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ABSTRACT

A semi-continuous hidden Markov model based on the multple
vector quantization codebooks is used here for farge-vocabulary
speaker-independent continuous speech recognition In the
techniques employed here. the semi-continuous output proba-
tility density function for esch codebook is represented by a
combination of the corresponding discrete outpul probabilities
of the hidden Markov model and the continuous Gaussian den:
sity functions of each individual codebook. Parameters of vec-
tor quantization codebook and hidden Markov model are mutu-
slly optimized to achieve an optimul model'codebook combina-
tion under a unified probabilistic framework Another advan-
tages of this approach is the enhanced robystness of the sem:-
continuous output probability by the combination of multiple
codewords and multiple codebooks For a 1000-word speaker-
independent continyous speech recognition using 3 word-pair
grammar. the recognition error rate of the semi-continuous hid-
den Markov model was reduced by more than 297 and 417 in
comparison to the discrete and continuous mixture hidden Mar.
kov model respectively

1. INTRODUCTION

In the discrete bidden Markov model tHMM), vector quantization
V' Q: produces the closet codebword from the codebook for each
acoustic observation. This mapping from cootinuous acoustic
space to quantized discrete space may cause serious quantization
errors for subsequent hidden Markov modeling. To reduce VQ
errors. various smoothing techniques have been proposed for VQ
and subsequent hidden Markov modeling {9.12]. A distinctive
technique s multiple VQ codebook hidden Markov modeling,
which has bees shown to offer improved speech recognition accu-
racy (5.12). Ip the multiple VQ codebook spprouch. VQ distortion
can be significantly minimized by partitioning the parameters into
separate codebooks. Another disadvantage of the discrete HMM 1s
that the VQ codebook and the discrete HMM are separately
modeled. which may not be an optimal combination for pattern
classification (8). The discrete HMM uses the discrete output pro-
bability distributions to model various acoustic events, which sre
ynherently superior to the cootiouous mixture HMM with mixture
of a small oumber of probability density functions since the
discrete distributions could model events with any shapes pro-
vided enough training data exist.

On the other hand. the continuous mixture HMM models the
acoustic observation directly using estimated continuous probabil-
ity density functions without VQ. and has been shown to improve
the recognition accuracy \n companison to the discrete HMM (15]
For speaker-independent speech recognition. mixiure of a large
number of probability density functions {14.16) or a large number
of states in single-mixture case [4] are generally required to model
characteristics of different speakers. However, mixture of a large
number of probability density functions will considerably increase
not only the computational complexity, but also the number of
{ree parameters that can be reliablely estimated. In addition. the
continuous mizture HMM has to be used with care as continuous

* and University of Edinburgh. 80 §oulh Bridge. Edinburgh EH1 IHN, UK

probability density functions make more assumption than the
discrete HMM, especially when the diagonal covariance Gsussian
probability density is used for simplicity {15]. To obtain & better
recognition accuracy. acoustic parameters must be well chosen
according to the assumption of the continuous probability density
functions used.

The semi-continuous hidden Markov model 'SCHMM) has been
proposed 1o extend the discrete HMM by replacing discrete output
probability  distributions with a combination of the original
discrete output probability distributions and continuous probabil.
ity density functions of 8 Gaussian codebook {6]. In the SCHMM,
each VQ codeword is regarded as a Gaussian probability denaity
Intuttively, from the discrete HMM point of view, the SCHMM
tries to smooth the discrete output probabilities with multiple
codeword candidates in VQ procedure. From the continuous mix-
ture HMM point of view, the SCHMM ties all the continuous out-
put probability densities across each individual HMM to form a
shared Gaussian codebook. i e. a mixture of Gaussian probability
densities. With the SCHMM, the codebook and HMM can be
jointly re-esimated to achieve an optimal codebook model combi-
nation in sense of maximum likelihood criterion. Such a tying can
also substantially reduce the number of free parameters and com-
putstional complexity in comparison to the continuous mixture
HMM. while maintain reasonablelv modeling power of a mixture
of s large number of probability density functions. The SCHMM
hss shown to offer improved recognition accuracy in several
speech recognition experiments (6.8,14.2].

