
A Flexible Interface for Linking Applications to
Penman's Sentence Generator

Robert T. Kasper
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292 U.S.A.

Abs t r ac t

The Penman text generation system has been used within several different experimental application
domains, demonstrating that it provides the basis for an adaptable general purpose text generation
capability. Linking with these applications also indicated several ways that Penman's interface with
applications could be improved. Penman's interface with applications is described, focusing on SPL, a
newly developed sentence plan language. SPL is a notation that can be used by text planning programs
to specify plans for sentences at multiple levels of abstraction and varied amounts of detail. Sentence
plans are interpreted with respect to a collection of predefined knowledge sources, thereby minimizing
the size and complexity of inputs that must be dynamically constructed by the application to generate
individual sentences.

1 I n t r o d u c t i o n

Penman is designed as a domain-independent text generator that can be installed in an application system
to generate text for the application on demand. Motivating this design is the hypothesis that a significant
amount of knowledge about language and how it is produced can be re-used in different application domains.
Assuming that this hypothesis is correct, the construction of an effective interface between a general-purpose
text generator and application programs is a significant problem to be solved in text generation research.
Penman 's interface with applications is the subject of this report, focusing on how it has been designed to
achieve a high degree of flexibility.

In designing Penman's interface, we faced the following dilemma: how to make the system easy to use by
an application programmer without compromising its expressive power. Penman ' s g rammar can control
several hundred different (semantic) features. If the application program were required to specify values for
all of these features for every sentence to be generated, the system would be too complex for most practical
purposes. If multiple texts are to be generated for the application, the interface can be made more efficient
by factoring it into two components:

1. preparatory knowledge sources: making knowledge of the application domain available to the generator;

2. demands for text: inputs specifying information to be expressed in each particular sentence.

By installing various preparatory knowledge sources for each application domain, the size and complexity of
inputs that must be dynamically constructed to generate individual sentences can be minimized.

153

Sentence
Application Generator

Program

INTERFACE--i m,.
NOTATION

TEXT
'~ IP 'Q UTP UT

Figure 1: Linking an Application to Per~man.

2 Bas ic D e s i g n of the Interface

The principal components £nd sources of information used by Penman are shown in Figure 1. This diagram
shows only those components that are necessary to generate one sentence at a time, although the same design
has been augmented to generate coherent paragraphs. We describe first the components that are provided
by Penman, and comprise its knowledge about the (English) language. Then, we describe those components
whose contents depend on the application.

2 .1 R e s o u r c e s P r o v i d e d b y P e n m a n

G r a m m a r : Penman's sentence generator is based on Nigel (Mann & Matthiessen 83), a large systemic-
functional grammar of English based primarily on the work of Halliday (Halliday 85). Nigel is a network
of interdependent points of minimal grammatical contrast, called systems. Each system defines a
collection of alternatives, called grammatical features, that specify a particular aspect of a sentence (e.g.,
active or passive). The semantics of the Nigel grammar is defined by a set of inquiries that control
choices of grammatical features by acquiring information from the knowledge sources in Penman's
operating environment.

Basic Lexicon: The basic lexicon provided by Penman contains the definitions of almost all closed-
class words (e.g., prepositions, auxiliary verbs), and other frequently used words (approximately 900
root words). The organization of Penman's lexicon is described by (Cumming & Albano 86).

Uppe r Model: Penman must be able to treat the symbols given in demands for text appropriately
(for example, actions are typically expressed as verbs and objects as nouns). Therefore these symbols
must have some definition in terms of Penman's taxonomy of knowledge. This taxonomy is called
the upper model, and it contains abstract categories that reflect grammatical distinctions made in
English. The upper model is maintained as a property-inheritance network, using the LOOM knowledge
representation system (MacGregor & Bates 87); it has also been encoded in several other frameworks.

2 .2 R e s o u r c e s P r o v i d e d b y S p e c i f i c A p p l i c a t i o n s

These are the preparatory knowledge sources that identify those expressive options in English vocabulary
and grammar that can be used to represent information from a particular application domain.

