
Two Recent Developments in Tree Adjoining Grammars:

Semantics and Efficient Processing

Yves Schabes
Aravind K. Joshi

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT
During the past year there have been two very significant de-
velopments in the area of Tree Adjoining Grammars (TAGs).

The first development is a variant of TAGs, called syn-
chronous TAGs, which allows TAG to be used beyond the
confines of syntax by characterizing correspondences be-
tween languages. The formalism's intended usage is to relate
expressions of natural languages to their associated seman-
tics represented by a logical form language in TAG, or to
their translates in another natural language. The formalism
is incremental and inherently nondirectional. We will show
by detailed examples the working of synchronous TAGs and
some of its applications, for example in generation and in
machine translation.

The second development is the design of LR-style parsers
for TAGs. LR parsing strategies evolved out of the orig-
inal work of Knuth. Even though they are not powerful
enough for NLP, they have found use in natural language
processing 0VLP) by solving by pseudo-parallelism conflicts
between multiple choices. This gives rise to a class of pow-
erful yet efficient parsers for natural language. In order to
extend the LR techniques to TAGs it is necessary to find
bottom-up automaton that is exactly equivalent to TAGs.
This is precisely what has been achieved by the discovery of
the Bottom-up Embedded Push Down Automaton (BEPDA).
Using BEPDA, deterministic left to fight parsers for the Tree
Adjoining Languages have been developed.

Using TAGs beyond their Role in Syn-
tax
The unique properties of tree-adjoining grammars (TAG)
present a challenge for the application of TAGs beyond the
limited confines of syntax, for instance, to the task of se-
mantic interpretation or automatic translation of natural lan-
guage. A variant of TAGs, called synchronous TAGs, has
been developed (Shieber and Schabes [1990(a)]). It is used

*This research is partiaUy supported by Darpa grant N0014-85-K0018,
ARO grant DAAL03-89-C-0031PRI and NSF grant-IR184-10413 A02.
Parts of this work are results of coUaborafion with Stuart Shieber (Harvard
University), K. Vijay-Shanker (University of Delaware) and Anne Abei116
(University of Paris-7). The specifics of the collaboration are stated in the
body of the paper. We are also grateful to Bernard Lang and David Weir
for their valuable suggestions on LR-style parsing of TAGs which played
an instrumental role in the definition of BEPDA, for example restriction on
the moves allowed.

to relate expressions of natural languages to their associ-
ated semantics represented in a logical form language or
to their translates in another natural language (the work on
Synchronous TAG and its applications to language interpre-
tation and generation has been done in collaboration with
Stuart Shieber).

L a n g u a g e i n t e r p r e t a t i o n a n d g e n e r a t i o n w i t h
T A G s

The key idea for semantic interpretation is that the logical
form language itself can be described by a TAG. The two
TAGs (one for the natural language and one for the logical
form language) work synchronously, in the sense that the
certain correspondences (links) are stated initially between
the elementary trees of the two TAGs and then composition
operations (such as substitution and adjoining) are carried
out synchronously on the linked nodes of the two TAGs.
The fact that both the natural language and the logical form
language can be described by TAGs is a direct consequence
of the extended domain of locality of TAGs as compared to
LFG or GPSG.

A sample synchronous TAG is given in Figure 1. Each
element of the synchronous TAG is a pair consisting of two
elementary trees, one from the source language (English)
and one from the target (logical form [LF]). Nodes, one from
each tree, may be linked; such links are depicted graphically
as thick lines. I f we project the pairs onto their first or sec-
ond components (ignoring the cross links), the projections
are TAGs for an English fragment and an LF fragment, re-
spectively. These grammars are themselves written in a par-
ticular variant of TAGs; the choice of this base formalism,
as we will call it, is free. In the case at hand, we have
chosen single-component lexicalized TAGs with adjunction
and substitution (Schabes, Abeill6 and Joshi [1988]). Other
bases (as Multiple Component TAGs) are needed for more
complex phenomena.

