
Efficient, High-Performance Algorithms for
N-Best Search

Richard Schwartz, Steve Austin

BBN Systems and Technologies Inc.
10 Moulton St.

Cambridge, MA, 02138

Abstract
We present two efficient search algorithms for real-time spo-
ken language systems. The first called the Word-Dependent
N-Best algorithm is an improved algorithm for finding the
top N sentence hypotheses. The new algorithm is shown
to perform as well as the Exact Sentence-Dependent al-
gorithm presented previously but with an order of mag-
nitude less computation. The second algorithm is a fast
match scheme for continuous speech recognition called the
Forward-Backward Search. This algorithm, which is directly
motivated by the Baum-Welch Forward-Backward training
algorithm, has been shown to reduce the computation of a
time-synchronous beam search by a factor of 40 with no
additional search errors.

1. Introduction
In a Spoken Language System (SLS) we must use all avail-
able knowledge sources (KSs) to decide on the spoken sen-
tence. While there are many knowledge sources, they are
often grouped together into speech models, statistical lan-
guage model, and natural language understanding models.
To optimize accuracy we must choose the sentence that has
the highest score (probability) given all of the KSs. This
potentially requires a very large search space. The N-Best
paradigm for integrating several diverse KSs has been de-
scribed previously [2, 10]. First, we use a subset of the KSs
to choose a small number of likely sentences. Then these
sentences are scored using the remainder of the KSs.

In Chow et. al., we also presented an efficient speech
recognition search algorithm that was capable of comput-
ing the N most likely sentence hypotheses for an utterance,
given the speech models and statistical language models.
However, this algorithm greatly increases the needed com-
putation over that needed for finding the best single sen-
tence. In this paper we introduce two techniques that dra-
matically decrease the computation needed for the N-Best
search. These algorithms are being used in a real-time SLS
[1]. In the remainder of the introduction we review the exact
N-Best search briefly and describe its problems. In Section
2 we describe two approximations to the exact algorithm
and compare their accuracy with that of the exact algorithm.

The resulting algorithm is still not fast enough for real-
time implementation. In Section 3 we present a new

sentence-level fast match scheme for continuous speech
recognition. The algorithm is motivated by the mathematics
of the Baum-Welch Forward-Backward training algorithm.

The N-Best Paradigm
The basic notion of the n-best paradigm is that, while we
must ultimately use all the available KSs to improve recog-
nition accuracy, the sources vary greatly in terms of per-
plexity reduction and required complexity. For example,
a first-order statistical language model can reduce perplex-
ity by at least a factor of 10 with little computation, while
applying complete natural language (NL) models of syn-
tax and semantics to all partial hypotheses typically requires
more computation for less perplexity reduction. (Murveit
[6] has shown that the use of an efficiently implemented
syntax within a recognition search actually slowed down the
search unless it was used very sparingly.) Therefore it is
advantageous to use a strategy in which we use the most
powerful, efficient KSs first to produce a scored list of all
the likely sentences. This list is then filtered and reordered
using the remaining KSs to arrive at the best single sentence.
Figure 1 contains a block diagram that illustrates this basic
idea. In addition to reducing total computation the result-
ing systems would be more modular ff we could separate
radically different KSs.

T h e Exact Sentence-Dependent A l g o r i t h m
We have previously presented an efficient time-synchronous
algorithm for finding the N most likely sentence hypotheses.
This algorithm was unique in that it computed the correct
forward probability score for each hypothesis found. The
way this is accomplished is that, at each state, we keep an
independent score for each different preceding sequence of
words. That is, the scores for two theories are added only
if the preceding word sequences are identical. We preserve
up to N different theories at each state, as long as they are
above the pruning beamwidth. This algorithm guarantees
finding the N best hypotheses within a threshold of the best
hypothesis. The algorithm was optimized to avoid expen-
sive sorting operations so that it required computation that
was less than linear with the number of sentence hypotheses
found. It is easy to show that the inaccuracy in the scores
computed is bounded by the product of the sentence length

i I . .B . t R°°rd'r List |
_ Top

Choice

KS 1 KS2

Statistical Grammar

Syntax

Statistical Grammar + Syntax

1st order statistical

Full NLP

Semantics, etc.

Semantics, etc.

