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This paper describes the current state of work on 
unification-based semantic interpretation in HARC (for 
Hear and Recognize Continous speech) the BBN Spo- 
ken Language System. It presents the implementation 
of an integrated syntax/semantics grammar written in a 
unification formalism similar to Definite Clause Gram- 
mar. This formalism is described, and its use in solving 
a number of semantic interpretation problems is shown. 
These include, among others, the encoding of seman- 
tic selectional restrictions and the representation of rela- 
tional nouns and their modifiers. 

1 I N T R O D U C T I O N  

Over the past year work on semantic interpretation in 
the BBN Spoken Language System has shifted from a 
Montague Grammar (Montague, 1973) style rule-for-rule 
approach to one which attempts to carry out semantic 
interpretation directly in the unification grammar rules 
themselves. This is accomplished by adding semantic 
features to the grammar rules, placing them on the same 
footing as the existing syntactic features. Meaning repre- 
sentations are thereby constructed, and semantic filtering 
constraints applied, as part of parsing the utterance. 

We view such a move as having essentially three ad- 
vantages: 

• more information is available to semantic interpre- 
tation, so it is possible to gain higher coverage 

• syntax and semantics are integrated, so semantic 
filtering constraints can be applied as constituents 
are built and attached 

• this integration is simple and does not require any 
complex engineering of cooperating software mod- 
ules 

All three of these advantages are important ones for a 
spoken language system. 

The HARC system has the following overall organiza- 
tion. Spoken input is initially analyzed by the "N-best" 
algorithm(Chow and Schwartz, 1989), converting it into" 
a rank-ordered set of N best word-sequence hypothe- 
ses (for a given value of N). These N hypotheses are 
then analyzed by the parser, using the combined syn- 
tactic/semantic grammar. Those hypotheses which are 
syntactically and semantically allowed emerge from the 
parser as initial logical forms in which quantifiers are 
interpreted "in place". Next, the quantifier module as- 
signs scopes and passes the translation to the anaphora 
component, which then resolves the referent of intra- 
and extra-sentential pronouns. The completed logical 
form is then passed to the back-end component whose 
responsibility is to compute the appropriate response to 
the user's input. 

The present paper confines itself to a description of the 
combined syntactic/semantic grammar, along with some 
discussion of the parsing algorithm. We will first con- 
sider the representational framework in which the gram- 
mar is written. 

2 THE GRAMMAR FORMALISM 

The BBN grammar formalism, described in detail in 
(Boisen et al., 1989), is most closely related to Defi- 
nite Clause Grammar (Pereira and Warren, 1980). Rules 
consist of a single left-hand term and zero or more right 
hand terms. Terms can have features, whose values are 
themselves terms. Variables, indicated by the ":" prefix, 
indicate identity between different slots in and among 
terms. 

Here is an example of a simple grammar rule written 
in this formalism: 

(VP (AGR :P :N) :MOOD (WH-) :TRX :TRY) 

(V :CONTRACT (TRANSITIVE) :P :N :MOOD) 
(NP :NSUBCATFRAME (WH-) :TRX :TRY) 
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This rule says that a VP can derive a transitive verb fol- 
lowed by an object NP. The person, number and mood of 
the VP - -  indicated by the variables :P, :N and :MOOD 
respectively - -  must be the same as the person, number 
and mood of the verb. 

The distinguishing feature of  the BBN formalism, in 
which it differs from DCG, is its strict system of typing. 
Each functor that can head a term is associated with 
a type and a fixed set of argument positions that are 
also typed. For example, the functor "AGR" has the 
type AGREEMENT, and the argument types PERSON 
and NUMBER. Variables are also typed; for example 
the variable :P has the type PERSON and the variable 
:N has the type NUMBER. A given grammar written 
in the formalism, then, has two components: a set of 
functor type declarations and a set of grammar rules. 
This typing feature enables the the grammar rules to be 
statically checked against the type declarations. A large 
class of  errors in the grammar m such as accidentally 
ommitted features, transpositions or mispellings - -  can 
be caught when the grammar is loaded into the computer 
instead of through run-time debugging. This capability 
has proven very useful indeed in the course of creating 
and modifying a large (~800 rule) grammar. 

