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Abstract  

The context in which a phoneme occurs leads to consistent differences in how it is pronounced. Phonologists 
employ a variety of contextual descriptors, based on factors such as stress and syllable boundaries, to explain 
phonological variation. However, in developing pronunciation networks for speech recognition systems, little 
explicit use is made of context other than the use of whole word models and use of triphone models. 

This paper describes the creation of pronunciation networks using a wide variety of contextual  factors 
which allow bet ter  prediction of pronunciation variation. We use a phoneme level representation which 
permits easy addition of new words to the vocabulary, with a flexible context representation which allows 
modeling of long-range effects, extending over syllables and across word-boundaries. In order to incorporate 
a wide variety of factors in the creation of pronunciation networks, we used data-derived context trees, which 
possess properties useful for pronunciation network creation. 

Introduction 

The context in which a phoneme occurs leads to consistent differences in how it is pronounced. Pho- 
nologists employ a variety of contextual descriptors to explain phonological variation. These descriptors 
are theoretically motivated by studies of different languages and are comprised of many factors, such as 
stress and syllable part. However, in current speech recognition systems, only a few contextual  descriptors 
are employed when developing pronunciation networks. In these systems, generally the effects of only the 
preceding and following sounds, as in triphone models, or implicit within-word contextual effects, as in whole 
word models, are modeled. 

Context-dependent  triphone models have been found to be bet ter  models than context-free phone models, 
or monophones, and are used now by many recognition systems (e.g. Chow, 1986). More recently, Lee (1988, 
1989) introduced the idea of clustered triphones, in which triphones exhibiting similar coarticulatory behavior 
are grouped together. Clustered triphones require less training data  because there are fewer models, resulting 
in bet ter  training of the models which have been defined. 

Paul (1988) has conducted studies comparing the recognition rates of whole word models and triphone 
models. In his studies, he found that  whole word models provided somewhat bet ter  recognition rates over 
triphone models, and that  triphone models have much bet ter  recognition rates than monophone models. 
However, in these studies, context across word boundaries was not modeled. In a subsequent study, Paul 
(1989) found that  use of triphone models which modeled context across word boundaries provided signifi- 
cantly bet ter  recognition rates over word-internal triphone models. Extrapolating, one would expect even 
bet ter  performance with whole word models which also model contextual effects across word boundaries. 
However, the amount  of data  necessary to train such a model for a moderate size vocabulary could be pro- 
hibitive. Furthermore, addition of a new word to the vocabulary would require many new tokens of the word 
because at least one token of the word in each context in which it could appear would be required. 

Instead of words, the use of a smaller representational unit, such as phones, with an enriched set of 
contextual descriptors can provide models which capture many of the contextual effects that  whole word 
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contextual factor values 
preceding phoneme 
following phoneme 
preceding phone 
following phone 
syllable part 
stress 
syllable boundary type 
foot boundary type 
word boundary type 
cluster type 
open syllable? 
true vowel? 
function word? 

(all phonemes) + sentence boundary 
(all phonemes) + sentence boundary 
(all phones) + deletion + sentence boundary 
(all phones) + deletion + sentence boundary 
onset, nucleus, coda 
primary, secondary, unstressed 
initial, final, internal, initial-and-final 
initial, final, internal, initial-and-final 
initial, final, internal, initial-and-final 
onset, coda, nil 
true, false 
true, false 
true, false 

Table 1: Contexts used in pronunciation experiments 

models capture. In addition, phone models have a smaller training data requirement and provide a more 
general framework for adding new words to the vocabulary. 

Because more contextual effects can be captured by using a wide variety of factors, use of these factors 
when creating pronunciation networks from dictionary baseforms allows bet ter  predictions of pronunciation 
variants. Better  modeling of observed phonological variation can result in bet ter  performance of speech 
recognition systems. A case in point is the work by Weintraub et al. (1989) who found that  phonological 
modeling improved their recognition results. In their work, the phonological rules were derived by hand. 

This paper describes the creation of pronunciation networks using a wide variety of contextual factors. We 
propose a systematic methodology for creating pronunciation networks which can capture the predominant 
contextual effects using a representation at the phoneme level. With the use of a phoneme representation, 
new words can be added without the need for additional training data, as would be necessary in whole word 
models. Our representation also allows us to capture long-range effects. In this study, some factors extend 
over syllables and across word boundaries. 

C o n t e x t u a l  F a c t o r s  R e p r e s e n t e d  i n  C o n t e x t  T r e e s  

Linguists describe the context of a phoneme using many types of theoretically motivated factors, such 
as stress and word boundary. Each contextual factor describing the context of a phoneme has a value. For 
example, the factor stress may take on any one value of primary, secondary, or unstressed. 

