
UNIFICATION-BASED SEMANTIC INTERPRETATION IN THE BBN
SPOKEN LANGUAGE SYSTEM

D a v i d S ta l l a rd

B B N S y s t e m s and T e c h n o l o g i e s C o r p o r a t i o n

C a m b r i d g e , M A 0 2 1 3 8

A B S T R A C T

This paper describes the current state of work on
unification-based semantic interpretation in HARC (for
Hear and Recognize Continous speech) the BBN Spo-
ken Language System. It presents the implementation
of an integrated syntax/semantics grammar written in a
unification formalism similar to Definite Clause Gram-
mar. This formalism is described, and its use in solving
a number of semantic interpretation problems is shown.
These include, among others, the encoding of seman-
tic selectional restrictions and the representation of rela-
tional nouns and their modifiers.

1 I N T R O D U C T I O N

Over the past year work on semantic interpretation in
the BBN Spoken Language System has shifted from a
Montague Grammar (Montague, 1973) style rule-for-rule
approach to one which attempts to carry out semantic
interpretation directly in the unification grammar rules
themselves. This is accomplished by adding semantic
features to the grammar rules, placing them on the same
footing as the existing syntactic features. Meaning repre-
sentations are thereby constructed, and semantic filtering
constraints applied, as part of parsing the utterance.

We view such a move as having essentially three ad-
vantages:

• more information is available to semantic interpre-
tation, so it is possible to gain higher coverage

• syntax and semantics are integrated, so semantic
filtering constraints can be applied as constituents
are built and attached

• this integration is simple and does not require any
complex engineering of cooperating software mod-
ules

All three of these advantages are important ones for a
spoken language system.

The HARC system has the following overall organiza-
tion. Spoken input is initially analyzed by the "N-best"
algorithm(Chow and Schwartz, 1989), converting it into"
a rank-ordered set of N best word-sequence hypothe-
ses (for a given value of N). These N hypotheses are
then analyzed by the parser, using the combined syn-
tactic/semantic grammar. Those hypotheses which are
syntactically and semantically allowed emerge from the
parser as initial logical forms in which quantifiers are
interpreted "in place". Next, the quantifier module as-
signs scopes and passes the translation to the anaphora
component, which then resolves the referent of intra-
and extra-sentential pronouns. The completed logical
form is then passed to the back-end component whose
responsibility is to compute the appropriate response to
the user's input.

The present paper confines itself to a description of the
combined syntactic/semantic grammar, along with some
discussion of the parsing algorithm. We will first con-
sider the representational framework in which the gram-
mar is written.

2 THE GRAMMAR FORMALISM

The BBN grammar formalism, described in detail in
(Boisen et al., 1989), is most closely related to Defi-
nite Clause Grammar (Pereira and Warren, 1980). Rules
consist of a single left-hand term and zero or more right
hand terms. Terms can have features, whose values are
themselves terms. Variables, indicated by the ":" prefix,
indicate identity between different slots in and among
terms.

Here is an example of a simple grammar rule written
in this formalism:

(VP (AGR :P :N) :MOOD (WH-) :TRX :TRY)

(V :CONTRACT (TRANSITIVE) :P :N :MOOD)
(NP :NSUBCATFRAME (WH-) :TRX :TRY)

39

This rule says that a VP can derive a transitive verb fol-
lowed by an object NP. The person, number and mood of
the VP - - indicated by the variables :P, :N and :MOOD
respectively - - must be the same as the person, number
and mood of the verb.

The distinguishing feature of the BBN formalism, in
which it differs from DCG, is its strict system of typing.
Each functor that can head a term is associated with
a type and a fixed set of argument positions that are
also typed. For example, the functor "AGR" has the
type AGREEMENT, and the argument types PERSON
and NUMBER. Variables are also typed; for example
the variable :P has the type PERSON and the variable
:N has the type NUMBER. A given grammar written
in the formalism, then, has two components: a set of
functor type declarations and a set of grammar rules.
This typing feature enables the the grammar rules to be
statically checked against the type declarations. A large
class of errors in the grammar m such as accidentally
ommitted features, transpositions or mispellings - - can
be caught when the grammar is loaded into the computer
instead of through run-time debugging. This capability
has proven very useful indeed in the course of creating
and modifying a large (~800 rule) grammar.