3 B A S I C  E X A M P L E S  

We now present a very simple example of the use of 
semantic features in unification, adding semantic features 
to the VP rule considered earlier. These new features are 
underlined: 

(VP (AGR :P :N) :MOOD (WH-) 
:TRX :TRY :SUBJ :WFF) 

(V (TRANSITIVE :WFF :SUBJ :OBJ) 
:P :N :MOOD) 

(NP :NSUBCATFRAME (WH-) :TRX :TRY :OBJ) 

This rule passes up a formula as the semantics of the VP, 
indicated by the variable :WFF. The semantics of the 
subject of  the clause, indicated by the variable :SUB J, 
is passed down to the verb, as is the semantics of the 
object NP, indicated by the variable :OBJ. 

For the transitive verb "hire", we have the following 
lexical rule: 

(V (TRANSITIVE (HIRE' :SUBJ :OBJ) :SUBJ :OBJ) 
:P :N :MOOD) 

(hire) 

We can think of this rule in functional terms as taking 
semantic arguments :SUBJ and :OBJ and returning as a 
value the wff (HIRE' :SUBJ :OBJ). Note the placement 
of  semantic arguments to the verb inside the subcatego- 
rizafion term (headed by the functor "TRANSITIVE") 
instead of at the top-level of  the "V". This means that 
a verb with a differing number of  arguments, such as 
"give", has a different subcategorization functor with a 
corresponding number of  argument places for the seman- 
tic translations of  these arguments. 

Like Definite Clause Grammar, the BBN formalism 
does not require that every term on the right-hand side 
of the rule derive a non-empty string. This is necce- 
sary to handle traces. But empty-deriving terms are also 
made use of in some grammar rules as so-called "con- 
straint nodes". These do not generate a real constituent 
of the parse tree, but instead stipulate that a particular 
relationship hold between these constituents. For exam- 
ple, in the rule turning a PP into a (post-copular) VP, 
we require that the PP semantics be construable as a 
specifying a predication on the subject of  the VP: 

(VP (AOR :P :N) :MOOD (FRED) :SUBJ :WFF) 
----I,  

(FP (FREDICATE-P) (WH-) :PP) 
(FREDICATIVE-PP :PP :SUBJ :WFF)) 

PREDICATIVE-PP is a constraint clause, taldng the se- 
mantics of  an NP and a PP and returning a wff that is a 
predication that the PP may be construed as making of 
the NP. As the rule shows, the wff returned is passed up 
as the translation of the VP. 

Constraint nodes are used not only to impose a stipu- 
lation on the constituents of  a rule but also to allow for~ 
multiple ways to satisfy these constituents. For exam- 
ple, the PP "in the Information Sciences Division" can 
apply differently to different subjects: to a person, in 
which case it indicates that the person is an employee of 
the Information Sciences Division, or to a department, 
in which it indicates that the department is one of those 
making up the Information Sciences Division. 

So far we have not indicated how the system would 
distinguish between these two cases: in other words, 
how it would tell a person and a department apart. In 
the next section, we discuss the internal structure of NP 
semantics where such information is stored. 
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4 REPRESENTATION OF PHRASAL SE- 
MANTICS 

The variables :SUBJ and :OBJ in the previously pre- 
sented lexical rule for "hire" are typed to range over term 
structures that represent noun phrase semantics. These 
structures have the following form: 

(Q-TERM QUANTIFIER VAR NOM-SEM) 

The QUANTIFIER is one of the many quanfifiers that 
correspond to determiners in English: ALl ,  SOME, 
THE and various WH determiners. Proper NPs are 
treated as definite descriptions in our system; they are 
thus represented using the THE quantifier. 

The VAR denotes a variable of the object language, 
and is left uninstantiated (being filled in by a unique 
object-language variable by the quantifier module). The 
NOM-SEM represents the set that the quantification 
ranges over, it effectively represents the semantics of 
the head of the NP after modification by the NP's other 
constituents. 