Higher-order stat ist ical

Figure 1: The N-best Search Paradigm. The most efficient
knowledge sources, KS1, are used to find the N Best sen-
tences. Then the remaining knowledge sources, KS2 are
used to reorder the sentences and pick the most likely one.

and the pruning beamwidth. For example, if a sentence
is 1000 frarms long and a relative pruning beamwidth of
10-15 is maintained throughout the sentence, then all scores
are guaranteed to be accurate to within 10 -12 of the maxi-
mum score. The proof is not given here, since it is not the
subject of this paper. In the remainder of the paper we will
refer to this particular algorithm as the Exact algorithm or
the Sentence-Dependent algorithm.

There is a problem associated with the use of this exact
algorithm. If we assume that the probability of a single word
being misrecognized is roughly independent of the position
within a sentence, then we would expect that alonger sen-
tence will have more errors. Consequently the typical rank
of the correct answer will be lower (further from the top) on
longer sentences. Therefore if we wanted the algorithm to
find the correct answer within the list of hypotheses some
fixed percentage of the time, the value of N will have to
increase significantly for longer sentences.

When we examine the different answers found we no-
tice that, many of the different answers are simple one-word
variations of each other. This is likely to result in much
duplicated computation. One might imagine that if the dif-
ference between two hypothesized word sequences were sev-
eral words in the past then any difference in score due to
that past word would remain constant. In the next section we
present two algorithms that attempt to avoid these problems.

2. Two Approximate N-Best Algorithms
While the exact N-Best algorithm is theoretically interesting,
we can generate lists of sentences with much less computa-
tion if we are willing to allow for some approximations. As
long as the correct sentence can be guaranteed to be within
the list, the list can always be reordered by rescoring each
hypothesis individually at the end. We present two such
approximate algorithms with reduced computation.

Lattice N-Best
The first algorithm will derive an approximate list of the
N Best sentences with no more computation than the usual
1-Best search. Figure 2 illustrates the algorithm. Within
words we use the time-synchronous forward-pass search al-
gorithm [8], with only one theory at each state. We add the
probabilities of all paths that come to each state. At each
grammar node (for each frame) we simply store all of the
theories that arrive at that node along with their respective
scores in a traceback list. This requires no extra compu-
tation above the 1-Best algorithm. The score for the best
hypothesis at the grammar node is sent on as in the nor-
rnal time-synchronous forward-pass search. A pointer to the
saved list is also sent on. At the end of the sentence we
simply search (recursively) through the saved Iraceback lists
for all of the complete sentence hypotheses that are above
some threshold below the best theory. This recursive Irace-
back can be performed very quickly. (We typically extract
the 100 best answers, which causes no noticeable delay.)
We call this algorithm the Lattice N-Best algorithm since
we essentially have a dense word lattice represented by the
traceback information. Another advantage of this algorithm
is that it naturally produces more answers for longer sen-
t e n c e s .

m a m ~ _ . ~ ~ m m W o r d 1 ~'~ Word 4
Word 2

Word 3 Word K

Figure 2: The Lattice N-best Algorithm. We save all theo-
ries at grammar nodes. Then we recursively Irace back all
sequences.

This algorithm is similar to the one suggested by Stein-
biss [9], with a few differences. First, he uses the stan-
dard Viterbi algorithm rather than the time-synchronous al-
gorithm within words. That is he takes the maximum of the
path probabilities at a state rather than the sum. We have

observed a 20% higher error raate when using the maximum
rather than the sum. The second difference is that when sev-
eral word hypotheses come together at a common grammar
node at the same lime, he traces back each of the choices
and keeps the N (typically 10) best sentence hypotheses up
to that lime and node. This step unnecessarily limits the
o,mher of sentence hypotheses that are produced to N. As
above the score of the best hypothesis is sent on to all words
following the grammar node. At the end of the sentence he
then has an approximation to the 3r best sentences. He re-
ports that one third of the errors made by the 1-Best search
are corrected in this way. However, as with a word lattice,
many of the words are constrained to end at the same time
- which leads to the main problem with this algorithm.