[n this study. the SCHMM is applied to Sphinx, a speaker-
independent continuous speech recognition system. Sphinx uses
multiple VQ codebooks for each acoustic observation {12]. To
apply the SCHMM to Sphinx. the SCHMM algorithm must be
modified to accommodate multiple codebooks and multiple
codewords combination. For the SCHMM re-estimation algorithm,
the modified unified re-estimation algorithm for multiple VQ code-
books and hidden Markov models are proposed in this paper. The
applicability of the SCHMM to speaker.independent continuous
apeech is explored based on 200 generalized triphone models {12).
{n the 1000-word speaker-independent continuous speech recogni-
tion task using word-pair grammar. the error rate was reduced by
more than 297 and 417 1in compsrison to the corresponding
discrete HMM and continuous mixture HMM respectively.

2. SEMI.CONTINUOUS HIDDEN MARKOV MODELS
2.1 Discrete HUMs and Continuous HMMs

An N-state Markov chain with state transition matrix A=[na,_J.
ig=1. 2. ... N, where a,, denotes the transition probability from
state i to state j; and a discrete output probability distribution,
b.:0,}. or continuous output probability density function b,'x
associated with each state ; of the unobservable Markov chain is
considered here. Here O, represents discrete observation symbols
tusually VQ 1indices), and x represents continuous observations
(ysually speech frame vectors) of K-dimensional random vectors.

With the discrete HMM, there are L discrete cutput symbols from
a L.Jevel VQ. and the output probability 13 modeled with discrete
probability distributions of these discrete symbols. Let O be the
observed sequence, 0= 0, 0,, - O., observed over T samples.

Here O, denotes the VQ codeword k, observed at time i. The
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observation probability of such an observed sequence. Pr'O|A", can
be expressed as:

T
PriOjA) = ? L79 | CO N7 ) (1)
5 (L 3]
where S is a purticular state sequence. S € (sqs, -+ .5, 5 € {1,
2. N}, and the summation is taken over all of the possible state
sequences, S. of the given rmodel A, which is represented by i, A,
P where 7 is the initial state probability vector, A is the state
trunsition matrix, and B 13 the output probability distribution
matrix. In the discrete HMM, classification of O, from x, in the

VQ may not be accurate.

{f the observation to be decoded is not vector quantized. then the
prohability density function, fiX|A1. of producing an observation of
conlinuous vector sequences given the model A, would be com-
puted. instead of the probability of generating a discrete observa.
tion symbol, PrrO|A:. Here X is a sequence of continuous acous-
tic: vectors x, X=xyx; - - xr. The principal advantage of using
the continuous HMM is the ability to directly model speech
parameters without involving VQ. However, the continuous HMM
requires considerably longer training and recognition times. espe-
cially when a mixture of several Gaussian probability density
components i3 used. In the continuous Gaussian M-component)
mixture HMM {111, the output probability density of state ;. b,ix),
can be represented as

M
bixt = PN Zp, Yy 2

4zt
where Nix, p. 3} denotes a multi-dimensional Gaussian density
function of mean vector p and covariance matrix 2, and c,, is a
weighting coefficient for the kth Gaussian component With such a
mixture, any arbitrary distribution can be approximately

modeled, provided the mixture is large enough.

