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A B S T R A C T  

A new natural language system, TINA, has been developed for applications involving speech understanding tasks, 
which integrates key ideas from context free grammars, Augmented Transition Networks (ATN's) [1], and Lexical 
Functional Grammars (LFG's) [2]. The parser uses a best-first search strategy, with probability assignments on 
all arcs obtained automatically from a set of example sentences. An initial context-free grammar, derived from 
the example sentences, is first converted to a probabilistic network structure. Control includes both top-down and 
bottom-up cycles, and key parameters are passed among nodes to deal with long-distance movement and agreement 
constraints. The probabilities provide a natural mechanism for exploring more common grammatical constructions 
first. Arc probabilities also reduced test-set perplexity by nearly an order of magnitude. Included is a new strategy 
for dealing with movement, which can handle efficiently nested and chained gaps, and rejects crossed gaps. 

I N T R O D U C T I O N  

Most syntactic parsers have been designed with the assumption that  the input word s t ream is deter- 
ministic: i.e., at any given point in the parse tree it is known with certainty what  the next word is. As a 
consequence, these parsers generally cannot be used effectively, if at all, to provide syntax-directed constraint 
in the speech recognition component of a spoken language system. In a fully integrated system, the recognizer 
component should only be allowed to propose partial word sequences that  the natural  language component 
can interpret. Any word sequences that  are syntactically or semantically anomalous should probably be 
pruned prior to the acoustic match, rather than examined for approval in a verification mode. To operate in 
such a fully integrated mode, a parser should have the capability of considering a multi tude of hypotheses 
simultaneously. The control s trategy should have a sense of which of these hypotheses, considering both 
linguistic and acoustic evidence, is most likely to be correct at any given instant in time, and to pursue 
that  hypothesis only incrementally before reexamining the evidence. The linguistic evidence should include 
probability assignments on proposed hypotheses; otherwise the perplexity of the task is much too high for 
practical recognition applications. 

This paper  describes a natural  language system, TINA, which addresses many of these issues. The 
g rammar  is constructed by converting a set of context-free rewrite rules to a form that  merges common 
elements on the right-hand side (RHS) of all rules sharing the same left-hand side (LHS). Elements on the 
LHS become parent nodes in a family tree. Through example sentences, they acquire knowledge of who 
their children are and how they can interconnect. Such a transformation permits considerable structure 
sharing among the rules, as is done in typical shift-reduce parsers [3]. Probabilities are established on arcs 
connecting pairs of right siblings rather than on rule productions. We believe this is a more reasonable 
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way to use probabilities in a grammar. Context-dependent constraints to deal with agreement and gaps are 
realized by passing features and flags among immediate relatives. 

GENERAL DESCRIPTION 

TINA is basically a context-free grammar, implemented by expansion at run-time into a network struc- 
ture, and augmented with flags/parameters that activate certain filtering operations. The grammar is built 
from a set of training sentences, using a bootstrapping procedure. Initially, each sentence is translated by 
hand into a list of the rules invoked to parse it. After the grammar has built up a substantial knowledge 
of the language, many new sentences can be parsed automatically, or with minimal intervention to add a 
few new rules incrementally. The arc probabilities can be incrementally updated after the successful parse 
of each new sentence. 

Th ree  Context-free Rewri te  Rules: 

NP ==> ARTICLE NOUN 
NP ==> ARTICLE ADJECTIVE NOUN 
NP ==> ARTICLE ADJECTIVE ADJECTIVE NOUN 

The Resulting Probabilistic Network: 

Figure 1: Illustration of Process to Convert Context-free Rules to  probabilistic Network Form. 

Figure 1 illustrates the process of converting a set of context-free rules to a probabilistic network structure 
of grammar nodes. All rules with the same LHS are combined to  form a structure describing possible 
interconnections among children of a parent node associated with the left-hand category. A probability 
matrix connecting each possible child with each other child is constructed by counting the number of times 
a particular sequence of two siblings occurred in the RHS's of the common rule set, and normalizing by 
counting all pairs from the particular left-sibling to any right sibling. Two distinguished nodes, a START 
node and an END node, are included among the children of every grammar node. A subset of the grammar 
nodes are terminal nodes whose children are a list of vocabulary words. 