3 B A S I C E X A M P L E S

We now present a very simple example of the use of
semantic features in unification, adding semantic features
to the VP rule considered earlier. These new features are
underlined:

(VP (AGR :P :N) :MOOD (WH-)
:TRX :TRY :SUBJ :WFF)

(V (TRANSITIVE :WFF :SUBJ :OBJ)
:P :N :MOOD)

(NP :NSUBCATFRAME (WH-) :TRX :TRY :OBJ)

This rule passes up a formula as the semantics of the VP,
indicated by the variable :WFF. The semantics of the
subject of the clause, indicated by the variable :SUB J,
is passed down to the verb, as is the semantics of the
object NP, indicated by the variable :OBJ.

For the transitive verb "hire", we have the following
lexical rule:

(V (TRANSITIVE (HIRE' :SUBJ :OBJ) :SUBJ :OBJ)
:P :N :MOOD)

(hire)

We can think of this rule in functional terms as taking
semantic arguments :SUBJ and :OBJ and returning as a
value the wff (HIRE' :SUBJ :OBJ). Note the placement
of semantic arguments to the verb inside the subcatego-
rizafion term (headed by the functor "TRANSITIVE")
instead of at the top-level of the "V". This means that
a verb with a differing number of arguments, such as
"give", has a different subcategorization functor with a
corresponding number of argument places for the seman-
tic translations of these arguments.

Like Definite Clause Grammar, the BBN formalism
does not require that every term on the right-hand side
of the rule derive a non-empty string. This is necce-
sary to handle traces. But empty-deriving terms are also
made use of in some grammar rules as so-called "con-
straint nodes". These do not generate a real constituent
of the parse tree, but instead stipulate that a particular
relationship hold between these constituents. For exam-
ple, in the rule turning a PP into a (post-copular) VP,
we require that the PP semantics be construable as a
specifying a predication on the subject of the VP:

(VP (AOR :P :N) :MOOD (FRED) :SUBJ :WFF)
----I,

(FP (FREDICATE-P) (WH-) :PP)
(FREDICATIVE-PP :PP :SUBJ :WFF))

PREDICATIVE-PP is a constraint clause, taldng the se-
mantics of an NP and a PP and returning a wff that is a
predication that the PP may be construed as making of
the NP. As the rule shows, the wff returned is passed up
as the translation of the VP.

Constraint nodes are used not only to impose a stipu-
lation on the constituents of a rule but also to allow for~
multiple ways to satisfy these constituents. For exam-
ple, the PP "in the Information Sciences Division" can
apply differently to different subjects: to a person, in
which case it indicates that the person is an employee of
the Information Sciences Division, or to a department,
in which it indicates that the department is one of those
making up the Information Sciences Division.

So far we have not indicated how the system would
distinguish between these two cases: in other words,
how it would tell a person and a department apart. In
the next section, we discuss the internal structure of NP
semantics where such information is stored.

40

4 REPRESENTATION OF PHRASAL SE-
MANTICS

The variables :SUBJ and :OBJ in the previously pre-
sented lexical rule for "hire" are typed to range over term
structures that represent noun phrase semantics. These
structures have the following form:

(Q-TERM QUANTIFIER VAR NOM-SEM)

The QUANTIFIER is one of the many quanfifiers that
correspond to determiners in English: ALl , SOME,
THE and various WH determiners. Proper NPs are
treated as definite descriptions in our system; they are
thus represented using the THE quantifier.

The VAR denotes a variable of the object language,
and is left uninstantiated (being filled in by a unique
object-language variable by the quantifier module). The
NOM-SEM represents the set that the quantification
ranges over, it effectively represents the semantics of
the head of the NP after modification by the NP's other
constituents.

NOM-SEMs have a structure of their own. The pnnci-
pal functor of this type is NOM, which has the argument
structure:

(NOM PARAM-LIST SET-EXP SORT)

The PARAM-LIST is a (possibly empty) list of param-
eters, used to indicate the free argument places in a re-
lational noun. SET-EXP is a logical expression which
denotes a set of individuals. SORT is a term structure
which represents the semantic class of the elements of
SET-EXP.

Note that this means that the SORT field of the NOM
is accesible, via one level of indirection, from the Q-
TERM NP representation. It is this feature which pro-
vides the means for selectional restriction based on se-
mantic class.