NOM-SEMs have a structure of their own. The pnnci- 
pal functor of this type is NOM, which has the argument 
structure: 

(NOM PARAM-LIST SET-EXP SORT) 

The PARAM-LIST is a (possibly empty) list of param- 
eters, used to indicate the free argument places in a re- 
lational noun. SET-EXP is a logical expression which 
denotes a set of individuals. SORT is a term structure 
which represents the semantic class of the elements of 
SET-EXP. 

Note that this means that the SORT field of the NOM 
is accesible, via one level of indirection, from the Q- 
TERM NP representation. It is this feature which pro- 
vides the means for selectional restriction based on se- 
mantic class. 

Semantic classes (arranged in a hierarchy) are repre- 
sented as complex terms, whose arguments may them- 
selves be complex terms. A translation (described in the 
next section) is established between semantic classes and 
these terms such that non-empty overlap between two 
classes corresponds to unifiability of the corresponding 
terms, and disjointness between classes corresponds to 
non-unifiability of the corresponding terms. 

As an example, we give a second version of the rule 
for "hire", this time incorporating the selectional restric- 
tion that a department hires a person: 

(v (TRANSITIVE 
(HIRE' #1=(Q-TERM :Q1 :VAR1 

(NOM :PARS1 :SET1 
(INANIMATE (DEPTS)))) 

#2=(Q-TERM :Q2 :VAR2 
(NOM :PARS2 :SET2 

(PERSON)))) 
#1# 
#2# 

:P :N :MOOD) 
. . - ¢  

(hire) 

The use of the numbers "1" and "2" above is intended to 
indicate the multiple occurrences of the complex forms 
they label. (Note that this is simply the Common Lisp 
(Steele Jr., 1984) convention for re-entrant list struc- 
ture in the rule above. This is at present only used for 
notational compactness; the system does not currently 
attempt to take computational advantage of re-entrancy 
during unification or other processing.) 

Adjective phrase semantic representations (ADJ- 
SEMs) come in two varieties: 

(MODIFYINO-ADJ NOM-SEM NOM-SEM) 

and 

(PREDICATIVE-ADJ NP-SEMANTICS WFF) 

These represent different semantic types of adjective, 
and will be explained in a later section. 

The last major category whose semantic representation 
we consider here is the prepositional phrase. PPs in our 
system are given only partial semantic interpretations 
consisting of the preposition of the PP and the translation 
of the PP's NP object. Their representations are thus of 
the following form: 

(PP-SEM PREP NP-SEMANTICS) 

5 E N C O D I N G  S E M A N T I C  C L A S S E S  A S  

T E R M S  

The translation from semantic classes to complex terms 
can be performed systematically. In this section we 
present an algorithm for translating semantic classes 
to terms, designed to work on taxonomies of seman- 
tic classes represented in a system such as KL-ONE 
(Schmolze and Israel, 1983) or NIKL (Moser, 1983). 
It has the advantage, important from the point of view 
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of such systems, that it correctly handles the distinction 
between "primitive" and "defined" classes - - "de f ined"  
meaning that the class is simply an intersection of two 
or more other classes. 

The algorithm is seen in Figure 1, where the main 
work is done by the function TRANSLATE. Throughout, 
the symbol ":ANY" indicates a "don't care" variable, 
unifying with anything. This is in fact the only use of 
variables made. The operation REGULARIZI:~ is used 
to remove non-primitive classes from the taxonomy, and 
set them aside. It is simple and we do not give it here. 

We now consider the classes PERSON, MALE, FE- 
MALE, ADULT, CHILD, MAN and PRIEST. MALE 
and FEMALE are disjoint sub-classes of PERSON, as 
are ADULT and CHILD. MAN is the class which is the 
intersection of ADULT and MALE. PRIEST is a sub- 
class of MAN, but not identical to it. Following are the 
translations the algorithm in Figure 1 gives to several of 
these classes: 

PERSON ~ (PERSON :ANY :ANY) 
ADULT ~ (PERSON (ADULT :ANY) :ANY) 
MALE ~ (PERSON :ANY (MALE:ANY)) 
MAN ~ (PERSON (ADULT :ANY) (MALE :ANY)) 
PRIEST ~ (PERSON (ADULT (PRIEST)) 

(MALE (PRIEST))) 

Essentially, the algorithm works by mapping each set of 
mutnzlly disjoint children of the class to an argument 
place of the term to be associated with that class. The 
term associated with a class has the same depth as the 
depth of the class in the laxonomy. 