The elementary operation in a synchronous TAG is super-
venient on the elementary operations in the base formalism.
A derivation step from a pair of trees (oq, o~2) proceeds as
follows:

1. Nondeterministically choose a link in the pair connect-
ing two nodes (say, nl in cq and n~ in c~2).

4 8

S F

/ l f-T, T A

\ Y \ hates / .(o T)
I I

George george'

• (bro~oli~br°~Tc°lit

\ violently violently" I

N ~ T \

I P N , I~ T , /

ooked cooked" I

Figure 1: A sample synchronous TAG.

2. Nondeterministically choose a pair of trees (#x, f12) in
the grammar.

3. Form the resultant pair (fll(Otl, nl) , fl2(ol2, n2)) where
~(o~, n) is the result of performing a primitive operation
in the base formalism on o~ at node n using ~/ (e.g.,
adjoining or substituting B into ot at n). 1

Synchronous TAG derivation then proceeds by choosing
a pair of initial trees (oq, o~2) that is an element of the gram-
mar, and repeatedly applying derivation steps as above.

As an example, suppose we start with the tree pair o~ in
Figure 1. 2 We choose the link from the subject NP to T
and the tree pair ~ to apply to its nodes. The resultant, by
synchronous substitution, is the tree pair:

S F

/ Ny R T T , \
\ G e o r g e i -P'I" ~a... ' , . ' r , . ' l l
_X hates ~ - - J /

Note that the links from ~ are pres-d!l'!ltrtll"d~the resultant pair
c~l except for the chosen link, which has no counterpart in
the result.

Using tree pair 7 on the remaining link from NP to T in
oq yields

1 The definition allows for the operations performed on the first and
second trees to differ, one being a substitution and the other an adjunction,
for example.

2We use standard TAG notation, marking foot nodes in auxiliary trees
with '*' and nodes where substitution is to occur with '~'. The nonterminal
names in the logical form grammar are mnemonic for Formula, Relation
(or function) symbol, Term, and Quantifier.

ot 2 I NP VP ~ R T ~ T
/I I I 1"I
k Ge°rge y ? hate'ge°rgeTbr°cc°li"

This pairing manifests the correspondence between the
sentence "George hates broccoli" and its logical form
hates'(george', broccoli ~) (as written in a more traditional
notation). Here we see that the links in the operator trees
(those in 7) are preserved in the resultant pair, accounting
for the sole remaining link. The trees in 7 are linked in this
way so that other tree pairs can modify the N.

We can continue the derivation, using 8 and e to generate
the pair given in Figure 2 thereby associating the meaning

violently' (hates' (george', cooked' (broccoli'))))

with the sentence "George hates cooked broccoli violently."

The arguments for factoring recursion and dependencies
as TAGs do for the syntax of natural language have their
counterparts in the semantics. The structure of TAGs allows
syntactic dependencies--agreement, subcategorization, and
so forth--to be localized in the primitives of a grammar, the
elementary trees. This is most dramatically evident in the
case of long-distance dependencies, such as that between a
wh-phrase and its associated gap. Similarly, using TAGs to
construct logical forms allows the localization of semantic
dependencies in the logical forms of natural language expres-
sions, dependencies such as the signature requirements (ar-
gument type and arity) of function and relation symbols, and
even the long-distance dependencies between a wh-quantifier
and its associated bound variable. With other methods of se-
mantics, these dependencies cannot be localized; the seman-
tic aspects of filler-gap dependencies must be passed among
the features of various nodes in a parse tree or otherwise
distributed over the entire derivation.

The use of the synchronous TAG augmentation allows
an even more radical reduction in the role of features in a
TAG grammar. Because of the extended domain of locality
that TAGs possess, the role of features and unification is
reduced from its role in context-free based systems. Only
finite-valued features are needed, with the possible exception
of a feature whose value encodes an expression's logical
form. In removing the construction of logical forms from
the duties delegated to features, we can maintain a strictly
finite-valued---and therefore formally dispensable--feature
system for TAGs.