A functional block diagram of the control strategy is given in Figure 2. At any given time, a distinguished 
subset of "active" parse nodes are arranged on a priority queue. Each parse node contains a pointer to a 
grammar node of the same name, and has access to all the information needed to pursue its partial theory. 
The top node is popped from the queue, and it then creates a number of new nodes (either children or right 
siblings depending on its state), and inserts them into the queue according to  their probabilities. If the node 



is an END node, it collects up all subparses from its sequence of left siblings, back to the START node, 
and passes the information up to the parent node, giving that node a completed subparse. The process can 
terminate on the first successful completion of a sentence, or the Nth successful completion if more than one 
hypothesis is desired. 

A parse in TINA is begun by creating a single parse node linked to the grammar node SENTENCE, 
and entering it on the queue with probability 1.0. This node creates new parse nodes with categories like 
STATEMENT, QUESTION, and REQUEST, and places them on the queue, prioritized. If STATEMENT is 
the most likely child, it gets popped from the queue, and returns nodes indicating SUBJECT, IT, etc., to the 
queue. When SUBJECT reaches the top of the queue, it activates units such as NOUN-GROUP (for noun 
phrases and associated post-modifiers), GERUND, and NOUN-CLAUSE. Each node, after instantiating 
first-children, becomes inactive, pending the return of a successful subparse from a sequence of children. 
Eventually, the cascade of first-children reaches the terminal-node ARTICLE, which proposes the words 
"the," "a," and "an," testing these hypotheses against the input stream. If a match with "the" is found, 
then the ARTICLE node fills its subparse slot with the entry (ARTICLE "the"), and activates all of its 
possible right-siblings. 

I Pop Queue ] 

. . . . .  r . . . . .  ~ , , ~ ' - ~ ' ~ , , i  ~ D ~ ? ~ , , ~ - - - - ~ -  A C C E P T !  Sentence? 

R E J E C T !  

Terminal? 
Initiate 

right siblings 
(shift) 

Initiate parent 
with children's 

solution (reduce) 

yes 

N o t e :  i n i t i a t e  = p l a c e  o n  q u e u e  
p r i o r i t i z e d  b y  p r o b a b i l i t y  

F igu re  2: Functional Block Diagram of Control Strategy. 

Whenever a terminal node has successfully matched an input word, the path probability is reset to 1.0. Thus 
the probabilities that are used to prioritize the queue represent not the total path probability but rather the 
probability given the partial word sequence. Each path climbs up from a terminal node and back down to a 
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next terminal node, with each new node adjusting the path probability by multiplying by a new conditional 
probability. The resulting conditional path probability for a next word represents the probability of that  
word in its syntactic role given all preceding words in their syntactic roles. With this strategy, a partial 
sentence does not become increasingly improbable as more and more words are added, x. 

N A T U R A L  L A N G U A G E  I S S U E S  

This section describes how TINA handles agreement constraints and long distance movement, issues that 
are usually considered to be part of the task of a syntactic parser. Movement concerns a phenomenon of 
displacing a unit from its natural position in a phrase, usually to a preceding position. Such "gaps" occur 
commonly, for instance, in questions and passive voice, as in "(Which article)i do you think I should read 
(ti)?".2 TINA is particulary effective in handling gaps. Complex cases of nested or chained gaps are handled 
correctly, and most ill-formed gaps are rejected. The mechanism resembles the "hold" register idea of ATN's 
[1] and the treatment of bounded domination metavariables in LFG's ([2], p. 235 if), but seems to be more 
straightforward than both of these. 