Semantic classes (arranged in a hierarchy) are repre-
sented as complex terms, whose arguments may them-
selves be complex terms. A translation (described in the
next section) is established between semantic classes and
these terms such that non-empty overlap between two
classes corresponds to unifiability of the corresponding
terms, and disjointness between classes corresponds to
non-unifiability of the corresponding terms.

As an example, we give a second version of the rule
for "hire", this time incorporating the selectional restric-
tion that a department hires a person:

(v (TRANSITIVE
(HIRE' #1=(Q-TERM :Q1 :VAR1

(NOM :PARS1 :SET1
(INANIMATE (DEPTS))))

#2=(Q-TERM :Q2 :VAR2
(NOM :PARS2 :SET2

(PERSON))))
#1#
#2#

:P :N :MOOD)
. . - ¢

(hire)

The use of the numbers "1" and "2" above is intended to
indicate the multiple occurrences of the complex forms
they label. (Note that this is simply the Common Lisp
(Steele Jr., 1984) convention for re-entrant list struc-
ture in the rule above. This is at present only used for
notational compactness; the system does not currently
attempt to take computational advantage of re-entrancy
during unification or other processing.)

Adjective phrase semantic representations (ADJ-
SEMs) come in two varieties:

(MODIFYINO-ADJ NOM-SEM NOM-SEM)

and

(PREDICATIVE-ADJ NP-SEMANTICS WFF)

These represent different semantic types of adjective,
and will be explained in a later section.

The last major category whose semantic representation
we consider here is the prepositional phrase. PPs in our
system are given only partial semantic interpretations
consisting of the preposition of the PP and the translation
of the PP's NP object. Their representations are thus of
the following form:

(PP-SEM PREP NP-SEMANTICS)

5 E N C O D I N G S E M A N T I C C L A S S E S A S

T E R M S

The translation from semantic classes to complex terms
can be performed systematically. In this section we
present an algorithm for translating semantic classes
to terms, designed to work on taxonomies of seman-
tic classes represented in a system such as KL-ONE
(Schmolze and Israel, 1983) or NIKL (Moser, 1983).
It has the advantage, important from the point of view

41

of such systems, that it correctly handles the distinction
between "primitive" and "defined" classes - - "de f ined"
meaning that the class is simply an intersection of two
or more other classes.

The algorithm is seen in Figure 1, where the main
work is done by the function TRANSLATE. Throughout,
the symbol ":ANY" indicates a "don't care" variable,
unifying with anything. This is in fact the only use of
variables made. The operation REGULARIZI:~ is used
to remove non-primitive classes from the taxonomy, and
set them aside. It is simple and we do not give it here.

We now consider the classes PERSON, MALE, FE-
MALE, ADULT, CHILD, MAN and PRIEST. MALE
and FEMALE are disjoint sub-classes of PERSON, as
are ADULT and CHILD. MAN is the class which is the
intersection of ADULT and MALE. PRIEST is a sub-
class of MAN, but not identical to it. Following are the
translations the algorithm in Figure 1 gives to several of
these classes:

PERSON ~ (PERSON :ANY :ANY)
ADULT ~ (PERSON (ADULT :ANY) :ANY)
MALE ~ (PERSON :ANY (MALE:ANY))
MAN ~ (PERSON (ADULT :ANY) (MALE :ANY))
PRIEST ~ (PERSON (ADULT (PRIEST))

(MALE (PRIEST)))

Essentially, the algorithm works by mapping each set of
mutnzlly disjoint children of the class to an argument
place of the term to be associated with that class. The
term associated with a class has the same depth as the
depth of the class in the laxonomy.

The Iranslation produces by this algorithm are similar
to those produced by the algorithm by Mellish (Mellish,
1988). We claim two advantages for ours. First, and
as already pointed out, it takes into account the differ-
ence between "if" (primitive) and if-and-only-if (non-
primitive) axiomitizations, where it would seem that the
Mellish algorithm does not. Second, it is simpler, not
requiring such notions as "paths" and extensions "to"
and "beyond" them.

As a final comment on the issue of encoding semantic
classes as terms, we note that there is another encoding
method which may have been overlooked: that is, en-
coding each class as a term which has the same number
of arguments as there are classes. It works as follows. In
the argument position corresponding to the class being
translated put a "1", and put a "1" in argument posi-
tions corresponding to subsuming classes as well. In
argument positions corresponding to disjoint classes put

a "0". In all other positions put a "dont-care" variable.
While perhaps using space inefficiently, this encoding
will have all the desired properties.