In this work, we describe the context of a phoneme using a set of linguistically motivated contextual 
factors. These factors and their corresponding values are listed in Table 1. Some of the factors are structures 
normally associated with several phonemes. For example, the factor syllable part may take on the value 
onset, which may be composed of up to three phonemes, as in the sequence / s t r / .  In such cases, we assign 
the factor value to each phoneme within the structure. In our example, the exempla r s / s / ,  / t / ,  a n d / r / i n  
a n / s t r / s e q u e n c e  would each be assigned a syllable part value of onset. This representation allows modeling 
of long-range contextual effects simultaneously with a local phoneme representation, which simplifies the 
addition of new words to a recognition vocabulary. 

If the context of a phoneme is described by simultaneously using all the contextual factors listed in 
Table 1, a prohibitive amount  of data  would be required to form an adequate description of each phoneme 
in each context. Each contextual factor represents a separate dimension, and with such a large number of 
dimensions, the distribution of phonemes in a context will be sparse. One way to handle this difficulty is 
to build a "context tree," in which a subset of contextual factors is selected using a greedy algorithm which 
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Figure 1: An illustrative context  tree for some phoneme X 

minimizes the loss of information at  each selection. A combination of tree induction for selecting factors and 
clustering for grouping factor values is used to create a context tree. The number  of leaves in the tree and 
branching of the tree is determined by the data.  In the next p a r a g r a p h  we give a brief description of context  
trees. A more detailed description of context trees and how they are created is given in Chen and Shrager 
(1989). An al ternate method for grouping contextual factors, based on binary splitting of subspaces until a 
preset number  of clusters is formed, is given by Sagayama (1989). 

A context  tree is an n-ary decision tree which models the relationship between contextual  factors and the 
allophones which occur in different contexts. We create context trees from a set of training exemplars using 
da ta  derived f rom the hand-transcribed "sx" sentences of the T I M I T  database  (Lamel, et al., 1986; Fisher 
et al., 1987). An illustrative tree describing the distribution of allophones in context for some phoneme X is 
shown in Figure 1. The  nodes of a context tree represent the values of a part icular  contextual  factor. In the 
example, node 1 corresponds to the contextual factor word-boundary-type with the value initial or internal. 
Each leaf of a context tree encodes the distribution of allophones in each context.  In general, more than one 
allophone occurs in a context because phoneme realizations are not deterministic. For example,  leaf 2 of the 
example corresponds to the realizations of X,  which is realized as the allophone y 70% and as z 30% of the 
time when in a word-final and either pr imary or secondary stress context.  

The representat ion used in context  trees permits  flexible modeling of contextual  effects. Since the context 
trees are derived f rom data  in which phonemes are described by a set of contextual  factors, long-range 
contextual  effects are modeled. Also, since each factor represents a separate  dimension, a factor ignores 
structures which are irrelevant to it. Thus, a contextual  factor such as preceding phoneme extends across 
word boundaries. 

P r o n u n c i a t i o n  N e t w o r k  C r e a t i o n  

This section describes a systematic method for creating pronunciation networks in which a wide variety 
of contextual  factors are used. In addition to using more contextual  factors, our method of network creation 
has a number  of inherent advantages, such as the ability to est imate allophone distributions from part ial  
contextual  descriptions. This method is data-intensive, using the da ta  to determine possible pronunciations 
as well as to est imate the probabilities associated with each pronunciation. 

M a p p i n g  D i c t i o n a r y  P r o n u n c i a t i o n s  

Dictionary pronunciations of words are relatively coarse-grained in that  they do not indicate allophonic 
variation. Phone-based speech recognition systems generally represent words using allophones ra ther  than 
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dictionary baseforms because the allophones of a dictionary "phoneme" may  be very different, as measured 
by the acoustic similarity metrics commonly employed in recognition systems. The  allophonically-based 
pronunciations are usually represented compactly in a pronunciation network. In this section, we describe 
the creation of pronunciation networks from dictionary baseforms. The  networks are produced by mapping 
the dictionary pronunciation of a word into an allophonic representation specified by the context  trees. The 
dictionary that  we use was developed at Xerox PARC and is called the X-Dictionary t. 

The mapping  f rom a dictionary baseform to a set of possible pronunciations is characterized by the 
substitution, deletion, and insertion of sounds. Each dictionary sound may  be realized as an allophone or 
it may be deleted. Therefore, substi tution and deletion of a dictionary phoneme may be treated identically 
in mapping a dictionary baseform into a network of allophones. A context  tree, which we call a "phoneme" 
tree, is used to describe the observed substitutions and deletions of a dictionary phoneme in transcriptions 
of speech. One phoneme tree is created for each of the 45 dictionary phonemes and the da ta  in each tree 
defines the set of allophones observed in each context for a dictionary phoneme. 