Each parse node comes equipped with ~i number of slots for holding information that  is relevant to the 
parse. Included are person and number, verb-form (root, finite, etc.) and two special slots, the current-focus 
and the float-object, that  are concerned with long-distance movement. This information is passed along 
from node to node: from parent to child, child to parent, and left-sibling to right-sibling. Certain nodes have 
the power to adjust the values of these features. The adjustment may take the form of an unconditional 
override, or it may be a constraint that must have a non-null union with the value for that feature passed 
to the node from its relative, as will become clear in the next section. 

V E R B - F O R M  A N D  A G R E E M E N T  

Certain nodes have special powers to set the verb-form either for their children or for their right-siblings. 
Thus, for example, HAVE as an auxilliary verb sets verb-form to past-participle for its right-siblings. The 
category GERUND sets the verb-form to present-participle for its children. Whenever a PREDICATE node 
is invoked, the verb-form has always been set by a predecessor. 

Certain nodes specify person/number restrictions which then propagate up to higher levels and back 
down to later terminal nodes. Thus, for example, A NOUN-PL node sets the number to [PL], but only if 
the left sibling passes to it a description for number that includes [PL] as a possibility (otherwise it dies, as 
in "each boats").  This value then propagates up to the SUBJECT node, across to the PREDICATE node, 
and down to the verb, which then must agree with [PL], unless its verb-form is marked as non-finite. A more 
complex example is a compound noun phrase, as in "Both John and Mary have decided to go." Here, each 
individual noun is singular, but  the subject expects a plural verb (have rather than has). TINA deals with 
this by making use of a node category AND-NOUN-PHRASE, which sets the number constraint to [PL] for 
its parents, and blocks the transfer of number information to its children. The O BJECT node blocks the 
transfer of any predecessor person/number information to its children, reflecting the fact that  verbs agree in 
person/number with their subject but not their object. 

G A P S  

The mechanism to deal with gaps involves four special types of grammar nodes, identified as generators, 
activators, blockers, and absorbers. Generators are parse nodes whose grammatical category allows them 
to fill the current-focus slot with the subparse returned to them by their children. The current-focus is 
passed on to right-siblings and their descendents, but not to parents, and thus effectively reaches nodes that 

1 Some modif ica t ion  of th i s  scheme will be  necessary  when  the input s t r e a m  is no t  de terminis t ic .  See [4] for a d iscuss ion of 
these  very i m p o r t a n t  issues regard ing  scoring in a best-f i rs t  search. 

2 Which  article, the object of the verb "read," ha s  been pul led out of place and moved to t he  f ront  of  the  ques t ion .  
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are c-commanded by the generator and its descendents [5,6]. Activators are nodes that  move the current- 
focus into the float-object slot. They also require that the float-object be absorbed somewhere among their 
descendants. Blockers (such as SUBJECT) are nodes that block the transmission of the float-object to their 
children. Finally, absorbers are allowed to use the float-object as their subparse. 

A simple example will help explain how this works. For the sentence "(How many pies)/ did Mike buy 
(tl)?" as illustrated by the parse tree in Figure 3, the Q-SUBJECT "how many pies" is a generator, so it fills 
the current-focus with its subparse. The DO-QUESTION is an activator; it moves the current-focus into the 
float-object position. Finally, the object of "buy," an absorber, takes the Q-SUBJECT, as its subparse. The 
DO-QUESTION refuses to accept any solutions from its children if the float-object has not been absorbed. 
Thus, the sentence "How many pies did Mike buy the pies?" would be rejected. Furthermore, the same 
DO-QUESTION node deals with the sentence "Did Mike buy the pies?," except in this case there is no 
current-focus and hence no gap. 

More complicated sentences involving nested or chained traces, are handled staightforwardly by this 
scheme. For instance, the sentence "(Which hospital)./ was (Jane)/ taken (ti) to (t./)?" can be parsed 
correctly by TINA, identifying "Jane" as the object of "taken" and "which hospital" as the object of "to." 
This works because the VERB-PHRASE-P-O, an activator, writes over the float-object "Which hospital" 
with the new entry "Jane," but only for its children. The original float-object is still available to fill the 
OBJECT slot in the following prepositional phrase. 