2.2. Semi-Continuous Hidden Markov Models

In the discrete HMM, the discrete probubility distributions are
sufficiently powerful to model any random events with a reason-
able number of parameters. The major problem with the discrete
output probability is that the VQ operation partitions the acoustic
space 1nto separate regions according to some distortion measure
This introduces errors as the partition operations may destroy the
original signal structure An improvement is to model the VQ
codebook as a family of Gaussian density functions such that the
distributions are overlaped. rather than disjointed. Each codeword
of the codehook can then be represented by one of the Caussian
probability density functions and may be used together with oth-
ers to model the acoustic event. The use of a parametric family of
finite mixture densities ‘a mixture density V@' can then be
closely combined with the HMM methodology. From the continu-
ous mixture HMM point of view, the output probability in the con-
tinuous mixture HMM is shared among the Gaussian probability
density functions of the VQ. This can reduce the number of free
parameters to be estimated as well as the computational complex.
ity. From the discrete HMM point of view, the partition of the
V'Q is unnecessary, and is replaced by the mixture density model-
ing with overlap. which can effectively minimize the V'Q errors.
The procedure, known as the EM algarithm (3], is a specialization.
to the mixture density context, of 8 general algorithm for obtain.
ing maximum likelihood estimates. This has been defined earlier
by Baum {1] in a similar way and has been widely used in HMM.
based speech recognition methods. Thus, the VQ problems and
HMM modeling problems can be unified under the same proba-
bilistic framework to obtain an optimized VQ'HMM combination,
which forms the foundation of the SCHMM.

Provided that each codeword of the VQ codebook is represented by
a Gaussian density function, for 8 given state s, of HMM, the pro-
bability density function that s, produces & vector x can thea be
written as:

b,(x) = flx]s) = i f(x]0,.8)Pr(0, |s) (3)

s=l
where L denotes the VQ codebook level. For the sake of simpli-
city, the output probability density function conditioned on the
codewords cao be assumed to be independent of the Markov states
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s;. 13} can then be written as:

L
fixis) = Ex f1x10,)Pri0, |5, = iflxlohlb‘llohi 4
1= (R ]]

This equation is the key to the semi-continuous hidden Markov
modeling. Given the VQ codebook index 0, . the prob..hility den-
sity function fx|0, ! can be estimated with the EM algorithm (17},
or maximum hkelihood clustering. It can also be obtained from
the HMM parameter estimation directly as explained later. Using
(4} to represent the semi-continuous oulput probabihity density. it
is possible to combine the codebook distortion characteristics with
the parameters of the discrete HMM under a unified probabilistic
framework. Here. each discrete output probability is weighted by
the continuous conditional Gaussian probabhility density function
derived from VQ If these continuous VQ density functions ure
considered as the continuous output probahility density function
in the continuous mixture HMM. this also resembles the L-
mixture continuous HMM with all the continuous output probabil-
ity density functions shared with each other in the VQ codebook
Here the discrete output probability in state t, h (0, ), becomes the
weighting coefficients for the mixture components.

In implementation of the SCHMM [8), Eq. 14} can be replaced by
finding M most significant values of f(x|0,) (with M be one to six,
the algorithm converges well in practice) over all possible code-
book indices O,. which can be easily obtained in the VQ pro-
cedure. This can significantly reduce the amount of computational
load for subsequent output probability computation since M is of
lower order than L Experimental results show this to perform
well in speech recognition [8), and result in an L-mixture continu-
ous HMM with a computational complexity significantly lower
than the continuous mixture HMM.

2.3. Re-estimation formulas for the SCHMM

If the 4,(0,) are considered as the weighting coefficients of
different mixture output probability density functions in the con-
tinuous mixture MM, the re.cstimation algorithm for the
weighting coefficients can be extended to re-estimate 5,10, of the
SCHMM (11]. The re-estimation formulations can be more readily
computed by defining a forward partial probability. a,ti}, and a
backward partial probability, 8,ti) for any time t and state i as:

a il = PrixgXg « X 3 =i|A)

(5a)

Biliv = Prix 1 Xyeg - EPle =i N)
The intermediate probabilities, x (ij k). v lig). v ti), §ifey). and
$.y) can be defined as follows for efficient re-estimation of the
model parameters:

Xty k) = Prisg=i, s001=7, Oy |X, A)

Tel
Yy = Prisy=i, s =5X, M)
vi) = Pris,=i|X, A) (6)
§itiki = Pris;=i,0,|X, A)

$oky = Pr0, [X, Ay

All these intermediate probabilities can be represented by x,!).