6 ANALYSIS OF NOUN PHRASES AND
NOUN MODIFIERS

The following is a simplified version of the rule for reg-
ular count noun phrases:

(NP :NSUBCATFRAME (AGR :P :N) :WI-I
(Q-TERM :Q :VAR :NOM5))

"--4

(DETERMINER :N :WH :NOM1 :NOM2 :Q)
(OPTNONPOSADJP (AGR :P :N) :NOM4 :NOM5)
(OPTADJP (AGR :P :N) (PRENOMADJ) :NOM3

:NOM4)
(N-BAR :NSUBCATFRAME (AGR :P :N) :NOM1)
(OPTNPADJUNCT (AGR :P :N) :NOM2 :NOM3)

This rule generates NPs that have at least a deter-
miner and a head noun, and which have zero or
more prenominal superlative or comparative adjectives
("fastest", "bigger" etc.), prenominal positive adjectives
("red","aUeged") and adjuncts ("in the house", "that
came from Florida"). Its effect is to take the NOM-SEM
semantics of the head noun (the N-BAR) and thread it
through the various modifications, add a quantifier and a
variable for quantification and deliver the resulting pack-"
age as the semantics for the whole NP.

The initial NOM-SEM comes from the N-BAR, and
is signified by :NOM1, the variable in that position. It
is first of all passed to the DETERMINER. Along with
a quantifier, :Q, the DETERMINER passes back a pos-
sibly modified NOM-SEM, :NOM2. The reason for this
is that the determiner may be possessive, and a posses-
sive determiner effectively functions as a noun modifier
which enters into scope relations with other modifiers of
the NP. Consider the noun phrase "John's best book".
This cannot be analyzed as

(SET X (BEST' BOOK') (EQUAL (AUTHOR-OF X)
JOHN'))

that is, as the subset of the best books in the world that
also happen to be written by John. Instead, it must be
analyzed as:

(BEST' (SET X BOOK' (EQUAL (AUTHOR-OF X)
JOHN')))

42

TRANSLATE-TAXONOMY (top)

::=

[

CONJUNCTION-CLASSES : = REGULARIZE (top)

TRANSLATIONS : = TRANSLATE (top)

(for pairing in CONJUNCTION-CLASSES
do tmp := :ANY

(for class in pairing[2]
do tmp := UNIFY(TRANSLATIONS(class),tmp))

TRANSLATIONS(pairing[i]) := tmp)

TRANSLATIONS

TRANSLATE (concept) : :=

DISJOINTNESS-CLASSES :=
(PICK-ARBITRARY-ORDER

(SET s (POWER (CHILDREN concept))
(AND (NON-EMPTY s)

(FORALL x s (FORALL y s (-> (NOT (= x y))
(DISJOINT x y)))))))

(for class in DISJOINTNESS-CLASSES
do (for sub-concept in class

do (for trans in (TRANSLATE sub-concept)
do (TRANSLATIONS trans[l]) :=

(UNIFY (CONS concept
(for class' in DISJOINTNESS-CLASSES

collect (if (= class class')
trans[2]
:ANY)))

(TRANSLATIONS trans[l])))))

TRANSLATIONS(concept) :=
(CONS concept (for class in DISJOINTNESS-CLASSES collect :ANY))

TRANSLATIONS

Figure 1: Translation Algorithm

43

The essential point is that the possessive DETERMINER
must carry out its modification before other elements of
the NP can, yet must still follow all other modifications
in affixing a quantifier to the final result of the NP. If the
determiner is conceived of as just a higher-order function
returning a single value, as in Montague Grammar, it is
difficult to see how this can be done. The virtue of our
unification approach is that it allows the determiner to
return as separate values both a quantifier and a suitably
modified nominal.

If the determiner is not possessive it simply passes up
the same NOM-SEM it was originally given. The NOM-
SEM returned by the DETERMINER, whether modified
or not, is then passed down to the adjuncts of the NP
as :NOM2, which modify it and return :NOM3. This
is then passed to the regular (non-superlative) prenomi-
nal adjectives for further modification, returning :NOM4.
Finally, :NOM4 is passed to the constituent OPTNON-
POSADJP, the optional superlative adjectives. The final
NOM-SEM, :NOM5, is passed up to become an element
of the complete Q-TERM semantics of the NP.