The example used to illustrate the power of ATN's [1], "John was believed to have been shot," also 
parses correctly, because the OBJECT node following the verb "believed" acts as both an absorber and a 
(re)generator. Cases of crossed traces, which are blocked by the Strict Cycle Condition and the Subjacency 
Condition in the Government/Binding rule system [7] are automatically blocked here because the second 
current-focus gets moved into the float-object position at the time of the second activator, overriding the 
preexisting float-object set up by the earlier activator. The wrong float-object is available at the position of 
the first trace, and the parse dies, as in the following agrammatical sentence: 

*(Which books)/ did you ask John (where)j Bill bought (tl) (tj)? 

SENTENCE 

I 
QUESTION 

Q-SUBJECT 

HOW 

I 
H o w  

QUANTIFIER NOUN-PL 

I I 
many pies 

DO-QUESTION 

DO , SUBJECT 

I 
NOUN-GROUP 

I 
NOUN-PHR/~E 

I 
PROPER-NOUN 

I 
d id  Mike  

PREDICATE 

VERB-PHRASE-IO 

VBIO OBJECT 

I I 
buy Q-SUBJECT 

F igu re  3: Example of a Parse Tree Illustrating a Gap. 

172 



The current-focus slot is not restricted to nodes that represent nouns. Some of the generators are 
adverbial or adjectival parts-of-speech (POS). An absorber checks for agreement in POS before it can accept 
the float-object as its subparse. As an example, the question, "(How oily)i do you like your salad dressing 
(ti)?" contains a Q-SUBJECT "how oily" that  is an adjective. The absorber PRED-ADJECTIVE accepts 
the available float-object as its subparse, but only after confirming that  POS is adjective, as shown in the 
parse tree in Figure 4. 

The current-focus has a number of other uses besides its role in movement. It plays an important part in 
identifying the subject of verbs and in establishing the references for pronouns. For a complete description 
of these and other topics, the interested reader is referred to [4]. 

HOW ADJECTIVE 

I I 
How oily 

SENTENCE 

I 

DO SUBJECT PREDICATE 

I i 
PERSONAL-PRONOUN VERB-PHRASE-OA ....-------------7"-----.---... 

VBOA OBJECT PRED-ADJECTIVE [ 
NOUN-GROUP 

I 
NOI.JN-PHI~E 

POSSESSIVE 

you like your Q-SUBJECT 

NOUN-MOD NOUN-G 

I 
NOUN-G 

I 
salad dressing 

F i g u r e  4: Parse Tree for the sentence, "How oily do you like your salad dressing?" 

E V A L U A T I O N  M E A S U R E S  

This section addresses several distinct performance measures for a grammar, including coverage, over- 
generation, portability, perplexity and trainability. Coverage/overgeneration are concerned with the degree 
to which the grammar is able to capture appropriate generalities while rejecting ill-formed sentences. Per- 
plexity, roughly defined as the geometric mean of the number of alternative word hypotheses that may follow 
each word in the sentence, is of particular concern in spoken language tasks. Portability and trainability 
concern the ease with which an existing grammar can be ported to a new task, as well as the amount of 
training data necessary before the grammar is able to generalize well to unseen data. 

To address these issues, we used two sets of sentences. The first set is the 450 compact acoustic-pho,etic 
sentences of the TIMIT database [8]. These sentences represent a fairly complex syntax, including questions, 
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passive voice, compound and complex sentences, relative clauses, subjunctive form, comparatives, etc. They 
represent a semantically unrestricted space, which makes it hard to use them for tests of constraint reduction 
due to semantic filtering. The second set of sentences has become popular in the DARPA speech research 
community for both speech recognition and natural language processing applications. They concern a naval 
Resource Management  (RM) task, and are fairly restrictive semantically. A particular subset of 791 desig- 
nated training sentences and 200 designated test sentences from this task have been selected by researchers 
at Bolt Beranek and Newman, Inc. for studies in natural  language. We have used these two sets for testing 
portability, perplexity and coverage. 