In addition to modeling substi tutions and deletions, as the phoneme trees do, pronunciation network 
creation also requires modeling of insertions. Insertions do not fit the subst i tut ion/delet ion model in which 
a "phoneme" is realized as an allophone. Instead, insertions may  occur between any pair of "phonemes." In 
addition, one must  also model when insertions do not occur so tha t  the probabil i ty of an insertion in any 
context can be predicted. These requirements are met  by representing all insertions and non-insertions in 
one tree in which the contextual  factors are redefined to be a set applicable to insertions. The contextual 
factors describing insertions do not describe the t ransformation of an underlying phoneme. Instead, the 
factors describe the context of the phonemes adjacent to where an insertion can occur. Contextual  factors 
describing insertions are derived from factors describing the context of a phoneme by replacing each factor 
with ones describing the context of adjacent phonemes. For example, the factor stress is replaced with 
stress-of-preceding-phoneme and stress-of-following-phoneme. Since the new factors describe the context of 
adjacent phonemes, the value sentence-boundary is added to the allowable values of each factor to indicate 
the beginning or end of a sentence. In organizing the data  to build an "insertion" tree, all pairs of phonemes 
in the training da ta  are checked for whether or not an insertion occurred between them. If  so, the context and 
insertion is noted; if not, the context and the fact that  no insertion occurred is also noted. The  "insertion" 
tree predicts when insertions can occur as well as what type of insertion can occur in a part icular  context. 

Network  Crea t ion  

Networks are created word by word and can be joined to produce a pronunciation network for a recognition 
system. Networks created using our method explicitly model cross-word-boundary contextual  effects. If  
the context at the word boundaries is unknown, the possible allophones and corresponding probabilities are 
enumerated for each context value. Alternatively, if the context of the word is specified, only the allophones 
for the word boundary  context are used. Since the context of the word is known, word-boundary phonemes 
can be treated the same as word-internal phonemes. 

To create a word network, a two-pass process is used. First, each dictionary "phoneme" in a word is 
mapped to the allophone distribution represented by the leaf in a phoneme tree corresponding to the context 
in which the phoneme occurs, producing a sequence of allophones representing the sequence of phonemes (see 
Figure 2a). The context of a leaf in a phoneme tree is described by the contextual factor values encountered 
in traversing a phoneme tree from the root node to the leaf. Contextual  constraints associated with the 
allophones f rom a leaf are matched to contextual constraints of adjacent allophones. If  the phoneme is word 
initial or word final and the context at  the word boundaries is not specified, then the allophones for each 
context must be incorporated into the network. Insertions are then added between the leaf values when 
the context for an insertion is compatible. Insertions are added after substi tutions and deletions because 

1"The X-Dictionary has been checked for consistency and has been augmented from entries in standard dictionaries to include 
foot boundary indicators. 
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Figure 2: Pronunciation network for "fence": a) initial arcs b) arcs connected c) insertions added. 

the context in which an insertion occurs is dependent upon adjacent phones, which is determined by the 
phoneme realizations. 

Using our method based on context trees, the pronunciation network produced for the word "fence" is 
shown in Figure 2. In creating this network, we made the simplifying assumption that  we would not use 
the contextual factors describing adjacent phones for modeling substitutions and deletions. This produces 
the simple network in Figure 2b in which each set of arcs from a leaf node are connected at the beginning 
and end. Addition of insertions, in which we do include the contextual factors describing adjacent phones, 
produces the network shown in Figure 2c. 

In creating this network, we also assumed that  the word was spoken in isolation and therefore preceded 
and followed by silence. Had we not specified a context, the boundaries of the word would be much more 
bushy with additional arcs representing the different possible allophones and probabilities in various contexts. 
For example, an / s /  in word-final position is more likely to be palatalized and pronounced as a [~] when 
followed by a / y / o r  a / ~ / ,  as in "fence your" or "fence should," than when followed by a vowel, as in "fence 
any." When the context of a word is not specified, possible palatalization is modeled through the addition 
of two arcs which require that  the following phoneme can cause palatalization, such a s / y / o r / g / .  One arc 
represents the [s] allophone and the other arc represents the [g] allophone; the probability of the two arcs 
sum to 1.0. The original Is] arc remains untouched with a probability of 1.0 and now has a constraint on 
its following context prohibiting any following phoneme which can cause palatalization o f / s / .  When all 
word boundary contexts are listed, unobserved cross-word-boundary contexts may be handled by including 
a "default" in which context is ignored. Tha t  is, the "default" context is composed of all observed allophones 
across all contexts. A more detailed estimate, based on a partial context specification, requires actual lookup 
in a context tree. 