The Iranslation produces by this algorithm are similar 
to those produced by the algorithm by Mellish (Mellish, 
1988). We claim two advantages for ours. First, and 
as already pointed out, it takes into account the differ- 
ence between "if" (primitive) and if-and-only-if (non- 
primitive) axiomitizations, where it would seem that the 
Mellish algorithm does not. Second, it is simpler, not 
requiring such notions as "paths" and extensions "to" 
and "beyond" them. 

As a final comment on the issue of encoding semantic 
classes as terms, we note that there is another encoding 
method which may have been overlooked: that is, en- 
coding each class as a term which has the same number 
of arguments as there are classes. It works as follows. In 
the argument position corresponding to the class being 
translated put a "1", and put a "1" in argument posi- 
tions corresponding to subsuming classes as well. In 
argument positions corresponding to disjoint classes put 

a "0". In all other positions put a "dont-care" variable. 
While perhaps using space inefficiently, this encoding 
will have all the desired properties. 

6 ANALYSIS OF NOUN PHRASES AND 
NOUN MODIFIERS 

The following is a simplified version of the rule for reg- 
ular count noun phrases: 

(NP :NSUBCATFRAME (AGR :P :N) :WI-I 
(Q-TERM :Q :VAR :NOM5)) 

"--4 

(DETERMINER :N :WH :NOM1 :NOM2 :Q) 
(OPTNONPOSADJP (AGR :P :N) :NOM4 :NOM5) 
(OPTADJP (AGR :P :N) (PRENOMADJ) :NOM3 

:NOM4) 
(N-BAR :NSUBCATFRAME (AGR :P :N) :NOM1) 
(OPTNPADJUNCT (AGR :P :N) :NOM2 :NOM3) 

This rule generates NPs that have at least a deter- 
miner and a head noun, and which have zero or 
more prenominal superlative or comparative adjectives 
("fastest", "bigger" etc.), prenominal positive adjectives 
("red","aUeged") and adjuncts ("in the house", "that 
came from Florida"). Its effect is to take the NOM-SEM 
semantics of the head noun (the N-BAR) and thread it 
through the various modifications, add a quantifier and a 
variable for quantification and deliver the resulting pack-" 
age as the semantics for the whole NP. 

The initial NOM-SEM comes from the N-BAR, and 
is signified by :NOM1, the variable in that position. It 
is first of all passed to the DETERMINER. Along with 
a quantifier, :Q, the DETERMINER passes back a pos- 
sibly modified NOM-SEM, :NOM2. The reason for this 
is that the determiner may be possessive, and a posses- 
sive determiner effectively functions as a noun modifier 
which enters into scope relations with other modifiers of 
the NP. Consider the noun phrase "John's best book". 
This cannot be analyzed as 

(SET X (BEST' BOOK') (EQUAL (AUTHOR-OF X) 
JOHN')) 

that is, as the subset of the best books in the world that 
also happen to be written by John. Instead, it must be 
analyzed as: 

(BEST' (SET X BOOK' (EQUAL (AUTHOR-OF X) 
JOHN'))) 
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TRANSLATE-TAXONOMY (top) 

::= 

[ 

CONJUNCTION-CLASSES : = REGULARIZE (top) 

TRANSLATIONS : = TRANSLATE (top) 

(for pairing in CONJUNCTION-CLASSES 
do tmp := :ANY 

(for class in pairing[2] 
do tmp := UNIFY(TRANSLATIONS(class),tmp)) 

TRANSLATIONS(pairing[i]) := tmp) 

TRANSLATIONS 

TRANSLATE (concept) : := 

DISJOINTNESS-CLASSES := 
(PICK-ARBITRARY-ORDER 

(SET s (POWER (CHILDREN concept)) 
(AND (NON-EMPTY s) 

(FORALL x s (FORALL y s (-> (NOT (= x y)) 
(DISJOINT x y))))))) 

(for class in DISJOINTNESS-CLASSES 
do (for sub-concept in class 

do (for trans in (TRANSLATE sub-concept) 
do (TRANSLATIONS trans[l]) := 

(UNIFY (CONS concept 
(for class' in DISJOINTNESS-CLASSES 

collect (if (= class class') 
trans[2] 
:ANY))) 