Applications
Synchronous TAGs suggest elegant solutions to the seman-
tics of idioms, quantifier scoping (Shieber and Schabes,
[1990a]) and provide an elegant framework for generation
(Shieber and Schabes, [1990b]) and machine translation
(Abeill6, Schabes and Joshi [1990]).

4 9

S F

I ~ I .-----'~"""----.-...
G e o r g e ~ AI~VP violently" ~ T T

g e o r g e / l O T NP violently

broccoli" hate

I I
cooked broccoli

Figure 2: Derived tree pair for "George hates cooked broccoli violently."

Semantics Idioms

All of the arguments for the TAG analysis of idioms and light
verb constructions (Abeill6 and Schabes, 1989) can then be
maintained in a formalism that allows for semantics for them
as well. In particular, discontinuous syntactic constituents
can be semantically localized nonstandard long-distance de-
pendencies are statable without resort to reanalysis, both
frozen and flexible idioms can be easily characterized.

For example, the idiomatic construction "kick the bucket"
cashes out as the following tree pair, under its idiomatic
interpretation:

/ s R E x \

~a d!e' J"

whereas the literal usage of "kick" is associated with a tree
pair similar to that of "hates" in Figure 1.

Quantifiers

In order to characterize quantifier scoping possibilities,
multi-component TAGs (as defined by Joshi, 1987) is used
as the base formalism for synchronous TAG (see Shieber
and Schabes [1990(a)] for more details on quantifiers scop-
ing with Synchronous TAG). In particular, an NP will be
linked both to a formula in the semantics (the quantifier's
scope) and a term (the position bound by the quantifier).

G e n e r a t i o n
The nondirectionaly of Synchronous TAGs enables us to use
it for semantic interpretation as well as for generation (see
Shieber and Schabes [1990b]).

M a c h i n e T r a n s l a t i o n
The transfer between two languages, such as French and En-
glish, can be done by putting directly into correspondence
large elementary units without going through some interlin-
gual representation and without major changes to the source
and target grammars (Abeill6, Schabes and Joshi [1990]).
The underlying formalism for the transfer is Synchronous

Tree Adjoining Grammars. Transfer rules are stated as cor-
respondences between nodes of trees of large domain of
locality which are associated with words. We can thus de-
fine lexical transfer rules that avoid the defects of a mere
word-to-word approach but still benefit from the simplicity
and elegance of a lexical approach (this work has been done
in collaboration with Anne Abeill6).

As an example, consider the fragment of the transfer lex-
icon given in Figure 3.

(x

3'

(T
John John

NPI$ y ~ /

m i s s e s ~ - m a n q ue ~1 ~qP1 $ /

/
apparemment [

Figure 3: Fragment of the English-French transfer lexicon

For example, suppose we start with the pair 3' and we
operate the pair a on the link from the English node NPo
to the French node NP1. This operation yields the derived
pair a4.

50

0/4

] S ~ S

rip xLP

{ John V NP 15 V PP,
\ I I / x
\ m i s s e s manque ~1 7

~t John

Then, ff the pair fl operates on the NP1-NPo in 0/4, the
following pair 0/5 is generated.

0/5

I / N I
o h n ~ 7 Mary ~r , ~

missesMary manque ~l 7

John

Finally, when the pak ~ operates on the S-S link in 0/5,
the pair 0/6 is generated.

0/6

Adv S Adv S

/ apparc~atly NP VP hiP VP apparemmcnt

I / N \ Jo~V ~ ~ v

NP
manque ~1 jolh n

t

The fragment of the transfer lexicon given in Figure 3
therefore enables us to translate:

Apparently, John misses Mary
Apparemment, Mary manque ~ John

In most cases, translation can be performed incrementally
as the input string is being parsed.