One of the unique aspects of TINA is that  a grammar  can be acquired automatically from a set of parsed 
sentences. A typical procedure is to gradually build up the rule system by parsing new sentences one by 
one, introducing new arcs as needed. Once a full set of sentences has been parsed in this fashion, the parse 
trees from the sentences are automatically converted to the set of rules used to generate each sentence. The 
training of both the rule set and the probability assignments is established directly from the provided set of 
parsed sentences; i.e. the parsed sentences are the grammar.  

We took advantage of this feature to test the system's capability of generalizing to unseen da ta  from a 
small set of sentence examples. Since there were only 450 sentences in the T I M I T  task, we were unwilling 
to set aside a portion of these as designated test sentences. Instead, we built a g rammar  that  could parse 
all of the sentences, and then generated a subset grammar  from 449 of the sentences, testing this g rammar  
for coverage on the remaining one. We cycled through all 450 sentences in this fashion. 

Our experiments were conducted as follows. We first built a grammar  from the 450 T I M I T  sentences. 
We tested coverage on these sentences using the above jackknifing strategy. We assessed overgeneration 
by generating sentences at random from the T I M I T  grammar,  checking whether these sentences were well- 
formed syntactically. We then tested portability by beginning with the g rammar  established from the T I M I T  
task and then deriving a grammar  for the 791 designated training sentences of the RM task. Within this 
task it was possible to make use of semantic categories, particularly within noun phrases, in order to reduce 
perplexity. We measured both perplexity and coverage on the remaining 200 test sentences of this task, 
using a g rammar  built automatically from the 791 parsed training sentences. 

C O V E R A G E  W I T H I N  T I M I T  

The result of the jackknifing experiment was that  75% of the unseen sentences were successfully parsed 
based on structures seen in the remaining 449 sentences. In most cases where the system failed, a single 
unique form occurred somewhere in the unseen sentence that  had not appeared in any of the other sentences, 
as illustrated in Table 1. We do not mean to suggest that  a g rammar  should not be able to handle such 
forms; however, we are encouraged that  three quarters of the sentences could parse based on such a small 
amount of training data. I t  suggests that  the system can learn generalizations fairly quickly. 

T a b l e  1: Some examples of sentences that  failed in the jackknife experiment.  

as-as construction: 

rather x than y: 

why predicate: 

Withdraw only as much money as you need. 

I 'd  rather not buy these shoes than be overcharged. 

Why buy oil when you always use mine? 

triple verb: Laugh, dance, and sing, if fortune smiles on you. 

"are both": The patient and the surgeon are both recuperating from the 
lengthy operation. 

adjunct as subject: Right now may not be the best t ime for business mergers. 

An example of a sentence that succeeded is given in Table 2, along with a list of sentences that  could be 
used to build the portions of the parse tree necessary for the successful parse. The parse of this sentence 
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is given in Figure 4. Because of the sharing of structures among rules with the same LHS, the system is 
capable of synthesizing new rules from pieces of other rules, which allows it to learn more quickly. 

Ta b l e  2: Example of generalization capability of parser. 

N e w  P a r s a b l e  Sen t ence :  
"How oily do you hke your salad dresssing?" 

Useful sentences in training set: 

Q-subject as Adjective: "How permanent are their records?" 

Q-subject Do-question: "How do oysters make pearls?" 

Verb Object Predicate-adjective: "Calcium makes bones and teeth strong." 
Possessive Noun-mod Noun: Gwen planted green beans in her vegetable garden. 

O V E R G E N E R A T I O N  

The issue of overgeneration is extremely important for spoken language tasks, because of the need to 
keep perplexity as low as possible. TINA can be run in generation mode, where, instead of proposing 
all alternatives at a decision point, a random number generator is used to select a particular decision. 
Generation mode is an extremely useful tool for discovering errors in the grammar. Randomly generated 
sentences are typically syntactically correct but semantically anomalous. Occasionally an ill-formed sentence 
is generated, due to inappropriate generalities in the rules. Usually the situation can be corrected through 
rule modification. 

