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1. The Problem: Capturing the meaningful semantic relations 

The design of effective natural language processing systems requires a combination of the 
theoretical and the practical. We want to have a theoretically well-founded design so that we can 
take advantage of gradual improvements in our knowledge of syntax, semantics, discourse struc- 
tures, and the subject domain. At the same time we need to adopt a practical approach which 
recognizes the inevitable shortcomings of our knowledge in these areas. We need to create 
robust systems which are able to deal appropriately with these shortcomings. We are interested 
in particular in systems for extracting specified information from a text. Such systems are robust 
if they are able to extract at least partial information despite the presence of ill-formed or unex- 
pected syntactic, semantic, or discourse structures. 

One type of knowledge which is central to most language understanding systems, in one form or 
another, is knowledge of the set of meaningful semantic relations in a domain. For most realistic 
domains, however, this set is very large and not strictly closed. Accumulating a complete inven- 
tory of these relations is therefore very difficult, if not impossible. Practical language analysis 
systems must be able instead to operate with an incomplete knowledge of these relations. 

2. The Approach: Using Preference Semantics 

This knowledge of semantic relations is typically encoded as a set of  semantic patterns or 
"models". In our system, the entities and predicates of the domain (in linguistic terms, the nouns, 
verbs, and adjectives) are first grouped into semantic classes, forming a classification hierarchy. 
We then provide for each noun, verb, and predicate adjective (either individually or as part of  a 
semantic class) a semantic model which describes the meaningful operands (subjects, comple- 
ments, and modifiers) of that word. For each operand we specify its semantic class and its posi- 
tion (subject, direct object, indirect object) or syntactic marker (governing prepositions). We also 
mark each operand as required (must appear explicitly in the text), essential (may be omitted in 
the text but is required in the logical representation; semantic analysis will attempt to recover the 

operand), or optional (not required in either text or logical representation). 1 If a word has several 
senses, it will in general have several models. 

These models serve two primary functions: as selectional constraints, to select the correct parse, 
and for mapping the linguistic structures into a set of domain predicates which are used for 
further processing. During the parse, whenever a noun phrase or clause is completed, it is 
matched against the semantic models. In our prior systems, selectional constraints were strictly 
enforced: if the phrase or clause did not match the model, it was rejected. After the parse is com- 
pleted, the models are used for creating a semantic representation: within verb models, we indi- 
cate the corresponding domain predicate and, for each operand, the corresponding argument of 
that predicate. 

To enforce selectional constraints in the context of incomplete semantic knowledge, we use a 
scheme of preference semantics, as introduced by Wilks (1975): we seek the parse violating the 

1 For a discussion of essential roles, see (Palmer 1986). 
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fewest selectional constraints. More precisely, if a clause or noun phrase has all the arguments 
required by a semantic model, but also has some arguments or modifiers not allowed by the 
model, we associate a penalty with each extraneous argument/modifier. If a clause or noun 
phrase does not match any model, we assign a larger penalty. These penalties are added together 
to get a score for the entire parse. We use a best-first search to find the parse with the lowest 
penalty. 

These partial matches are also the basis for mapping the syntactic analysis into domain 
predicates/arguments. Extraneous operands, and clauses and noun phrases not matching any 
semantic model, are ignored in the mapping process. We insist that any required arguments be 
present, so that the argument structure of the created predicate will be complete. As a result, the 
stages which operate on the semantic structures (simplification, anaphora resolution, discourse 
analysis) need not be aware of the use of preference semantics. 

In many applications, it is possible to identify a set of critical predicates, representing the most 
important events or assertions in a class of texts. An analysis of a text will be deemed successful 
(for such an application) if we are able to identify the instances of these predicates, along with 
their arguments, in the text. We therefore include among the semantic models these predicates, 
in their various linguistic realizations, along with "higher-order" (modal, epistemic, etc.) verbs 
and other frequent verbs. Preference semantics will then tend to guide the parser towards correct 
analyses of clauses involving these critical predicates, even if modifiers which are not modeled 
end up being incorrectly analyzed and/or ignored. 

3. Application and Evaluation 

This approach has been implemented as part of the PROTEUS message understanding system, 
and evaluated as part of the recent MUCK-II conference (Sundheim 1989a). This conference 
involved the development of a system for processing Navy OPREP (OPerational REPort) mes- 
sages; these messages are reports of sightings and engagements at sea (Sundheim 1989b). They 
include brief (typically 3 or 4 "sentence") narrative sections, most often in a telegraphic style with 
omitted subjects and objects and run-on sentences. The task of the participants in the conference 
was to extract specified information from the narratives (ignoring the other fields of the message). 
Our systems had to identify five types of events in the message (detecting, tracking, harassing, 
targeting, and attacking) and in each case whether the initiating force was friend or foe. For each 
such event the system was to create a frame and fill in 8 additional slots concerning the agent, 
instrument, time, etc. 

The principal stages of the PROTEUS message understanding system are syntactic analysis, 
semantic analysis (translation to predicate form), anaphora resolution, discourse analysis, and 
frame (data base) creation. In order to analyze the telegraphic text, the English grammar is 
extended to include a variety of fragmentary constructions, but with a penalty so that full sen- 
tence analyses are preferred (Grishman 1989). Selectional constraints are imposed (penalties are 
computed) during parsing whenever a noun phrase or clause is completed. 