By virtue of their extended domain of locality, Tree Ad-
joining Grammars allow regular correspondences between
larger structures to be stated without a mediating interlingual
representation. The mapping of derivation trees from source
to target languages, using the formalism of synchronous
TAGs, makes possible to state such direct correspondences.
By doing so, we are able to match linguistic units with quite
different internal structures. Furthermore, the fact that the
grammars are lexicalized enables capturing some idiosyn-
crasies of each language.

The simplicity and effectiveness of the transfer rules in
this approach shows that lexicalized TAGs, with their ex-
tended domain of locality, are very well adapted to machine
translation.

Efficient Processing of TAGs
The second development is the design of LR-style parsers
for TAGs. LR parsing strategies evolved out of the original
work of Knuth. LR(k) parsers for Context Free Grammars
(Knuth, 1965) consist of a finite state control (constructed
given a CFG) that drives deterministically with k lookahead
symbols a push down stack, while scanning the input from
left to right. It has been shown that they recognize exactly
the set of languages recognized by deterministic push down
automata. LR(k) parsers for CFGs have been proven useful
for compilers as well as recently for natural language pro-
cessing. For natural language processing, although LR(k)
parsers are not powerful enough, conflicts between multi-
ple choices are solved by pseudo-parallelism (Lang, 1974,
Tomita, 1987). This gives rise to a class of powerful yet ef-
ficient parsers for natural languages. It is in this context that
deterministic (LR(k)-style) parsing of TAGs is studied (this
work has been done in collaboration with Vijay-Shanker).

The set of Tree Adjoining Languages is a strict superset of
the set of Context Free Languages (CFLs). For example, the
cross serial dependency construction in Dutch can be gener-
ated by a TAG. Walters (1970), R6v6sz (1971), Turnbull and
Lee (1979) investigated deterministic parsing of the class of
context-sensitive languages. However they used Turing ma-
chines which recognize languages much more powerful than
Tree Adjoining Languages. So far no deterministic bottom-
up parser has been proposed for any member of the class of
the so-called "mildly context sensitive" formalisms (Joshi,
1985) in which Tree Adjoining Grammars fall. 3 Since the
set of Tree Adjoining Languages (TALs) is a strict super-
set of the set of Context Free Languages, in order to define
LR-type parsers for TAGs, we need to use a more powerful
configuration then a finite state automaton driving a push
down stack. The design of deterministic left to right bottom
up parsers for TAGs in which a finite state control drives the
moves of a Bottom-up Embedded Push Down Stack has been
investigated. The class of corresponding non-deterministic
automata recognizes exactly the set of TALs.

Due to the lack of space, we focus our attention on the
bottom-up embedded pushdown automaton. The moves of
the parser are sequences of moves of the automaton. The
complete construction of LR-style parser for TAGs can be
found in Schabes and Vijay-Shanker (1990).

A u t o m a t a Mode l s of Tags
Before we discuss the Bottom-up Embedded Pushdown Au-
tomaton (BEPDA) which is used by parser, we will explain
the Embedded Pushdown Automaton (EPDA). An EPDA
is similar to a pushdown automaton (IDA) except that the
storage of an EPDA is a sequence of pushdown stores. A
move of an EPDA (see Figure 5) allows for the introduc-
tion of bounded pushdowns above and below the current top
pushdown. Informally, this move can be thought of as corre-
sponding to the adjoining operation move in TAGs with the

3Tree Adjoining Grammars, Modified Head Grammars, Linear Indexed
Grammars and Categofial Grammars (all of which generate the same sub-
class of context-sensitive languages) fall in the class of the so-called ~mildly
context sensitive" formalisms. The Embedded Push Down Automaton rec-
ognizes exactly this set of languages (Vijay-Shanker 1987).