As an example of the action of the modifying ele-
ments in the above rule, consider the following rule for
generating an NP adjunct from a PP:

(OPTNPADJUNCT :NOM1 :NOM2)

(PP :PP)
(MODIFYING-PP :PP :NOM1 :NOM2)

The NOM-SEM passed in from the containing NP,
:NOM1, is in turn passed down to a constraint node,
MODIFYING-PP, which takes the semantics of the PP,
:PP, and "computes" the modified NOM-SEM, :NOM2,
which is then passed back to the NP as the result of the
modification.

MODIFYING-PP is used to encompass different kinds
of PP modification. Relational modification, where the
PP essentially fills in an argument, is handled by the
following solution to MODIFYING-PP:

(MODIFYING-PP (PP-SEM (OFPREP) :NP)
(NOM (PARAM :NP) :SET :SORT)
(NOM (NO-PARAM) :SET :SORT))

Since this rule is a constraint node solution, its fight-
hand side is empty. It unifies the NP object of the PP
with the "parameter NP" of the argument nominal. Of
course, it will not be unifiable if the argument nominal
does not contain a parameter NP, or if the parameter NP

of the argument nominal contains the wrong semantic
type.

The lexical rule for relational noun "salary" is as fol-
lows:

(N (NOM (PARAM #1=(Q-TERM :Q :VAR
(NOM :PARS :SET

(PERSON))
(SETOF (SAL' #1#))
(INANIMATE (DOLLAR-AM'r))

(salary)

Note that requirement that the filler of the slot be of sort
PERSON, and the co-occurence of this filler inside the
NOM's set expression.

Of course PPs can also occur in a predicative sense.
For example, a person can be "in" in a department. To
handle this we have the following solution to to the con-
straint node PREDICATWE-PP:

(PREDICATIVE-PP
(PP-SEM (INPREP)

#1=(Q-TERM :Q1 :VAR1
(NOM :PARS1 :SET1

(INANIMATE (DEPTS)))))
#2=(Q-TERM :Q2 :VAR2

(NOM :PARS2 :SET2 (PERSON)))
(EQUAL (DEPT-OF #2#) #1#))

Note that this constraint solution will only unify if the
class of the NP object of the PP unifies with DEPTS,
and the class of the NP being predicated of unifies with
PERSON.

When such a PP occurs as an adjunct to an NP, the
derivation passes through the following indirect "lifting"
rule:

(MODIFYING-PP
:PP
(NOM :PAR :SET :SORT)
(NOM :PAR (SET :VAR :SET :WFF) :SORT))

- - -4

(PREDICATIVE-PP
:PP
(Q-TERM (BOUND-Q) :VAR

(NOM :PAR :SET :SORT))
:WFF)

Although the right-hand side of the rule is in this case
not empty, it will like all constraint nodes derive the
empty string in the end.

44

Similar distinctions of modificational power are seen
in the case of adjectives, where an adjective like "aver-
age" or "previous" has the power to abstract over free
parameters of the noun meaning, and an adjective like
"female" does not. Consider the rule below:

(OPTADJP (AGR :P :N) :POSIT :NOM1 :NOM3)
----4

(ADJP (AGR :P :N) :POSIT :ADJ-SEM)
(OPTADJP (AGR :P :N) :POSIT :NOM1 :NOM2)
(MODIFIYING-ADJ-READING :ADJ-SEM :NOM2

:NOM3)

This rule generates a string of one or more adjectives.
Nominal semantics is threaded through the adjectives
right to left. Adjectives like "previous", with the power
to modify the whole noun, have a semantic representa-
tion headed by the functor "MODIFYING-ADJ", while
adjectives like "female", which only operate upon indi-
vidual elements of the noun's extension, have a repre-
sentation headed by the functor "PREDICATIVE-ADJ".
The constraint node MODIFYING-ADJ-READING ac-
cepts the first kind of adjective unchanged and lifts the
second kind to the appropriate level. Note that while
predicative PPs and adjectives can be "lifted" to the noun
modifying level, the converse is not true. That is, the
system does not allow "That value is previous" or "That
salary is of Clark".