(TRANSLATIONS trans[l]))))) 

TRANSLATIONS(concept) := 
(CONS concept (for class in DISJOINTNESS-CLASSES collect :ANY)) 

TRANSLATIONS 

Figure 1: Translation Algorithm 
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The essential point is that the possessive DETERMINER 
must carry out its modification before other elements of 
the NP can, yet must still follow all other modifications 
in affixing a quantifier to the final result of the NP. If the 
determiner is conceived of as just a higher-order function 
returning a single value, as in Montague Grammar, it is 
difficult to see how this can be done. The virtue of our 
unification approach is that it allows the determiner to 
return as separate values both a quantifier and a suitably 
modified nominal. 

If the determiner is not possessive it simply passes up 
the same NOM-SEM it was originally given. The NOM- 
SEM returned by the DETERMINER, whether modified 
or not, is then passed down to the adjuncts of the NP 
as :NOM2, which modify it and return :NOM3. This 
is then passed to the regular (non-superlative) prenomi- 
nal adjectives for further modification, returning :NOM4. 
Finally, :NOM4 is passed to the constituent OPTNON- 
POSADJP, the optional superlative adjectives. The final 
NOM-SEM, :NOM5, is passed up to become an element 
of the complete Q-TERM semantics of the NP. 

As an example of the action of the modifying ele- 
ments in the above rule, consider the following rule for 
generating an NP adjunct from a PP: 

(OPTNPADJUNCT :NOM1 :NOM2) 

(PP :PP) 
(MODIFYING-PP :PP :NOM1 :NOM2) 

The NOM-SEM passed in from the containing NP, 
:NOM1, is in turn passed down to a constraint node, 
MODIFYING-PP, which takes the semantics of the PP, 
:PP, and "computes" the modified NOM-SEM, :NOM2, 
which is then passed back to the NP as the result of the 
modification. 

MODIFYING-PP is used to encompass different kinds 
of PP modification. Relational modification, where the 
PP essentially fills in an argument, is handled by the 
following solution to MODIFYING-PP: 

(MODIFYING-PP (PP-SEM (OFPREP) :NP) 
(NOM (PARAM :NP) :SET :SORT) 
(NOM (NO-PARAM) :SET :SORT)) 

Since this rule is a constraint node solution, its fight- 
hand side is empty. It unifies the NP object of the PP 
with the "parameter NP" of the argument nominal. Of 
course, it will not be unifiable if the argument nominal 
does not contain a parameter NP, or if the parameter NP 

of the argument nominal contains the wrong semantic 
type. 

The lexical rule for relational noun "salary" is as fol- 
lows: 

(N (NOM (PARAM #1=(Q-TERM :Q :VAR 
(NOM :PARS :SET 

(PERSON)) 
(SETOF (SAL' #1#)) 
(INANIMATE (DOLLAR-AM'r)) 

(salary) 

Note that requirement that the filler of the slot be of sort 
PERSON, and the co-occurence of this filler inside the 
NOM's set expression. 

Of course PPs can also occur in a predicative sense. 
For example, a person can be "in" in a department. To 
handle this we have the following solution to to the con- 
straint node PREDICATWE-PP: 

(PREDICATIVE-PP 
(PP-SEM (INPREP) 

#1=(Q-TERM :Q1 :VAR1 
(NOM :PARS1 :SET1 

(INANIMATE (DEPTS))))) 
#2=(Q-TERM :Q2 :VAR2 

(NOM :PARS2 :SET2 (PERSON))) 
(EQUAL (DEPT-OF #2#) #1#)) 

Note that this constraint solution will only unify if the 
class of the NP object of the PP unifies with DEPTS, 
and the class of the NP being predicated of unifies with 
PERSON. 