The Lattice N-Best algorithm, while very fast, underesti-
mates or misses high scoring hypotheses. Figure 3 shows
an example in which two different words (words 1 and 2)
can each be followed by the same word (word 3). Since
there is only one theory at each state within a word, there is
only one best beginning time. This best beginning time is
determined by the best boundary between the best previous
word (word 2 in the example) and the current word. But, as
shown in Figure 3, the second-best theory involving a differ-
ent previous word (word 1 in the example), would naturally
end at a slightly different lime. Thus the best score for the
second-best theory would be severely underestimated or lost
altogether.

w o r d

":~.

t i m e

Figure 3: Alternate paths in the Lattice algorithm. The best
path for words 2-3 overrides the best path for words 1-3.

Word-Dependent N-Best

As a compromise between the exact sentence-dependent
algorithm and the lattice algorithm we devised a Word-
Dependent N-Best algorithm_ We reason that while the best
starting lime for a word does depend on the preceding word,
it probably does not depend on any word before that. There-
fore instead of separating theories based on the whole pre-
ceding sequence, we separate them only ff previous word
is different. At each state within the word we preserve the
total probability for each of n (< < N) different preceding
words. At the end of each word we record the score for
each hypothesis along with the name of the previous word.
Then we proceed on with a single theory with the name of
the word that just ended. At the end of the sentence we per-
form a recursive traceback to derive a large list of the most
likely sentences. The resulting theory paths are illustrated
schematically in Figure 4. Like the lattice algorithm the

w o r d

Theor ies are
combined, so we
can have more
than one start
t ime tor th is

I m o d e l .
' i

1

t i m e

Figure 4: Alternate paths in the Word-Dependent algorithm.
Best path for words 1-3 is preserved along with path for
words 2-3.

word-dependent algorithm naturally produces more answers
for longer sentences. However, since we keep multiple the-
ories within the word, we correctly identify the second best
path. While the computation needed is greater than for the
lattice algorithm it is less than for the sentence-dependent al-
gorithm, since the number of theories only needs to account
for number of possible previous words - not all possible pre-
ceding sequences. Therefore the number n, of theories kept
locally only needs to be 3 to 6 instead of 20 to 100.

Comparison of N-Best Algorithms
We performed experiments to compare the behavior of the
three N-Best algorithms. In all three cases we used the Class
Grammar [3], a first-order statistical grammar based on 100
word classes. All words within a class are assumed equally
likely. The test set perplexity is approximately 100. The test
set used was the June '88 speaker-dependent test set of 300
sentences. To enable direct comparison with previous results
we did not use models of triphones across word boundaries,
and the models were not smoothed. We expect all three
algorithms to improve significantly when the latest modeling
methods are used.

8~

o

E

- -100.0

.... 96,0

Word-Dependent N-Best

. Sentence-Dependent N-Best

Lattice N-Best

~o go go 106
rank ot correct answer

Figure 5: Comparison of the Rank of the Correct Sentence
for the Sentence-Dependent, Word-Dependent, and Latlice
N-Best Algorithms.

Figure 5 shows the cumulative distribution of the rank
of the correct answer for the three algorithms. As can be
seen, all three algorithms get the sentence correct on the first
choice about 62% of the time. All three cumulative distri-
butions increase substantially with more choices. However,
we observe that the Word-Dependent algorithm yields accu-
racies quite close to that of the Exact Sentence-Dependent
algorithm, while the Lattice N-Best is substantially worse.
In particular, the sentence error rate at rank 100 (8%) is dou-
ble that of the Word-Dependent algorithm (4%). Therefore,
ff we can afford the computation of the Word-Dependent
algorithm it is clearly preferred.

We also observe in Figure 5 that the Word-Dependent
algorithm is actually better than the Sentence-Dependent al-
gorithm for very high ranks. This is because the score of the
correct word sequence fell outside the pruning beamwidth.
However, in the Word-Dependent algorithm each hypothesis
gets the benefit of the best theory two words back. Therefore
the correct answer was preserved in the traceback. This is
another advantage that both of the approximate algorithms
have over the Sentence-Dependent algorithm.

In the next section we describe a technique that can be
used to speed up all of these time-synchronous search algo-
rithms by a large factor.

3. Forward-Backward Search
The time-synchronous beam search follows a large number
of theories on the off chance that they will get better during
the remainder of the sentence. Typically, we must keep
over 1000 theories to guarantee finding the highest answer.
In some sense the computation for all but one answer will
have been wasted.