As part of the MUCK evaluation, a total of 125 messages were provided over a period of 3 
months prior to the evaluation (105 initially, 20 more a month before the conference). A final set 
of 5 messages were used for an on-site evaluation at the conference. Time constraints prevented 
us from including semantic models for many of the constructs present in the messages. We 
instead relied heavily on preference semantics in order to "get through" the analysis of many of 
the sentences. Since the task specified the types of events of interest, we could begin by creating 
semantic models for the corresponding verbs and nominalizations (for detection, attack, etc.), 
along with noun phrase models for the classes of arguments (missiles, ships, planes, etc.). From 
this starting point we gradually extended the model coverage to include higher order verbs and a 
few other frequent verbs from the messages. 
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Quite often (although by no means always) the result of  preference semantics was to get a correct 
analysis with one argument or modifier ignored. For example, for the sentence 

FRIENDLY B-52 ON MINING MISSION ESCORTED BY AMERICA F-14'S WERE AT- 
TACKED BY FOUR HOSTILE MIG-21'S AND ONE BISON. 

the model for plane does not include any modifiers such as ON MINING MISSION, so this 
phrase is ignored; this does not affect the data base entry generated. For the sentence 

S-3'S LAUNCHED 4 SAMSON FOLL BY EA-6 HARM. 

we have no model for "followed by missile", so the phrase FOLL BY EA-6 HARM is ignored; in 
this example we lose one of the agents and instruments of the attack. 

Some statistics on the main training corpus of 105 messages will give some indication of the 
significance of preference semantics in processing these texts. Of the total of  305 "sentences" 
(sequences ending in periods or field terminators), we obtained a syntactic analysis (not neces- 
sarily completely correct) for 288. 2 Preference semantics was used for 116 of these (i.e., the ana- 
lyses of these sentences had one or more phrases not matching the semantic model). In terms of 
task performance: NOSC determined that the 105 messages should have generated a total of  132 

entries in the "event" data base)  Using preference semantics, our system correctly identified (in 
terms of level of  action and initiating force) 101 (77%) of  these; 4 without preference semantics, it 
was only able to correctly identify 74 (56%). 

4. Discussion 

The effect of  removing preference semantics would have been greater were it not for the presence 
of other mechanisms included in our system to enhance robustness. One of these is the arrang- 
ment of the semantic models in a hierarchy, so that if a model for a specific noun or verb fails to 
match, an attempt will be made to match a more general model. Another is a 'longest parse' 
mechanism which, if no analysis can be obtained for the entire sentence, takes the longest sub- 
string, starting with the first word, for which an analysis was obtained. 

We may expect that as one robustness mechanism is removed, others will play a larger role. We 
can see this effect between preference semantics and the longest parse mechanism. When run- 
ning with preference semantics, the system resorts to the longest parse heuristic 42 times (246 
other sentences got full parses); when preference semantics is disabled (i.e., selection is strictly 
enforced), the system used longest parse 83 times (68 others got full parses). This effect can be 
understood as follows: if the sentence contains a modifier which does not fit the semantic model, 
preference semantics will incorporate it into the sentence analysis with a penalty. If preference 
semantics is disabled and the modifier is near the end of the sentence, we may be able to obtain 
an analysis of the text up to the beginning of the modifier as a complete sentence or sentence 
fragment; this analysis will be returned by the longest parse heuristic. 

If both preference semantics and the longest parse mechanism are disabled, we are left with only 
68 sentences which can be analyzed. The task performance plummets accordingly: only 43 
(33%) of the events are correctly identified. These results can be summarized in a table: 

2 For 246 sentences, we obtained a parse of the entire sentence; for an additional 42, a parse of a substring of the sentence. See 
section 4 for further discussion. 

3 In addition, 6 messages had no events of these 5 types, and generated "OTHER" entries in the data base. They are not includ- 
ed in the counts given here. 

4 The system as run at the MUCK-II conference, and as reported on at the DARPA workshop, correctly identified 99 events. 
However, in preparing this paper we have found and corrected a small error in the selection mechanism, and rerun all the experiments 
with this correction. This has resulted in small changes in some of the figures reported. 
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heuristics used 
preference semantics 
and longest parse 
longest parse 
neither 

full sent. parses substring parses 

246 
68 

# (%) of events identified 

42 101 (77%) 
83 74 (56%) 

68 0 43 (33%) 

The specific numbers presented here are not especially significant, since they reflect the incom- 
pleteness of the semantic model at the time of our evaluation. Our semantic model was con- 
structed entirely by hand; for future evaluations, we hope that larger text samples coupled with 
more automated procedures for model acquisition (as described, for example, in (Gfishman 1986) 
and (Lang 1988)) will allow us to provide broader model coverage within similar time con- 
straints. However, even with the best tools significant gaps will be unavoidable in a model for a 
large domain. This paper has indicated how, under these circumstances, relatively simple 
mechanisms can be used to boost the performance of text understanding systems. 
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