Using Eq. 151 and /6, the re-estimation equations for n,, a.,. and
5,(0,) can be written as:

7, = i), 1sisN; h
i?f‘id'
- tw]
a, = . 1S jsN; (8)
ih‘i)

=t

,
B PRFUNE
b(0,) = “Z——— 1sisN; 1s/sL. T}

4
pRER)

t=]

The means and covariances of the Gaussian probability density
functions can also be re-estimated to update the VQ codebook
separately with Eq 5 and (6). The feedback from the HMM esti-



mution results to the VQ codebouk 1mplies thut the VQ codebnok
1 optimized based on the HMM likelihood maximization rather
than minimizing the total distortion errors from the set of train.
ing data. Although re-estimation of means and covariances of
different models will involve inter-dependencies, the different den.
sity functions which are re-estimated are strongly correlated. To
re-estimate the parameters of the VQ codebook. i.e. the means. , |
end covariance matrices. Z . of the codcbook index j. it is n(;z
difficult to extend the continuous mixture HMM re-estimation
algorithm with modified Q function. In general, it can be written
as:

2‘ i{/‘.‘ 'x,}

B = A—

T
EIE;IIJI)
r=1

syl 110)

and
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!
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where ¢ denotes the HMM used: and expressions in { ] are vari.
ables of model v. [n Fig 10 and 11, the re estimation for the
meuns and covariance matrices in the output probsbility density
function of the SCHMM are tied up with all the HMM models,
which 1s similar to the approach with tied transition probability
inside the model {10). From Fq /10) and ‘11", 1t can he observed
that they are merely a special form of EM algorithm for the
parameter estimation of mixture density functiona '17]. which are
closely weided into the HMM re-estimation equations

When multiple codebooks are used. each codehook represents a
set of different speech parameters. One way to combine these mul-
tiple output observations is to assume that they are independent.
and the output probability is computed as the product of the out-
put probability of each codebook. It has been shown that perfor-
mance using multiple codebook can be substationally improved
{13]. In the semi-continuous HMM. the semi-continuous output
probability of multiple codebooks can also be computed as the pro-
duct of the semi-continuous output probability for each codebock
ss Eq 4. which consists of L-mixture continucus density furc-
tions. {n other word, the semi-continuous output probability could
be modified as

{
boxr = [T Eralog w0,

ey

12

where ¢ denotes the codebook used. The re-estimation algorithm
for the multiple codebook based HMM could be extended if Eq.
16 a1s computed for each codeword of each codebook ¢ with the
combination of the rest codebook probability {7].

3. EXPERIMENTAL EVALUATION

J.1. Analysis Conditions

For both training and evaluation. the standard Sphinx front-end
consists of 12th order bilinear transformed LPC cepstrum (12).
The complete database consists of 4358 training sentences from
105 speakers (june-train and 300 test sentences from 12 speakers.

The vocabulary of the Resource Management database is 991
words. There is also an official word-pair recognition grammar,
which is just a list of allowable word pairs without probabilities
for the purpose of reducing the recognition perplexity to about 60.

3.2. Experimental Results Using Bilinear Transformed Cepstrum

Discrete HMMs and continuous mixture HMMs based on 200 gen-
eralized triphones are first experimented as bhenchmarks. The
discrete HMM is the same as Sphinx except only 200 generalized
triphones are used (12].

