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In this paper we introduce a new search algorithm that 
provides a simple, clean, and efficient interface between 
the speech and natural language components of a spo- 
ken language system. The N-Best algorithm is a time- 
synchronous Viterbi-style beam search algorithm that 
can be made to find the most likely N whole sentence 
alternatives that are within a given a "beam" of the most 
likely sentence. The algorithm can be shown to be exac t  

under some reasonable constraints. That is, it guaran- 
tees that the answers it finds are, in fact, the m o s t  likely 

sentence hypotheses. The computation is linear with 
the length of the utterance, and faster than linear in N. 
When used together with a first-order statistical gram- 
mar, the correct sentence is usually within the first few 
sentence choices. The output of the algorithm, which is 
an ordered set of sentence hypotheses with acoustic and 
language model scores can easily be processed by natural 
language knowledge sources. Thus, this method of inte- 
grating speech recognition and natural language avoids 
the huge expansion of the search space that would be 
needed to include all possible knowledge sources in a 
top-down search. The algorithm has also been used to 
generate alternative sentence hypotheses for discrimina- 
tive training. Finally, the alternative sentences generated 
are useful for testing overgeneration of syntax and se- 
mantics. 

1 Introduct ion  

In a spoken language system (SLS) we have a large 
search problem. We must find the most likely word se- 
quence consistent with all knowledges sources (speech, 
statistical N-gram, natural language). The natural lan- 
guage (NL) knowledge sources are many and varied, and 
might include syntax, semantics, discourse, pragmatics, 
and prosodics. One way to use all of these constraints 

is to perform a top-down search that, at each point, uses 
all of the knowledge sources (KSs) to determine which 
words can come next, and with what probabilities. As- 
suming an exhaustive search in this space, we can find 
the most likely sentence. However, since many of these 
KSs contain "long-distance" effects (for example, agree- 
ment between words that are far apart in the input), the 
search space can be quite large, even when pruned using 
various beam search or best-first search techniques. Fur- 
thermore, a top-down search strategy requires that all of 
the KSs be formulated in a predictive, left-to-right man- 
ner. This may place an unnecessary restriction on the 
type of knowledge that can be used. 

The general solution that we have adopted is to apply 
the KSs in the proper order to constrain the search pro- 
gressively. Thus, we trade off the entropy reduction that 
a KS provides against the cost of applying that KS. Nat- 
urally, we can also use a pruning strategy to reduce the 
search space further. By ordering the various KSs, we 
attempt to minimize the computational costs and com- 
plexity for a given level of search error rate. To do this 
we apply the most powerful and cheapest KSs first to 
generate the top N hypotheses. Then, these hypotheses 
are evaluated using the remaining KSs. In the remain- 
der of this paper we present the N-best search paradigm, 
followed by the N-best search algorithm. Finally, we 
present statistics of the rank of the correct sentence in a 
list of the top N sentences using acoustic-phonetic mod- 
els and a statistical language model. 

2 T h e  N - b e s t  P a r a d i g m  

Figure I illustrates the general N-best search paradigm. 
We order the various KSs in terms of their relative power 
and cost. Those that provide more constraint, at a lesser 
cost, are used first in the N-best search. The output of 
this search is a list of the most likely whole sentence 
hypotheses, along with their scores. These hypotheses 

199 



are then rescored (or filtered) by the remaining KSs. 
Depending on the amount of computation required, 

we might include more or less KSs in the first N-best 
search. For example, it is quite inexpensive to search 
using a first-order statistical language model, since we 
need only one instance of each word in our network. Fre- 
quently, a syntactic model of NL will be quite large, so 
it might be reserved until after the list generation. Given 
the list, each alternative can usually be considered in turn 
in a fraction of a second. If the syntax is small enough, 
it can be included in the initial N-best search, to further 
reduce the list that would be presented to the remainder 
of the KSs. Another example of this progressive fil- 
tering could be the use of high-order statistical language 
models. While the high-order model ~equently provides 
added power (over a first-order model), the added power 
is usually not commensurate with the large amount of ex- 
tra computation and storage needed for the search. In 
this case, a first-order language model can be used to re- 
duce the choice to a small number of alternatives which 
can then be reordered using the higher-order model. 

Besides the obvious computational advantages, there 
are several other practical advantages of this paradigm. 
Since the output of the first stage is a small amount of 
text, and there is no further processing required from 
the acoustic recognition component, the interface be- 
tween the speech recognition and the other KSs is triv- 
ially simple, while still optimal. As such this paradigm 
provides a most convenient mechanism for integrating 
work among several research sites. In addition, the high 
degree of modularity means that the different component 
subsystems can be optimized and even implemented sep- 
arately (both hardware and software). For example, the 
speech recogmtion might run on a special-purpose array 
processor-like machine, while the NL might run on a 
general purpose host. 

3 T h e  N - B e s t  A l g o r i t h m  

The optimal N-Best algorithm is quite similar to the 
time-synchronous Viterbi decoder that is used quite com- 
monly, with a few small changes. It must compute prob- 
abilities of word-sequences rather than state-sequences, 
and it must find all such sequences within the specified 
beam. 

At each state: 

• Keep separate records for theories with different 
word sequence histories. 

• Add probabilities for the same theory. 