7 C O N S T R A I N T N O D E S A N D T H E I R

I M P A C T O N P A R S I N G

Constraint nodes are generally useful in that they allow
one to give a name to a particular condition and use it
in multiple places throughout the grammar. Consider
verbs which take PPs and ADJPs as complements. In
"John became happy", it is intended that that the adjec-
tive "happy" apply to the subject "John". It would not
make sense to say "The table became happy". Similarly,
in "I put the book on the floor", the PP "on the floor"
is intended to apply to the object NP "the book" and it
would not make sense to say "I put the idea on the floor"
Semantic type constraints in such cases clearly hold not
just between the verb and its various arguments, but be-
tween the arguments themselves. A constraint node like
PREDICATIVE-PP can be used to express this relation-
ship between arguments where it is needed.

The HARC system currently employs a bottom-up
left-to-right parser. The decision to use a bottom-up

parser was made in order to facilitate the eventual han-
dling of fragmentary and ill-formed input.

The parser is based on the algorithm of Graham, Har-
rison and Ruzzo (Susan L. Graham, 1980), but has been
modified to work with a unification grammar(Haas, to
appear). Formally speaking, this algorithm can parse
the kind of grammar we have been discussing without
any modification, since the constraint nodes and their so-
lutions can simply be incorporated into the algorithm's
empty symbols table.

For a non-toy domain, however, this increases the size
of the parse tables intolerably. We have therefore modi-
fied the algorithm so that it treats constraint node empty
symbols specially, not expanding them when the parse
tables are built but instead waiting until parse time where
it solves them top-down through a process that might be
thought of as a kind of all-paths non-backtracking Pro-
log.

A problem still appears when constraint nodes receive
traces as arguments. Until a trace is bound, it of course
contains very little information, and hence unifies with
almost any constraint node solution. Since bottom-up
parsing often hypothesizes traces, there is a consequent
combinatorial explosion which can lead to slow parsing.

The obvious solution to this problem is simply to
defer the attempt to solve constraint nodes until the
point in the parse where they have received adequate in-
stantiafion. The definition of "adequate" clearly differs
from constraint node to constraint node: in the case of
PREDICATIVE-PP it might be that the preposition and
class of NP object be known. Until constraint nodes
are sufficiently instantiated to bother solving, they can
simply be carried as extra riders on chart edges, being
passed up as new edges are built. At the time of writing
this solution is in the process of being implemented.

Acknowledgements

The work reported here was supported by the Advanced
Research Projects Agency and was monitored by the Of-
fice of Naval Research under Contract No. 00014-89-
C-0008. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced
Research Projects Agency or the United States Govern-
ment.

The author would like to thank Andy Haas, who was
the original impetus behind the change to a unification-

45

style semantics in the BBN SLS project, and who made
important contributions to the ideas presented here.

References

S. Boisen, Y. Chow, A. Haas, R. Ingria, S. Roukos,
R. Scha, D. Stallard, and M. Vilain. Integration of
Speech and Natural Language: Final Report. Technical
Report 6991, BBN Systems and Technologies Corpora-
tion, Cambridge, Massachusetts, 1989.

Yen-lu Chow and Richard Schwartz. The Optimal
N-Best algorithm: An efficient procedure for finding
the top N sentence hypotheses. In Proceedings of the
Speech and Natural Language Workshop October 1989.
DARPA, Morgan Kaufmann Publishers, Inc., October
1989.

Andrew Haas. A New Parsing Algorithm for Unification
Grammar. Compational Linguistics, (to appear).

C.S. MeUish. Implementing systemic classification by
unification. Computational Linguistics, 14(1):40--51,
1988.

R. Montague. The proper treatment of quantification in
ordinary english. In Approaches to Natural Language.
Proceedings of the 1970 Stanford Workship on Grammar
and Semantics, pages 221-242. Dordrecht: D.Reidel,
1973.

Margaret Moser. An Overview of NIKL. Technical Report
Section of BBN Report No. 5421, Bolt Beranek and
Newman Inc., 1983.

Femando C.N. Pereira and David H.D, Warren. Definite
clause grammars for language analysis - a survey of the
formalism and a comparison with augmented transition
networks. Artificial Intelligence, 13:231-278, 1980.

J. Schmolze and D. Israel. KL-ONE: Semantics and
classification. In Research in Knowlege Representation
for Natural Language Understanding, Annual Report: 1
September 1982 to 31 August 1983. BBN Report No.
5421, 1983.

Guy L. Steele Jr. Common LISP: The Language. Digital
Press, Digital Equipment Corporation, 1984.

Walter L. Ruzzo Susan L. Graham, Michael A. Harrison.
An improved context-free recognizer. ACM Transactions
on Programming Languages and Systems, 2(3):415--461,
1980.

46