In the continuous mixture HMM implemented here, the cepstrum,
difference cepstrum. normalized energy. and difference energy are
pocked into one vector. This is similar to the one codebook imple-
mentation of the discrete HMM (12]. Each continuous output

probahility consista of 4 diagonal (iaussian pruhability density
function as Eq. 12} To obtain reliable initia} models for the con-
tinuous mixture HMM. the Viterhi alignment with the discrete
HMM is used to phonetically segment and labe! truining speech.
These labeled segments are then clustered by using the k-means
clustering algorithm to obtain initial means and diagonal covari-
ances. The forward-backward algorithm is used iteratively for the
monophone models, which are then used as initial models for the
generalized triphone models. Though continuous mixture HMM
was reported to significantly better the performance of the discrete
HMM {15]. for the experiments conducted here, it is significantly
worse than the discrete HMM. Why is this paradox? One expla-
nation is that multiple codebooks are used in the discrete HMM.
therefore the VQ errors for the discrete HMM are not so serious
here. Another reason may be that the diagonal covariance
assumption is not appropriate for the bilinear transformed LPC
cepstrum since many coefficients are strongly correlated after the
transformation. Indeed, observation of average covariance matrix
for the bilinear transformed LPC cepstrum shows that values of
off-diagonal components are generally quite large.

For the semi-continuous model, mulitiple codehooks are used
instead of packing different feature parameters into one vector
The initial model for the SCHMM comes directly (rom the discrete
HIMM with the VQ variance obtained from k-means clustering for
each codeword In compuling the semi-cuntinuous output probahil-
ity density function. only the M 1. 4 here' most aignificant code-
words are used for subsequent prucessing. Under the same
analysis condition, the percent correct icorrect word percentage’
and word accuracy !percent correct - percent insertion) results of
the discrete HMM. the continuous mixture HMM, and the
SCHMM are shown in Table 1.

Table 1
Average recognition accuracy
percent correct (word accuracy)
89.5% i88.07%}
84.27 181.37%)
87.2% 84.07
90 6’7 189.17)

{\PCS
Discrete HMM
Continuous Mixture HMM
SCHMM - topl
SCHMM + topd

From Table 1. it can be observed that the SCHMM with top 4
codewords works better than both the discrete and continuous
mixture HMM. The SCHMM with top 1 codeword works actually
worse than the discrete' HMM, which indicates that diagonal
Gaussian assumption may be inappropriate here. Though bilinear
transformed cepstral coefficients could not be well modeled by the
diagonal Gaussian assumption 'which was proven by the poor per-
formance of the continuous mixture HMM and the SCHMM with
Gaussian assumption (which was proven by the poor performance
of the continuous mixture HMM and the SCHMM with top 1 code-
word), the SCHMM with top 4 codewords works modestly better
than the discrete HMM. The improvement may primarily come
from smoothing effect of the SCHMM, i.e. the robustness of multi-
ple codewords and multiple codebooks in the semi-continuous out-
put probability representation. albeit 200 generalized triphone
models are relatively well trained in comparison to standard
Sphinx version {12}, where 1000 generalized triphone models are
used.

3.3. Experimental Results Using Less Correlated Data

If the diagonal Gauseian covariance is used, each dimension in
speech vector should be un-correlated. In practice, this can be par-
tially satisfied by using less correlated feature as acoustic observa-
tion representation. One way to reduce correlation is principal
component projection. In the implementation here, the projection
matrix is computed by first pooling together the bilinear
transformed cepstrum of the whole training sentences, and then
computing the eigenvector of that pooled covariance matrix.
Unfortunately, only insignificant improvements are obtained
based on such a projection {7). This is because the covariance for
each codeword is quite different. and such a projection only makes
average covariance diagonal, which is inadequate.
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As hilinear transformed cepstral coefficients could not he well
modeled hy diagonal Gaussian probability density function, exper-
iments without bilinear transformation are conducted The 13th
order cepstrum is used here for the SCHMM because of less corre-
lated characteristics of the cepstrum. With 4358 training sen-
tences (june-trainl, test results of 300 sentences ‘june-test) are
listed in Table 2.