We need a way to speed up the beam search without caus-
ing search errors. We could prune out most of the choices
if we only knew the correct answer ahead of time or if we
could look ahead at the remainder of the sentence. Several
papers have described fast match schemes that look ahead
(incurring a delay) to determine which words are likely (e.g.
[4]). The basic idea is to perform some approximate match
that can be used to eliminate most of the possible following
words. However, since we cannot tell when words end in
continuous speech, the predictions of the score for each word
is quite approximate. In addition, even if a word matches
well we cannot tell whether the remainder of the sentence
will be consistent with that word without looking further
ahead and incurring a longer delay.

Let us consider the time-synchronous forward pass. The
score at any given state and time at(s) is the probability of
the input up to time t, summed over all of the paths that
get to state s at t. When these scores are normalized they
give the relative probability of paths ending at this state as
opposed to paths ending at any other state. These forward
pass probabilities are the ideal measure to predict which
theories in a backward search are expected to score well.
Figure 6 illustrates several paths from the beginning of an
utterance to different states at time t, and several theories
from the end of the utterance T backward to time t. From
the Baum-Welch Forward-Backward Iraining algorithm we
have

7t(s)
GT

where 7t(s) is the probability of the data given all paths
through state s, divided by the probability of the data for
all paths, which is the probability that slate s is appropriate
at time t. aT is derived from the forward pass. Of course
if we have already gone through the whole utterance in the
forward direction we already know the most likely sentence.

Now let us consider a practical Forward-Backward Search
algorithm. First we perform a forward pass over the whole
utterance using a simplified acoustics or language model. In
each fran~ we save the highest forward probability and the
probabilities of all words that have ending scores above the
pruning beamwidth. Typically this includes about 20 words
in each frame. Then we perform a search in the backward
direction. This search uses the normal beam search within
words. However, whenever a score is about to be trans-
fered backwards through the language model into the end
of a word we first check whether that word had an ending
score for that frame in the forward pass. That is we ask,
"Was there a reasonable path from the beginning of the ut-
terance to this time ending with this word?" Again, referring
to Figure 6, the backward theory that is looking for word

score

forwardsib. ~ backwards

Figure 6: Forward-Backward Search. Forward and back-
ward scores for the same state and time are added to predict
final score for each theory extension.

d cannot find any corresponding forward score, and so is
aborted. When there is a score, as in the cases for words
a,b,c, then we multiply the present backward score of the
theory,/3t(s) by the forward pass score for this word; at(s),
divided by the whole sentence score, aT. Only if this ra-
tio is greater than the pruning beamwidth do we extend the
theory backwards by this word. For example, although the
backward theory looking for word c has a good score, the
corresponding forward score c' is not good, and the product
may be pruned out.

The Forward-Backward search is only useful ff the for-
ward pass is faster than the backward would have been. This
can be true if we use a different grammar, or a less expensive
acoustic model. If the forward acoustic models or language
model is different than in the backward pass, then we must
reestimate txa, before using it in the algorithm above. For
simplicity we estimate txT at each time t as

at(t) = max at(s) maxB (s)

the product of the maximum state scores in each direction.
(Note that since the two maxima are not necessarily on the
same state it would be more accurate to use

a t (t) = m a x a~(s)#t(s)

forcing the two states to be the same. However, since most
of the active states are internal to words, this would require
a large computation and also require that we had stored all
of the state scores in the forward direction for every time.)

We observe that the average number of active phoneme
arcs in the backward direction is reduced by a factor of 40
(e.g. from. 800 to 20) - with a corresonding reduction in
computation and with no increase in search errors.

Uses of Forward-Backward Search
As stated above, this algorithm is only useful when the for-
ward pass can be computed differently (much more quicldy)
than the backward (real) search. For example, we could use
a null grammar in the forward direction and a more com-
plex grammar in the backward search. We have used this
extensively in our past work with very large RTN grammars
or high-order statistical grammars [7]. When no grammar
is used in the forward pass we can compact the entire dic-
tionary into a phonetic tree, thereby greatly reducing the
computation for large dictionaries.

A variation on the above use is to use a simpler acous-
tic model in the forward direction. For example restricting
the model to triphones within words, using simpler HMM
topologies, etc.

