] Kasper, Robert. A Unification Method for Disjunctive
Feature Descriptions. In Proceedings of the 25th An-
nual Meeting of the Association for Computational Lin-
guistics, Stanford, CA, July 1987. Also available as
USC/Information Sciences Institute Reprint RS-87 - 187.

[11] Kay, Martin. Parsing in Functional Unification Gram-
mar. In Natural Language Parsing, Dowty D., Karttunen
L., and Zwicky A. (eds.), Cambridge University Press,
1985.

[12] MacGregor, Robert. A Deductive Pattern Matcher. In
Proceedings of AAAI-88, The Sixth National Conference
on Artificial Intelligence, St. Paul, MN, August 1988.

[13] The Penman Project. The Penman Primer, User Guide,
Reference Manual, and Nigel Manual. System docu-
mentation, USC/ISI Technical Report, Marina del Rey,
1989.

[14] Pollard, Carl and Sag, Ivan. Information Based Syntax.
CSLI Lecture Notes Number 13, University of Chicago
Press, 1987.

[15] Rounds, William and Kasper, Robert. A Complete Log-
ical Calculus for Record Structures Representing Lin-
guistic Information. In Proceedings of the IEEE Sympo-
sium on Logic in Computer Science, Cambridge, MA,
June 1986.

[16] Shieber, Stuart. The Design of a Computer Language
for Linguistic Information. In Proceedings of the Tenth
International Conference on ComputationalLinguistics:
COLING 84, Stanford, CA, July 1984.

[17] Smolka, Gert. A Feature Logic with Subsorts. LILOG
Report 33, IBM Deutschland, Stuttgart, West Germany,
May 1988.

[18] Sondheimer, Norman K., Weischedel, Ralph M. and Bo-
brow, Robert J. Semantic Interpretation Using KL-ONE.
In Proceedings of the Tenth International Conference on
Computational Linguistics: COLING 84, Stanford, CA,
July 1984.

59