51

read only inp~ tat, e

stack of stacks

B E P D A

Bou dn e, f l
of stacks I I ,
o:bou, size
Bounded number ~
o/stack elements ~J ~ ,

Unbounded number f l
of stack elements ~ ~

Bounded stacks I B~
of bounded size L~

UNW~P

EPDA
m o r s e

U N W R A P m o v e

! E
[]

P U S H m o v e

Figure 4: Bottom-up Embedded Pushdown Automaton

pushdowns introduced above and below the current push-
down reflecting the tree structure to the left and right of the
foot node of an auxiliary being adjoined. The spine (path
from root to foot node) is left on the previous stack.

I • .,,~left of foot of 13
pme ~ .~spine of [3

H ~ '~ r igh t °f f°°t °f13

Figure 5: Embedded Pushdown Automaton

The generalization of a PDA to an EPDA whose storage is
a sequence of pushdowns captures the generalization of the
nature of the derived trees of a CFG to the nature of derived
trees of a TAG. From Thatcher (1971), we can observe that
the path set of a CFG (i.e. the set of all paths from root to
leaves in trees derived by a CFG) is a regular set. On the
other hand, the path set of a TAG is a CFL. This follows
from the nature of the adjoining operation of TAGs, which
suggests stacking along the path from root to a leaf. For
example, as we traverse down a path in a tree "r (in Figure 5),
if adjunction, say by/3, occurs then the spine of/3 has to be
traversed before we can resume the path in "r.

Bottom-up Embedded Pushdown Automaton
For any TAG G, an EPDA can be designed such that its
moves correspond to a top-down parse of a string generated
by G (EPDA characterizes exactly the set of Tree Adjoining
Languages, Vijay- Shanker, 1987). If we wish to design
a bottom-up parser, say by adopting a shift reduce parsing
strategy, we have to consider the nature of a reduce move

of such a parser (i.e. using EPDA storage). This reduce
move, for example applied after completely considering an
auxiliary tree, must be allowed to ' remove ' some bounded
pushdowns above and below some (not necessarily bounded)
pushdown. Thus (see Figure 4), the reduce move is like the
dual of the wrapping move performed by an EPDA.

Therefore, the Bottom-up Embedded Pushdown Automa-
ton (BEPDA), whose moves are dual of an EPDA, has been
introduced. The two moves of a BEPDA are the unwrap
move depicted in Figure 4 - which is an inverse of the wrap
move of an EPDA - and the introduction of new pushdowns
on top of the previous pushdown (push move). In an EPDA,
when the top pushdown is emptied, the next pushdown au-
tomatically becomes the new top pushdown. The inverse of
this step is to allow for the introduction of new pushdowns
above the previous top pushdown. These are the two moves
allowed in a BEPDA, the various steps in our parsers are
sequences of one or more such moves.

Due to space constraints, we do not show the equiva-
lence between BEPDA and EPDA apart from noting that
the moves of the two machines are dual of each other.

Using the BEPDA, the parser recognizes the derived tree
inside out: it extracts recursively the innermost auxiliary tree
that has no adjunction performed in it. Schabes and Vijay-
Shanker (1990) give a complete explanation of the parser
moves and its construction. The accuracy of the parsing
table can also be improved by computing lookaheads for
TAGs.

Similar to the work of Lang (1974) and Tomita (1987)
extending LR parsers for arbitrary CFGs, the LR parsers for
TAGs can be extended to solve by pseudo-parallelism the
conflicts of moves.

5 2

Conclusion
During the past year there have been two very significant de-
velopments in the area of Tree Adjoining Grammars (TAGs):
synchronous TAGs and efficient processing of TAGs.

A variant of TAGs called Synchronous TAGs has been
developed, which is used to relate expressions of natural lan-
guages to their associated semantics represented in a logical
form language. The key idea is that the logical form lan-
guage itself can be described by a TAG. The two TAGs work
synchronously, in the sense that the certain correspondences
(links) are stated initially between the elementary trees of the
two TAGs and then universal composition operations (such
as substitution and adjoining) are carried out synchronously
on the linked nodes of the two TAGs. Synchronous TAGs
are used for language interpretation, generation and machine
translation.

