
An
The N-Best Algorithm:

Efficient Procedure for Finding Top N
Sentence Hypotheses

Y e n - L u C h o w and R i c h a r d S c h w a r t z

B B N S y s t e m s and T e c h n o l o g i e s C o r p o r a t i o n

C a m b r i d g e . M A 02138

A B S T R A C T

In this paper we introduce a new search algorithm that
provides a simple, clean, and efficient interface between
the speech and natural language components of a spo-
ken language system. The N-Best algorithm is a time-
synchronous Viterbi-style beam search algorithm that
can be made to find the most likely N whole sentence
alternatives that are within a given a "beam" of the most
likely sentence. The algorithm can be shown to be exac t

under some reasonable constraints. That is, it guaran-
tees that the answers it finds are, in fact, the m o s t likely

sentence hypotheses. The computation is linear with
the length of the utterance, and faster than linear in N.
When used together with a first-order statistical gram-
mar, the correct sentence is usually within the first few
sentence choices. The output of the algorithm, which is
an ordered set of sentence hypotheses with acoustic and
language model scores can easily be processed by natural
language knowledge sources. Thus, this method of inte-
grating speech recognition and natural language avoids
the huge expansion of the search space that would be
needed to include all possible knowledge sources in a
top-down search. The algorithm has also been used to
generate alternative sentence hypotheses for discrimina-
tive training. Finally, the alternative sentences generated
are useful for testing overgeneration of syntax and se-
mantics.

1 Introduct ion

In a spoken language system (SLS) we have a large
search problem. We must find the most likely word se-
quence consistent with all knowledges sources (speech,
statistical N-gram, natural language). The natural lan-
guage (NL) knowledge sources are many and varied, and
might include syntax, semantics, discourse, pragmatics,
and prosodics. One way to use all of these constraints

is to perform a top-down search that, at each point, uses
all of the knowledge sources (KSs) to determine which
words can come next, and with what probabilities. As-
suming an exhaustive search in this space, we can find
the most likely sentence. However, since many of these
KSs contain "long-distance" effects (for example, agree-
ment between words that are far apart in the input), the
search space can be quite large, even when pruned using
various beam search or best-first search techniques. Fur-
thermore, a top-down search strategy requires that all of
the KSs be formulated in a predictive, left-to-right man-
ner. This may place an unnecessary restriction on the
type of knowledge that can be used.

The general solution that we have adopted is to apply
the KSs in the proper order to constrain the search pro-
gressively. Thus, we trade off the entropy reduction that
a KS provides against the cost of applying that KS. Nat-
urally, we can also use a pruning strategy to reduce the
search space further. By ordering the various KSs, we
attempt to minimize the computational costs and com-
plexity for a given level of search error rate. To do this
we apply the most powerful and cheapest KSs first to
generate the top N hypotheses. Then, these hypotheses
are evaluated using the remaining KSs. In the remain-
der of this paper we present the N-best search paradigm,
followed by the N-best search algorithm. Finally, we
present statistics of the rank of the correct sentence in a
list of the top N sentences using acoustic-phonetic mod-
els and a statistical language model.

2 T h e N - b e s t P a r a d i g m

Figure I illustrates the general N-best search paradigm.
We order the various KSs in terms of their relative power
and cost. Those that provide more constraint, at a lesser
cost, are used first in the N-best search. The output of
this search is a list of the most likely whole sentence
hypotheses, along with their scores. These hypotheses

199

are then rescored (or filtered) by the remaining KSs.
Depending on the amount of computation required,

we might include more or less KSs in the first N-best
search. For example, it is quite inexpensive to search
using a first-order statistical language model, since we
need only one instance of each word in our network. Fre-
quently, a syntactic model of NL will be quite large, so
it might be reserved until after the list generation. Given
the list, each alternative can usually be considered in turn
in a fraction of a second. If the syntax is small enough,
it can be included in the initial N-best search, to further
reduce the list that would be presented to the remainder
of the KSs. Another example of this progressive fil-
tering could be the use of high-order statistical language
models. While the high-order model ~equently provides
added power (over a first-order model), the added power
is usually not commensurate with the large amount of ex-
tra computation and storage needed for the search. In
this case, a first-order language model can be used to re-
duce the choice to a small number of alternatives which
can then be reordered using the higher-order model.

Besides the obvious computational advantages, there
are several other practical advantages of this paradigm.
Since the output of the first stage is a small amount of
text, and there is no further processing required from
the acoustic recognition component, the interface be-
tween the speech recognition and the other KSs is triv-
ially simple, while still optimal. As such this paradigm
provides a most convenient mechanism for integrating
work among several research sites. In addition, the high
degree of modularity means that the different component
subsystems can be optimized and even implemented sep-
arately (both hardware and software). For example, the
speech recogmtion might run on a special-purpose array
processor-like machine, while the NL might run on a
general purpose host.

3 T h e N - B e s t A l g o r i t h m

The optimal N-Best algorithm is quite similar to the
time-synchronous Viterbi decoder that is used quite com-
monly, with a few small changes. It must compute prob-
abilities of word-sequences rather than state-sequences,
and it must find all such sequences within the specified
beam.

At each state:

• Keep separate records for theories with different
word sequence histories.

• Add probabilities for the same theory.

• Keep up to a specified maximum number N of the-
ories whose probabilities are within a threshold of
the probability of most likely word sequence at that
state. Note that this state-dependent-threshold is
distinct from the global beam search threshold.