A second use is for real-time computation of the N Best
sentences [1]. First we perform a normal 1-Best search for-
ward. The best answer can be processed by NL immediately
(on another processor) while we perform the N-Best search
backwards. We find that the backward N-Best search is sped
up by a factor of 40 when using the forward pass scores for
pruning. Thus the delay until we have the remainder of the
answers is usually quite short. If the delay is less than the
time required to process the first answer through NL, then
we have lost no time.

Finally, we can use the Forward-Backward Search to
greatly reduce the time needed for experiments. Experi-
ments involving expensive decoding conditions can be re-
duced from days to hours. For example all of the exper-
irnents with the Word-Dependent and Lattice N-Best algo-
rithms were performed using the Forward-Backward Search.

\

4 . C o n c l u s i o n

We have considered several approximations to the exact
Sentence-Dependent N-Best algorithm, and evaluated them
thoroughly. We show that an approximation that only sepa-
rates theories when the previous words are different allows
a significant reduction in computation, makes the algorithm
scalable to long sentences and less susceptable to pruning
errors, and does not increase the search errors measurably.
In contrast, the Lattice N-Best algorithm, which is still less
expensive, appears to miss twice as many sentences within
the N-Best choices.

We have introduced a new two-pass search strategy called
the Forward-Backward Search, which is generally applicable
to a wide range of problems. This strategy increases the
speed of the recognition search by a factor of 40 with no
additional pruning errors observed.

1 0

Acknowledgement
This work was supported by the Defense Advanced Research
Projects Agency and monitored by the Office of Naval Re-
search under Contract No. N00014-89-C-0008.

References
[I] Austin, S., Peterson, P., Placeway, P., Schwartz, R,

and Vandergrift, J., "Toward a Real-Time Commercial
System Using Commercial Hardware". Proceedings of
the DARPA Speech and Natural Language Workshop
Hidden Valley, June 1990 (1990).

[2] Chow, Y-L. and Schwartz, R.M., "The N-Best Algo-
rithm: An Efficient Procedure for Finding Top N Sen-
tence Hypotheses". Proceedings of the DARPA Speech
and Natural Language Workshop Cape Cod, October
1989 (1989).

[3] Derr, A., and Schwartz, R.M., "A Simple Statisti-
cal Class Grammar for Measuring Speech Recognition
Performance". Proceedings of the DARPA Speech and
Natural Language Workshop Cape Cod, October 1989
(1989).

[4] Bahl, L.R., de Souza, P., Gopalakrishnan, P.S.,
Kanevsky, D., and Nahamoo, D. "Constructing Groups
of Acoustically Confusable Words". Proceedings of the
ICASSP 90, April, 1990.

[5] Fissore, L., Micca, G., and Pieraccini, R., "Very Large
Vocabulary Isolated Utterance Recognition: A Com-
parison Between One Pass and Two Pass Strategies".
Proceedings of the ICASSP 88, pp. 267-270, April,
1988.

[6] Murveit, H., "Integrating Natural Language Constraints
into HMM-based Speech Recognition". Proceedings of
the ICASSP 90, April, 1990.

[7] Rohlicek, J.A., Chow, Y-L., and Roucos, S., "Statis-
tical Language Modeling Using a Small Corpus from
an Application Domain". Proceedings of the DARPA
Speech and Natural Language Workshop Cambridge,
October 1987 (1987). Also in Proceedings of the
ICASSP 88, pp. 267-270, April, 1988.

[8] Schwartz, R.M., Chow, Y., Kimball, O., Roucos, S.,
Krasner, M., and Makhoul, J. "Context-Dependent
Modeling for Acoustic-Phonetic Recognition of Con-
tinuous Speech". Proceedings of the ICASSP 85, pp.
1205-1208, March, 1985.

[9] V. Steinbiss (1989) "Sentence-Hypotheses Generation
in a Continuous-Speech Recognition System," Proc.
of the European Conf. on Speech Communciation and
Technology, Paris, Sept. 1989, Vol. 2, pp. 51-54

[10] Young, S. (1984) "Generating Multiple Solutions from
Connected Word DP Recognition Algorithms". Proc.
of the Institute of Acoustics, 1984, Vol. 6 Part 4, pp.
351-354

11