The second development is the design of LR-style parsers
for TAGs. The existence of the push down automata for
context-free grammars is crucial for the development of
these techniques for the parsing of context-free languages.
In order to extend the LR techniques to TAGs it is neces-
sary to find bottom-up automaton that is exactly equivalent
to TAGs. This is precisely what has been achieved by the
discovery of the Bottom-up Embedded Push Down Automa-
ton (BPDA). Using BPDA the first deterministic left to right
parsers for the Tree Adjoining Languages were developed.

References
Abei116, Anne and Schabes, Yves, 1989. Parsing Idioms in

Tree Adjoining Grammars. In Fourth Conference of the
European Chapter of the Association for Computational
Linguistics (EA CL ' 89). Manchester.

Abeill6, Anne, Schabes, Yves, and Joshi, Aravind K., 1990.
Using Lexicalized Tree Adjoining Grammars for Machine
Translation. In Proceedings of the 13 th International
Conference on Computational Linguistics (COLING'90).
Helsinki.

Joshi, Aravind K., 1985. How Much Context-Sensitivity
is Necessary for Characterizing Structural Descriptions--
Tree Adjoining Grammars. In Dowty, D., Karttunen, L.,
and Zwicky, A. (editors), Natural Language Processing---
Theoretical, Computational and Psychological Perspec-
tives. Cambridge University Press, New York. Originally
presented in a Workshop on Natural Language Parsing at
Ohio State University, Columbus, Ohio, May 1983.

Joshi, Aravind K., 1987. An Introduction to Tree Adjoining
Grammars. In Manaster-Ramer, A. (editor), Mathematics
of Language. John Benjamins, Amsterdam.

Knuth, D. E., 1965. On the translation of languages from
left to righL Inf. Control 8:607--639.

Lang, Bernard, 1974. Deterministic Techniques for Efficient
Non-Deterministic Parsers. In Loeckx, Jacques (editor),
Automata, Languages and Programming, 2nd Colloquium,
University of Saarbrficken. Lecture Notes in Computer
Science, Springer Verlag.

R6v6sz, G., 1971. Unilateral context sensitive grammars and
left to right parsing. J. Comput. System Sci. 5:337-352.

Schabes, Yves and Vijay-Shanker, K., 1990. Deterministic
Left to Right Parsing of Tree Adjoining Languages. In
28 th Meeting of the Association for Computational Lin-
guistics (ACL'90). Pittsburgh.

Schabes, Yves, Abeill6, Anne, and Joshi, Aravind K., Au-
gust 1988. Parsing Strategies with 'Lexicalized' Gram-
mars: Application to Tree Adjoining Grammars. In Pro-
ceedings of the 12 th International Conference on Compu-
tational Linguistics (COLING'88). Budapest, Hungary.

Shieber, Stuart and Schabes, Yves, 1990 (a). Synchronous
Tree Adjoining Grammars. In Proceedings of the 13 th
International Conference on Computational Linguistics
(COLING'90). Helsinki.

Shieber, Stuart and Schabes, Yves, 1990 (b). Generation and
Synchronous Tree Adjoining Grammars. In Proceedings
of the fifth International Workshop on Natural Language
Generation. Pittsburgh.

Thatcher, J. W., 1971. Characterizing Derivations Trees of
Context Free Grammars through a Generalization of Finite
Automata Theory. J. Comput. Syst. Sci. 5:365-396.

Tomita, Masaru, 1987. An Efficient Augmented-Context-
Free Parsing Algorithm. Computational Linguistics
13:31--46.

Turnbull, C. J. M. and Lee, E. S., 1979. Generalized Deter-
ministic Left to Right Parsing. Acta lnformatica 12:187-
207.

Vijay-Shanker, K., 1987. A Study of Tree Adjoining Gram-
mars. PhD thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania.

Walters, D.A., 1970. Deterministic Context-Sensitive Lan-
guages. Inf. Control 17:14-40.

53