This algorithm requires (at least) N times the memory
for each state of the hidden Markov model. However,
this memory is typically much smaller than the amount
of memory needed to represent all the different acoustic
models. We assume here, that the overall "beam" of the
search is much larger than the "beam at each state" to
avoid pruning errors. In fact, for the first-order grammar,
it is even reasonable to have an infinite beam, since the
number of states is determined only by the vocabulary
size.

At first glance, one might expect that the cost of com-
bining several sets of N theories into one set of N the-
odes at a state might require computation on the order
of N 2. However, we have devised a "grow ~.md prune"
strategy that avoids this problem. At each state, we sim-
ply gather all of the incoming theories. At any instant,
we know the best scoring theory coming to this state at
this time. From this, we compute a pruning threshold
for the state. This is used to discard any theories that
are below the threshold. At the end of the frame (or
if the number of theories gets too large), we reduce the
number of theories using aprune and count strategy that
requires no sorting. Since this computation is small, we
find, empirically that the overall computation increases
with x/N, or slower than linear. This makes it practical
to use somewhat high values of N in the search.

4 R a n k o f the C o r r e c t A n s w e r

Whether the N-best search is practical depends directly
on whether we can assure that the correct answer is re-
liably within the list that is created by the first stage.
(Actually, it is sufficient if there is any answer that will
be accepted by all the NL KSs, since no amount of
search would make the system choose the lower scoring
correct answer m this case.) It is possible that when the
correct answer is not the top choice, it might be quite far
down the list, since there could be exponentially many
other alternatives that score between the highest scor-
ing answer and the correct answer. Whether this is true
depends on the power of the acoustic-phonetic models
and the statistical language model used in the N-best

200

search. Therefore we have accumulated statistics of the
rank of the correct sentence in the list of N answers for
two different language models: the statistical class gram-
mar(perplexity 100), and no grammar(perplexity 1000).

Figure 2 plots the cumulative distribution of the rank
for the two different language models. The distribution
is plotted for lists up to 100 long. We have also marked
the average rank on the distribution. As can be seen,
for the case of no language model, the average rank
is higher than that for the statistical grammar. In fact,
about 20% of the time, the correct answer is not on
the list at all. However, when we use the statistical
class grammar, which is a fairly weak grammar for this
domain, we find that the average rank is 1.8, since most
of the time, the correct answer is within the first few
choices. In fact, for this test of 215 sentences. 99 percent
of the sentences were round within the 24 top choices.
Furthermore, the acoustic model used in this experiment
is an earlier version that results in twice the word error
rate of the most recent models reported elsewhere in
these proceedings. This means that when redone with
better acoustic models, the rank will be considerably
lower.

To illustrate the types of lists that we see we show be-
low a sample N-best output. In this example, the correct
answer is the fifth one on the list.

Example of N-best Output
Answer:

Set chart switch resolution to high.

Top N Choices:
Set charts which resolution to five.
Set charts which resolution to high.
Set charts which resolution to on.
Set chart switch resolution to five.
Set chart switch resolution to high. (***)
Set chart switch resolution to on.
Set charts which resolution to the high.
Set the charts which resolution to five.

procedure, or by using overall statistics of typical errors.
Instead, we can generate all the actual alternatives that
are appropriate to each particular sentence.

A second application for the N-best algorithm is to
generate aitemative sentences that can be used to test
overgenerafion in the design of natural language sys-
tems. Typically, if overgeneration is tested at all, it is by
generating random sentences using the NL model, and
seeing whether they make sense. One problem with this
is that many of the word sequences generated this way
would never, in fact, be presented to a NL system by
any reasonable acoustic recognition component. Thus,
much of the tuning is being done on unimportant prob-
lems. A second problem is that the work of exanfining
the generated sentences is a very tedious manual process.
If, instead, we generate N-best lists from a real acous-
tic recognition system, then we can ask the NL system
to parse all the sentences that are known to be wrong.
Hopefully the NL system will reject most of these, and
we only need to look at those that were accepted, to see
whether they should have been.

6 Conclusion

We have presented a new algorithm for computing the
top N sentence hypotheses for a hidden Markov model.
Unlike previous algorithms, this one is guaranteed to
find the most likely scoring hypotheses with essentially
constant computation time. This new algorithm makes
possible a simple and efficient approach to integration of
several knowledge sources, in particular the integration
of arbitrary natural language knowledge sources in spo-
ken language systems. In addition there are other useful
applications of the algorithm.

Acknowledgement
This work was .supported by the Defense Advanced

Research Projects Agency and monitored by the Office
of Naval Research under Contract No. N00014-85-C-
0279.

5 Other Applications for N-Best Algorithm

We have, so far, found two additional application for
the N-Best algorithm. The first is to generate alternative
hypotheses for discriminative training algorithms. Typi-
cally, alternatives must be generated using a fast match

201

Sp,.+h__l JOr+.r,+ Reorder 'L_. To p Input ~ N-Best Sentence'Lm List |Choice

KS 1 KS 2

Stat~icalGrammar

Syntax

statistical Grammar
+ Syntu

1st order statistical

Full NLP

Semantics~ etc.

Semantics, etc.

Higher-order statistical

Figure 1: N-best Search Paradigm

1 O0

90

80

70

60

50

40

30

20'

10

~ C L AS S GRAMP"IAR
(Perplexity- 100)

~ ~ GRMIMAR
erplextty - 1000)

I
I
I

'1
I

,I
!
11.8

! 20 30 ~ ~ 60 70 8

O0

90

BO

70

60

SO

40

30

20

I0

I
90

Figure 2: Cumulative Distribution of Rank of Correct Answer

202