When such a PP occurs as an adjunct to an NP, the 
derivation passes through the following indirect "lifting" 
rule: 

(MODIFYING-PP 
:PP 
(NOM :PAR :SET :SORT) 
(NOM :PAR (SET :VAR :SET :WFF) :SORT)) 

- - -4  

(PREDICATIVE-PP 
:PP 
(Q-TERM (BOUND-Q) :VAR 

(NOM :PAR :SET :SORT)) 
:WFF) 

Although the right-hand side of the rule is in this case 
not empty, it will like all constraint nodes derive the 
empty string in the end. 
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Similar distinctions of modificational power are seen 
in the case of adjectives, where an adjective like "aver- 
age" or "previous" has the power to abstract over free 
parameters of the noun meaning, and an adjective like 
"female" does not. Consider the rule below: 

(OPTADJP (AGR :P :N) :POSIT :NOM1 :NOM3) 
----4 

(ADJP (AGR :P :N) :POSIT :ADJ-SEM) 
(OPTADJP (AGR :P :N) :POSIT :NOM1 :NOM2) 
(MODIFIYING-ADJ-READING :ADJ-SEM :NOM2 

:NOM3) 

This rule generates a string of one or more adjectives. 
Nominal semantics is threaded through the adjectives 
right to left. Adjectives like "previous", with the power 
to modify the whole noun, have a semantic representa- 
tion headed by the functor "MODIFYING-ADJ", while 
adjectives like "female", which only operate upon indi- 
vidual elements of the noun's extension, have a repre- 
sentation headed by the functor "PREDICATIVE-ADJ". 
The constraint node MODIFYING-ADJ-READING ac- 
cepts the first kind of adjective unchanged and lifts the 
second kind to the appropriate level. Note that while 
predicative PPs and adjectives can be "lifted" to the noun 
modifying level, the converse is not true. That is, the 
system does not allow "That value is previous" or "That 
salary is of Clark". 

7 C O N S T R A I N T  N O D E S  A N D  T H E I R  

I M P A C T  O N  P A R S I N G  

Constraint nodes are generally useful in that they allow 
one to give a name to a particular condition and use it 
in multiple places throughout the grammar. Consider 
verbs which take PPs and ADJPs as complements. In 
"John became happy", it is intended that that the adjec- 
tive "happy" apply to the subject "John". It would not 
make sense to say "The table became happy". Similarly, 
in "I put the book on the floor", the PP "on the floor" 
is intended to apply to the object NP "the book" and it 
would not make sense to say "I put the idea on the floor" 
Semantic type constraints in such cases clearly hold not 
just between the verb and its various arguments, but be- 
tween the arguments themselves. A constraint node like 
PREDICATIVE-PP can be used to express this relation- 
ship between arguments where it is needed. 

The HARC system currently employs a bottom-up 
left-to-right parser. The decision to use a bottom-up 

parser was made in order to facilitate the eventual han- 
dling of fragmentary and ill-formed input. 

The parser is based on the algorithm of Graham, Har- 
rison and Ruzzo (Susan L. Graham, 1980), but has been 
modified to work with a unification grammar(Haas, to 
appear). Formally speaking, this algorithm can parse 
the kind of grammar we have been discussing without 
any modification, since the constraint nodes and their so- 
lutions can simply be incorporated into the algorithm's 
empty symbols table. 

For a non-toy domain, however, this increases the size 
of the parse tables intolerably. We have therefore modi- 
fied the algorithm so that it treats constraint node empty 
symbols specially, not expanding them when the parse 
tables are built but instead waiting until parse time where 
it solves them top-down through a process that might be 
thought of as a kind of all-paths non-backtracking Pro- 
log. 

A problem still appears when constraint nodes receive 
traces as arguments. Until a trace is bound, it of course 
contains very little information, and hence unifies with 
almost any constraint node solution. Since bottom-up 
parsing often hypothesizes traces, there is a consequent 
combinatorial explosion which can lead to slow parsing. 

The obvious solution to this problem is simply to 
defer the attempt to solve constraint nodes until the 
point in the parse where they have received adequate in- 
stantiafion. The definition of "adequate" clearly differs 
from constraint node to constraint node: in the case of 
PREDICATIVE-PP it might be that the preposition and 
class of NP object be known. Until constraint nodes 
are sufficiently instantiated to bother solving, they can 
simply be carried as extra riders on chart edges, being 
passed up as new edges are built. At the time of writing 
this solution is in the process of being implemented. 
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