• Lexical I t e m Definitions: The lexicon should contain definitions of any words (with the exception
of proper names) that will be generated from the vocabulary of the application domain. Penman

154

provides a programmed tool (Cumming & Albano 86) to help application developers define words with
appropriate grammatical features so that they are under the full control of Penman's grammar.

D o m a i n Mode l : The domain model is a taxonomy of knowledge that is specific to the application
domMn. In general, the categories of the domain model are more specific than those of the upper
model. When a category of some application domain is defined to be more specific than an upper
model category, Penman is able to make inferences concerning how the application category might be
expressed in English. Most applications that are sophisticated enough to need a text generator require
such a model as a natural part of their work, either explicitly or implicitly (e.g., the field types and
the relations among them in relational data bases).

- Links to t h e u p p e r mode l : All domain model concepts and relations used in demands for text
by the application must specialize some concept or relation in Penman's upper model.

- Links t o t h e lex icon: Any number of lexical items may be associated with a domain model
concept, and these items will be used by Penman when they have features that do not conflict with
other constraints imposed by the sentence plan or grammar. It is not necessary to provide lexical
associations for every concept of the domain model, but concepts without any lexical associations
are only be expressible using words that are associated with more general concepts.

3 Experience with the Basic Design

Penman was used during 1988 within several projects at the Information Sciences Institute as an experimental
English text generator in the following different application domains:

• Navy Pacific Fleet Briefing (CINCPAC): used by the Integrated Interfaces project (Arens et al. 88) to
report facts from a database about the positions and activities of ships;

• Digital Circuit Diagnosis (DCD): used by the Explainable Expert Systems project (Swartout 83) to
describe electronic components and actions suggested by an expert system to repair them;

• Program Enhancement Advisor (PEA): used by the Explainable Expert Systems project to describe
potential improvements to computer programs;

• German-English Machine Translation: used in cooperation with the Eurotra-D project (Bateman et
al. 89) to produce English translations of German text.

These different applications demonstrated that Penman provides the basis for an adaptable general-purpose
text generation capability. They also indicated several ways that Penman's interface with applications could
be improved. In a case study of linking the DCD application to Penman, it was found that substantial effort
was spent on two tasks:

1. subordinating the application domain model to Penman's upper model;

2. constructing input specifications for Penman's sentence generator.

The first task was difficult mostly because application programmers are likely to be unfamiliar with the
upper model. To overcome this difficulty, descriptions of the upper model hierarchy have been encoded in
all upper model construction tool. This tool traverses the upper model hierarchy, under guidance of the
application programmer, to place domain model concepts under appropriate upper model concepts.

The second task was difficult because Penman's former input notation (see Sondheimer & Nebel 86) proved
to be cumbersome, requiring all information to be stated in a form similar to the predicate calculus. Although
it provided a strong foundation for formal reasoning, the predicate calculus style of notation was relatively
inflexible. Some linguistic constraints could not be stated directly, and other kinds of information had to be
stated redundantly.

Hence we developed SPL, a new interface notation with the following characteristics:

155

* constraints can be stated at multiple levels of abstraction: both propositional content and linguistic
features can be selectively controlled;

* more information can be predefined, including linguistic features that rarely vary in the application
domain (e.g., default to present tense), and frequently used clusters of information (e.g., how to refer
to an object by a proper name);

* constraints can be separately specified on different occurrences of an entity.

4 SPL: A N e w S e n t e n c e P l a n N o t a t i o n

SPL representations are lists of terms describing the types of entities and the particular attributes of those
entities to be expressed in English. The attributes of SPL terms provide control at several levels of ab-
straction. At the two most basic levels, attributes may specify semantic relations to be expressed from the
application's knowledge base, or they may directly specify responses to Penman's inquiries, which determine
grammatical features of sentences.

The syntax of the SPL notation is defined in Figure 2, using BNF-style productions (note that A* denotes
zero or more occurrences of A, and A + denotes one or more occurrence of A). The SPL notation is for-
mally similar to the typed feature logic developed by Smolka (Smolka 88) in a similar context of sharing
information between language processing and knowledge representation systems. The formal properties of
this kind of notation provide a sound method for merging partial descriptions together into more complete
descriptions, thus making it straightforward to merge predefined information with information contained in
the specification for a particular sentence.