Since all of the arcs have assigned probabilities, the parse tree is traversed by generating a random 
number at each node and deciding which arc to take based on the outcome, using the arc probabilities to 
weight the alternatives. Some examples of sentences generated in this way are given in Table 3. While many 
of these sentences are clearly nonsense, due to the complete absence of semantic constraint, they all appear 
to be syntactically representative of the language. It is clear that  proper semantic constraint would greatly 
decrease the perplexity, although, given the rich semantic base of the 450 sentences, it is not reasonable 
to expect to build a suitable semantic component for them. Applying semantic constraint appropriate in a 
sublanguage that a natural language system can interpret, however, is a much more feasible undertaking. 

Ta b l e  3: Some sample sentences generated by the parser. 

Wash, of course, but puree the high hats and article colleges straight ahead. 
How did the income of gold open the algebraic hit? 
A child of execution stole the previous attitude. 
Which tunafish would lots of the muscles smash? 
Make a scholastic marriage; then only get ski fangs under a medical film. 
Whenever a simple perfume must diminish near stew, enter. 
It is fun to pledge to break down. 
Hyenas might be used to eat every coach. 
The screen is surely blistered occasionally. 

P O R T A B I L I T Y  

We tested ease of portability for TINA by beginning with a grammar bulit from the 450 TIMIT sentences 
and then deriving a grammar for the RM task. These two tasks represent very different sentence types. For 
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instance, the overwhelming majority of the T I M I T  sentences are statements,  whereas there are no statements 
in the RM task, which is made up exclusively of questions and requests. The process of conversion to a new 
grammar  involves parsing the new sentences one by one, and adding context-free rules whenever a parse fails. 
The person entering the rules must be very familiar with the grammar  structure, but for the most part  it is 
straightforward to identify and incrementally add missing arcs. The parser identifies where in the sentence 
it fails, and also maintains a record of the successful partial parses. These pieces of information usually are 
adequate to pinpoint the missing arcs. It  required less than one person-month to convert the grammar  from 
T I M I T  to the RM task. 

P E R P L E X I T Y  A N D  C O V E R A G E  W I T H I N  a M  T A S K  

We built a subset g rammar  from the 791 parsed RM training sentences, and then used this g rammar  to 
test coverage and perplexity on the unseen 200 test sentences. The g rammar  could parse all of the training 
sentences and 78.5% of the test sentences. We are unwilling to examine the test sentences, as we may be 
using them for further evaluations in the future. Therefore, we cannot yet assess why a particular sentence 
failed, or whether the parse found by the grammar  was actually the correct parse. 

A formula for the test set perplexity is [9]: 

1 N 

- ~ ~ log2P(wilwi-x, ...wO 
Perplexity = 2 i=1 

where the wi are the sequence of all words in all sentences, N is the total  number of words, including an "end" 
word after each sentence, and P(wilwl-1, . . .wl)  is the probability of the ith word given all preceding words. 3 
If all words are assumed equally likely, then P(wilwi_l ,  ...wl) can be determined by counting all the words 
that  could follow each word in the sentence, along all workable partial  theories. If the g rammar  contains 
probability estimates, then these can be used in place of the equally-likely assumption. If  the g rammar ' s  
estimates reflect reality, the estimated probabilities will result in a reduction in the total  perplexity. 

An average perplexity for the 157 test sentences that  were parsable was computed for the two conditions, 
without (Case 1) and with (Case 2) the estimated probabilities. The result was a perplexity of 374 for Case 
1, but  only 41.7 for Case 2. This is with a total  vocabulary size of 985 words, and with a g rammar  that  
included several semantically restricted classes such as SHIP-NAME and READINESS-CATEGORY.  The 
incorporation of arc probabilities reduced the perplexity by a factor of nine, a clear indicator that  a proper 
mechanism for utilizing probabilities in a grammar  can help significantly. 