• Keep up to a specified maximum number N of the- 
ories whose probabilities are within a threshold of 
the probability of most likely word sequence at that 
state. Note that this state-dependent-threshold is 
distinct from the global beam search threshold. 

This algorithm requires (at least) N times the memory 
for each state of the hidden Markov model. However, 
this memory is typically much smaller than the amount 
of memory needed to represent all the different acoustic 
models. We assume here, that the overall "beam" of the 
search is much larger than the "beam at each state" to 
avoid pruning errors. In fact, for the first-order grammar, 
it is even reasonable to have an infinite beam, since the 
number of states is determined only by the vocabulary 
size. 

At first glance, one might expect that the cost of com- 
bining several sets of N theories into one set of N the- 
odes at a state might require computation on the order 
of N 2. However, we have devised a "grow ~.md prune" 
strategy that avoids this problem. At each state, we sim- 
ply gather all of the incoming theories. At any instant, 
we know the best scoring theory coming to this state at 
this time. From this, we compute a pruning threshold 
for the state. This is used to discard any theories that 
are below the threshold. At the end of the frame (or 
if the number of theories gets too large), we reduce the 
number of theories using aprune and count strategy that 
requires no sorting. Since this computation is small, we 
find, empirically that the overall computation increases 
with x/N, or slower than linear. This makes it practical 
to use somewhat high values of N in the search. 

4 R a n k  o f  the  C o r r e c t  A n s w e r  

Whether the N-best search is practical depends directly 
on whether we can assure that the correct answer is re- 
liably within the list that is created by the first stage. 
(Actually, it is sufficient if there is any answer that will 
be accepted by all the NL KSs, since no amount of 
search would make the system choose the lower scoring 
correct answer m this case.) It is possible that when the 
correct answer is not the top choice, it might be quite far 
down the list, since there could be exponentially many 
other alternatives that score between the highest scor- 
ing answer and the correct answer. Whether this is true 
depends on the power of the acoustic-phonetic models 
and the statistical language model used in the N-best 
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search. Therefore we have accumulated statistics of the 
rank of the correct sentence in the list of N answers for 
two different language models: the statistical class gram- 
mar(perplexity 100), and no grammar(perplexity 1000). 

Figure 2 plots the cumulative distribution of the rank 
for the two different language models. The distribution 
is plotted for lists up to 100 long. We have also marked 
the average rank on the distribution. As can be seen, 
for the case of no language model, the average rank 
is higher than that for the statistical grammar. In fact, 
about 20% of the time, the correct answer is not on 
the list at all. However, when we use the statistical 
class grammar, which is a fairly weak grammar for this 
domain, we find that the average rank is 1.8, since most 
of the time, the correct answer is within the first few 
choices. In fact, for this test of 215 sentences. 99 percent 
of the sentences were round within the 24 top choices. 
Furthermore, the acoustic model used in this experiment 
is an earlier version that results in twice the word error 
rate of the most recent models reported elsewhere in 
these proceedings. This means that when redone with 
better acoustic models, the rank will be considerably 
lower. 

To illustrate the types of lists that we see we show be- 
low a sample N-best output. In this example, the correct 
answer is the fifth one on the list. 

Example of N-best Output 
Answer: 

Set chart switch resolution to high. 

Top N Choices: 
Set charts which resolution to five. 
Set charts which resolution to high. 
Set charts which resolution to on. 
Set chart switch resolution to five. 
Set chart switch resolution to high. (***) 
Set chart switch resolution to on. 
Set charts which resolution to the high. 
Set the charts which resolution to five. 

procedure, or by using overall statistics of typical errors. 
Instead, we can generate all the actual alternatives that 
are appropriate to each particular sentence. 

A second application for the N-best algorithm is to 
generate aitemative sentences that can be used to test 
overgenerafion in the design of natural language sys- 
tems. Typically, if overgeneration is tested at all, it is by 
generating random sentences using the NL model, and 
seeing whether they make sense. One problem with this 
is that many of the word sequences generated this way 
would never, in fact, be presented to a NL system by 
any reasonable acoustic recognition component. Thus, 
much of the tuning is being done on unimportant prob- 
lems. A second problem is that the work of exanfining 
the generated sentences is a very tedious manual process. 
If, instead, we generate N-best lists from a real acous- 
tic recognition system, then we can ask the NL system 
to parse all the sentences that are known to be wrong. 
Hopefully the NL system will reject most of these, and 
we only need to look at those that were accepted, to see 
whether they should have been. 

6 Conclusion 

We have presented a new algorithm for computing the 
top N sentence hypotheses for a hidden Markov model. 
Unlike previous algorithms, this one is guaranteed to 
find the most likely scoring hypotheses with essentially 
constant computation time. This new algorithm makes 
possible a simple and efficient approach to integration of 
several knowledge sources, in particular the integration 
of arbitrary natural language knowledge sources in spo- 
ken language systems. In addition there are other useful 
applications of the algorithm. 
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5 Other Applications for N-Best Algorithm 

We have, so far, found two additional application for 
the N-Best algorithm. The first is to generate alternative 
hypotheses for discriminative training algorithms. Typi- 
cally, alternatives must be generated using a fast match 
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Figure 1: N-best Search Paradigm 
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Figure 2: Cumulative Distribution of Rank of Correct Answer 
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