Plan --~ Term + Type --+ ConceptName I (C°ncep tName+)

Term ~ (Variable / Type Attribute*) I Attribute ~ Keyword Term
Variable I
Constant I Keyword --~ RelationName I
(Term+) I MacroName I
(:and Term +) I InquiryName I
(: or Term +) InquiryName (Variable +) I

SpecialKeyword

Figure 2: Syntax of the SPL notation.

4.1 A Simple Example

(e l / enroute
:actor (s2 / ship :name kennedy)
:destination.r (p3 / port :name san-diego)
:ebeg.r (d4 / date :day.r 20 :month.r 2)
:theme d4
:tense past)

Figure 3: A sentence plan for: On 2/20 the Kennedy was en route to San Diego.

A simple example of the SPL notation is shown in Figure 3. The main term of this plan informs Penman
that it should generate a sentence to express e l , which is a variable denoting an entity in the application's
knowledge base. The type of e l is en rou te , the name of a concept in the domain model that specializes the

156

Material-Process concept (i.e., a kind of action) of Penman's upper model. Penman uses this information
about the type of e l to choose an appropriate verb, be en route, for the sentence.

The term describing e l also contains five attributes. The interpretation of attributes depends on the type
of their keywords. The keywords : a c t o r , : d e s t i n a t i o n . r and : e b e g . r are the names of relations in the
domain model. These three attributes inform Penman that the action e l has an actor denoted by s2, a
destination denoted by p3, and a time denoted by d4. : theme is a special keyword that may optionally be
used to control thematization. In this case, its value specifies that the phrase referring to d4 should come at
the front of the generated sentence. The keyword : t e n s e is the name of a macro which expands the value
pa s t into a collection of attributes that specify responses to some of Penman's inquiries, as described below.

4 . 2 M a c r o s

The SPL notation Provides macros to allow predefinition of frequently used clusters of information. Penman's
grammar can control a large number of grammatical features when it builds sentences. In many cases, the
grammar is capable of expressing far more delicate shades of meaning than a particular application may
require. Rather than require that the application repeatedly specify all the necessary inquiry responses
to generate some grammatical phenomenon, Penman makes it possible to use macros to abbreviate the
specification at a level of detail that is supported by the application.

For example, in order to specify English tense in a fully general way, one must specify ordering relations
between three times: the actual speaking time, the event time, and the time of reference with which the
event is contrasted. For many applications, such delicate control of temporal relations is not required; some
distinguish simply between present and past. For this case, we define a macro called : t e n s e that takes
the values p r e s e n t or p a s t and expands them into the appropriate inquiry responses. Penman provides a
predefined package of common macro keywords, such as the macro for tense described above. It also provides
functions for creating new macros that can be used by an application to customize its interface to Penman.

4 . 3 D e f a u l t s

Often it is useful to be able to predefine features of sentences that do not change frequently within an
application domain. To enable this, Penman provides a facility for defining default values for any of the
inquiries that it uses to obtain information from an application. Many of Penman's inquiries come supplied
with initial default values that will be used unless specific information in a sentence plan overrides them.

For example, consider the sentence plan given in Figure 3. It does not contain any specification of whether the
sentence should be a statement, a question, or a command, rior does it contain any specification of whether
it should express positive or negative polarity. Penman's predefined default values provide the necessary
inquiry responses to generate a statement with positive polarity. In addition to the initial defaults supplied
by Penman, functions are provided to enable the application to dynamically define new default values in
packages called default environments. Default environments are maintained in a stack-like memory, with
the Penman-supplied defaults at the bottom. The stack-like organization of default environments makes it
possible for an application to temporarily change default settings for a particular portion of a text, and then
return to the default environment that was previously in effect.