Because of limited training data, some of the words to be represented may contain a context value which 
has not been observed in the training data. However, each node of the tree contains the distribution of 
allophones for the partial context represented by the node. Thus, the allophones for unobserved contexts 
can be estimated from a partial context specification by tracing down the tree as far as consistent with the 
observed contextual factor values describing a phonemic baseform. 

P r o p e r t i e s  o f  C o n t e x t  T r e e s  

The context trees possess properties which are useful for producing pronunciation networks. As noted in 
the previous section, allophone distributions in unobserved contexts may be easily estimated from a partial 
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context specification by tracing down the tree until no context matches. Other  properties of the context 
trees permit  ease of context combination, specification of natural  groups for tying (Jelinek and Mercer, 
1980) in hidden Markov models (HMM), representation of allophone probabilities, and systematic reduction 
of network size. 

In the tree-induction method,  the leaves of the tree, by definition, represent mutual ly  exclusive contexts. 
This simplifies the comparison and combination of contexts during network creation. For example, finding 
a set of arcs with a compatible context is simplified if one can assume that  once a matching constraint is 
found, one need not look any further. 

In HMMs, tying is used to constrain one probabili ty in a network to be equal to another,  the underlying 
idea being that  equivalent items should be assigned the same probability. Each leaf of a phoneme tree 
represents all the allophones of that  phoneme which have been observed in a particular context. Thus 
each leaf is a natural  group for tying. In a network representation in which the labels are on the arcs, the 
probabil i ty assigned to an arc should be tied to all other arcs with the same label from the same leaf. 

Many rule sets have been developed to describe phonological variation. However, by using a data-intensive 
approach, allophone probabilities in a context may be directly estimated. Furthermore,  counts of allophones 
in context can be used to reduce the size of pronunciation networks by removing unlikely allophones. 

The probabilities in a context tree can be further refined if the network is used in an HMM which is 
trained. The probabilities provide a good initial estimate, and more importantly,  the absence of unlikely 
allophones in the network allow more robust training to be performed. 

In the creation of pronunciation networks, it is hard to define an "opt imum" number  of pronunciations 
to represent. With only a few pronunciations, recognition performance may  not be optimal  because the 
modeling of pronunciation variation in words is left to the front-end. With many  pronunciations, recognizer 
performance may be poor because the amount  of training data  is sparse and unlikely pronunciations may 
confuse the recognizer. This is the problem described by SRI as the problem of "many additional parameters  
to be est imated with the same amount  of training data" (Weintraub et al., 1989). SRI uses measures of 
coverage and overcoverage and accordingly modifies by hand the phonological rules they use. 

With context trees, this problem can be handled at a phoneme level. Given a large da ta  set, context 
trees tend to overgenerate pronunciations because each new allophonic realization of a phoneme in a context 
translates into another  possible arc in a network. But  because context trees contain count information on 
allophones in context, pruning can be used in a systematic way to remove the more unlikely pronunciations, 
thus reducing the number  of pronunciations in a network. To remove unlikely allophones in a given context, 
pruning is performed on the allophone distributions within a leaf. Pruning can be based upon counts of 
an allophone in a leaf or upon the percentage of exemplars of an allophone in a leaf. In the first case, 
allophones are removed if they are based on only a few exemplars. In the second case, unlikely allophones 
are removed. In each case, the arcs representing the removed allophones are not created. In addition to 
reducing the number  of pronunciations, pruning may also result jn more robust predictions. For example, 
in a given context, one may observe just  a couple exemplars of an allophone in several hundred realizations. 
These allophones may be due to transcription error, and so it is judicious to remove them. 

S u m m a r y  

This paper  describes a systematic,  data-intensive method for creating pronunciation networks. A phoneme 
representation with an enriched set of contextual descriptors is advocated for providing a general framework 
in which new words may  be easily added to the vocabulary. A wide variety of factors is used to model con- 
textual  effects, including long-range and cross word boundary  phenomena. The large number  of dimensions 
entailed by a greater number  of contextual descriptors is handled through the use of context trees for pre- 
dicting allophonic variation. Context  trees were shown to possess at tr ibutes,  such as the ability to estimate 
distributions from partial  contexts and the capacity to systematically reduce the size of a network based on 
the tree data,  that  make the trees a good representation from which to create pronunciation networks. 
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