D I S C U S S I O N  

This paper  describes a new grammar  formalism that  addresses issues of concern in building a fully 
integrated speech understanding system. The grammar  includes arc probabilities reflecting the frequency 
of occurrence of the syntactic structures within the language. These probabilities are used to control the 
order in which hypotheses are considered, and are trained automatically from a set of parsed sentences, 
which makes it straightforward to tailor the grammar  to a particular need. Ultimately, one could imagine 
the existence of a very large grammar  that  could parse almost anything, which would be subsetted for a 
particular task by simply providing it with a set of example sentences within that  task. 

The issue of semantic analysis has not yet been dealt with properly within TINA. We were able to 
achieve significant perplexity reduction by defining some semantically restricted classes, particularly within 
noun phrases, but this is probably not the appropriate way to represent semantic constraint. I would 
rather see semantic filters introduced through co-occurrence data  on syntactic pairs like Adjective-Noun and 
Subject-Verb, adopting methods similar to those proposed in [10,11]. 

3in the case of TINA,  all  words up  to the  current  word wi th in  each sentence are  re levant .  
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At the time a set of word candidates is proposed to the acoustic matcher of a recognizer, all of thc 
constraint available from the restrictive influence of syntax, semantics, and phonology should have already 
been applied. The syntactic parse tree of TINA can be used to express other constraints ranging from 
acoustic-phonetic to semantic and pragmatic. The syntactic node would contain slots for various kinds of 
constraint information - syntactic filters such as person/number and verb-form, semantic filters such as the 
permissible semantic categories for the subject/object  of the hypothesized verb, and acoustic-phonetic filters 
(for instance, restricting the word to begin with a vowel if the preceding word ended in a flap). As the parse 
tree advances, it accumulates additional constraint filters that further restrict the number of possible next- 
word candidates. Thus the task of the predictive component is formulated as follows: given a sequence of 
words that has been interpreted to the fullest capability of the syntactic/semantic/phonological components, 
what are the likely words to follow, and what are their associated a priori probabilities? 

While TINA's terminal nodes are lexical words, I believe that the nodes should continue down below the 
word level. Prefixes and suffixes alter the meaning/part-of-speech in predictable ways, and therefore should 
be represented as separate subword grammar units that can take certain specified actions. Below this level 
would be syllabic units, whose children are subsyllabic units such as onset and rhyme, finally terminating 
in phoneme-like atomic constituents. Acoustic evidence would enter at several stages, hnpor tant  acoustic 
matches would take place at the terminal constituents, but duration and intonation patterns would contribute 
to scores in nodes at many higher levels of the hierarchy. 

One issue that has not been addressed here but which I feel is very important is the notion of a fully 
automatic training capability. TINA trains automatically from a set of parsable sentences, but when a 
sentence fails to parse there is no recourse except human intervention to provide new rules. One possibility 
is to generate some new rules automatically by applying meta-rules similar to those used in the Unification 
framework, as in the generation of passive voice forms for verbs. Berwick's research in the area of automatic 
language acquisition [12] represents an important effort along these lines as well, and it is likely that some 
of his ideas could be extended to apply in TINA's framework. 

We plan to integrate TINA with the SUMMIT speech recognition system [13] shortly. Two important 
issues are 1) how to combine the scores for the recognition component and the predictive component of the 
grammar, and 2) how to take advantage of appropriate pruning strategies to prevent an explosive search 
problem. In the case of the first problem, we would need to modify the mechanism for using path probabilities 
in TINA, in order to deal with the nondeterministic nature of the acoustic evidence. With regard to the 
second problem, each parse node in the tree can prune all but the best-scoring equivalent path by maintaining 
a record of all solutions returned to it by its children, and checking against this list whenever a new solution 
comes in. With this chart in place, there would not be a duplication of effort for paths beyond that point. 
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