4 . 4 I n t e r p r e t a t i o n o f S e n t e n c e P l a n s

A sentence plan in the SPL notation is interpreted in two phases. First, the plan is pre-processed and trans-
formed into an internal representation. This pre-processing step includes expansion of macros, distribution
of type information to variable terms, and a check of the consistency of terms. The first term of the plan is
identified to the sentence generator as the initial unit of information to be expressed (usually as the main
clause of a sentence). Then, Penman invokes its sentence generator to produce a sentence according to the
expanded plan.

Penman 's sentence generator uses a series of inquiries to the sentence plan and other knowledge sources in

157

order to guide the generation process. Inquiries may obtain answers from several sources, according to the
following sequence:

1. S P L k e y w o r d : The sentence plan is searched for a keyword that matches the name (and, optionally,,
the parameters) of the inquiry, and the corresponding value is returned.

. k n o w l e d g e sources : Each inquiry may have an executable (i.e., lisp) function associated with it, called
an inquiry implementation, which searches knowledge sources for appropriate information. Inquiry
implementations generally obtain information from the domain and upper models about the type or
relational attributes of SPL terms.

3. a c t i ve d e f a u l t value: When the inquiry implementation returns an undefined value for the inquiry,
or when the inquiry has no implementation, the current active default value for the inquiry is used.

In general, the attributes in a SPL specification that correspond directly to linguistic distinctions, such as
inquiry responses, take precedence over other attributes, such as relations from the domain knowledge base.
In addition, all attributes contained in the SPL specification for a particular sentence take precedence over
any default values that have been defined for an inquiry.

5 C o n c l u s i o n s

Penman's interface with applications has been enhanced by the development ofSPL, a new interface notation,
and facilities to aid the definition and linking of predefined knowledge sources. These knowledge sources
include a model of the application domain, and default attributes that may be modified dynamically by the
application.

Because SPL representations may contain linguistic attributes in addition to propositional knowledge, they
are able to specify constraints on how something is expressed, when necessary, in addition to specifying
what to express. SPL also provides control at varying levels Of detail, accommodating partial specifications
that may be augmented by merging information from coreferential terms and default attr ibute values. The
flexibility of SPL makes Penman relatively easy to use for simple applications, without limiting the power
of a large general purpose grammar.

R e f e r e n c e s

Arens, Y., Miller, L., Shapiro, S.C. and Sondheimer, N.K. Automatic Construction of User-Interface Displays. In
Proceedings of the 7th A A A I Conference, St. Paul, MN, August 1988.

Bateman, J., Kasper, R., Schfitz, J. and Steiner, E. Interfacing an English Text Generator with a German Machine-
Translation Analysis. In Proceedings of the 4th European AGL Con]erenee, Manchester, England, April 1989.

Gumming, S. and Albano, R. A Guide to Lexical Acquisition in the JANUS System. USC/Information Sciences
Institute, Research Report RR-85-162, February 1986.

Halliday, M.A.K. Introduction to Functional Grammar. Edward Arnold Press: London, England, 1985.

MacGregor, R. and Bates, R. The Loom Knowledge Representation Language. In Proceedings o] the Knowledge-
Based Systems Workshop, St. Louis, MO, April 1987. Also available as USC/ISI Research Report RS-87-188.

Mann, %¥.0. and Matthiessen, C.M.I.M. Nigel: A Systemic Grammar for Text Generation. In Systemic Perspectives
on Discourse: Selected Papers Papers]rom the Ninth International Systemics Workshop, Benson, R. and
Greaves, J. (eds), Ablex: London, England, 1985. Also available as USC/ISI Research Report RR-83-105.

Smolka, G. A Feature Logic with Subsorts. LILOG Report 33, IBM Deutschland, Stuttgart, West Germany, 1988.

Sondheimer, N. K. and Nebel B. A Logical-Form and Knowledge-Base Design for Natural Language Generation. In
AAAI-86: Proceedings of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA, 1986.

Swartout, W. R. XPLAIN: A System for Creating and Explaining Expert Consulting Systems. Artificial Intelligence,
Vol. 21:3, pp. 285-325, 1983.

158