Table 2
Average accuracy of 18th order cepstrum

Tty percent correct (word accuracv)
86.3% 183.8%) -
86 67 185 87
B8R A% 1876
B9 37 (RB.57)
B9 67 (AB 6"
89 37 BR 2%

types

" Discrete HMM
SCHMM + topl
SCHMM + top2
SCHMM + topd
SCHMM + top6
SCHMM + top8

Here. the recognition accuracy of the SCHMM ia significantly
improved in comparison with the discrete HMM, and error reduc-
tion is over 29% Even the SCHMM with top one codeword is
used. it is still better than the discrete HMM 185.5% vs. 83 8%,
Use of multiple codewords 'top4 and top6) in the semi-continuous
output probability density function greatly improves the word
accuracy (from 85.5% to 88.6%!. Further increase of codewords
used in the semi-continuous output probability density functions
shows no improvement on word accuracy. but substantial growth
of computational complexity. From Table 2, it can be seen that the
SCHMM with top four codewords is adequate (88 571 [n contrast,
when bilinear transformed data was used. the error reduction is
less than 10% in comparison to the discrete HMM. and the
SCHMM with top one codeword is actually slightly worse than the
discrete HMM. This strongly indicates that appropriate feature 1s
very umportant if continuous probability density function. espe.
cially diagonal covariance a<sumption. is used [f assumption is
inappropriate. maximum likelihood estimation will only maximize
the wrong assumption Although more than 297 error reduction
has been achieved for 18th order LPC analywus using diagonal
covariance assumption. the last results with the discrete HMM
‘bilinear transformed cepstrum, 88 3%+ and the SCHMM (18th
order cepsirum. A3 67 are about the same This euggest that bil-
inesr trunsformation 1s helpful for recognitiun, but have corre.
lated coefficients, which is inuppropriate to the disgonsl Gaussiun
ussumption. It can be expected that with the full covuriance
SCHMM and bilinear transformed cepstral data, better recogni-
tion accuracy can be obtained.

4. CONCLUSIONS

Semi-continuous hidden Markov models based on multiple vector
quantization codebooks take the advantages of both the discrete
HMM and continuous HMM. With the SCHMM, it is possible to
model a mixture of a large number of probability density func-
tions with a limited amount of training data and computational
complexity. Robustness is enhanced by using multiple codewords
and multiple codebooks for the semi-continuous output probability
representation. In addition, the VQ codebook itself can be
adjusted together with the HMM parameters in order to obtain
the optimum maximum likelihood of the HMM. The applicability
of the continuous mixture HMM or the SCHMM relies on
appropriately chosen acoustic parameters and assumption of the
continuous probability density function. Acoustic features must be
well represented if diagonal covariance is applied to the Gaussian
probability density function. This is strongly indicated by the
experimental results based on the bilinear transformed cepstrum
and cepstrum. With bilinear transformation. high frequency com-
ponents are compressed in comparison to low frequency com-
ponents (2.3). Such a transformation converts the linear fre.
quency axis into a mel-scale-like one. The discrete HMM can be
substantially improved by bilinear transformation Ho.we\ger.. bil-
inear transformation introduces strong correlations. which is inap-
propriate for the diagonal Gaussian assumptio_n modeling.l Using
the cepstrum without bilinear transforrpatxon, thg diagonal
SCHMM can be substantially improved in comparison to the
discrete HMM.
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All experiments conducted here were based on only 200 general.
ized triphones a3 smoothing can play a more important role in
those less-weil-trained models. more improvement can be expected
for 1000 generalized triphones ‘where the word accuracy for the
discrete HMM is 91% with bilinear transformed data’ In addi.
tion, removal of diagonal covariance assumption by use of full
covariance can be expected to further improve recognition accu-
racy [1]. Regarding use of full covariance, the SCHMM has a dis.
tinctive advantage Since Gaussian probubility density functions
are tied to the \'Q codebook, by chosing M most significant code-
words. computational complexity can be several order lower than
the conventional continuous mixture HMM while maintaining the
modeling power of large mixture components

Experimental results have clearly demonstrated that the SCHMM
offers improved recognition accuracy in compurison to hoth the
discrete HMM and the continuous mixture HMM in spesker-
independent continuous speech recognition. We conclude that the
SCHMM is indeed a powerful technique for modeling non-
stationary stochastic processes with multi-modal probabilistic
functions of Markov chains
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