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ABSTRACT

Contextual knowledge has traditionally been used in multi-sentential textual understanding systems. In
contrast, this paper describes a new approach toward using contextual, dialog-based knowledge for
speech recognition. To demonstrate this approach, we have built MINDS, a system which uses contextual
knowledge to predictively generate expectations about the conceptual content that may be expressed in a
system user’s next utterance. These expectations are expanded to constrain the possible words which may
be matched from an incoming speech signal. To prevent system rigidity and allow for diverse user
behavior, the system creates layered predictions which range from very specific to very general. Each
time new information becomes available from the ongoing dialog, MINDS generates a different set of
layered predictions for processing the next utterance. The predictions contain constraints derived from
the contextual, dialog level knowledge sources and each prediction is translated into a grammar usable by
our speech recognizer, SPHINX. Since speech recognizers use grammars to dictate legal word sequences
and to constrain the recognition process, the dynamically generated grammars reduce the number of word
candidates considered by the recognizer. The results demonstrate that speech recognition accuracy is
greatly enhanced through the use of predictions.

OVERVIEW

One of the primary problems in speech recognition research is effectively analyzing very large, complex
search spaces. As search space size increases, recognition accuracy decreases. Previous research in the
speech recognition area illustrates that knowledge can compensate for search by constraining the
exponential growth of a search space and thus increasing recognition accuracy [12,4,8). The most
common approach to constraining a search space is to use a. grammar. The grammars used for speech
recognition dictate legal word sequences. Normally they are used in a strict left to right fashion and
embody syntactic and semantic constraints on individual sentences. These constraints are represented in
some form of probabilistic or semantic network which does not change from utterance to utterance [2, 8].

Today, state-of-the-art speech recognizers can achieve word accuracy rates in excess of 95% when using
grammars of perplexity 30 - 60. As the number of word alternatives at each point in time increases (or as
perplexity increases) performance of these systems decreases rapidly. Given this level of performance,
recently researchers have begun using speech in computer problem solving applications. Using speech as
an input medium for computer applications has resulted in two important findings. First, the grammars
necessary to ensure some minimal coverage of a user’s language have perplexities which are an order of
magnitude larger than those used in today’s high performing speech systems [18]. Second, the use of
speech in problem solving tasks permits knowledge sources beyond the sentence level to be used to
compensate for the extra search entailed by the increased perplexities. There are two reasons why higher
level, contextual knowledge sources can be used to reduce the effective search space: first, the input does
not consist of isolated, spoken sentences; second, all input is goal directed. There are many knowledge
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sources above the sentence level. Some of these include inferring plans, using context across clausal and
sentence boundaries, determining local and global constraints on utterances and dealing with definite and
pronominal reference. Work in the natural language community has shown that these knowledge sources
are important for understanding language. The representation and use of goals and the plans to
accomplish them have received much attention in the artificial intelligence literature [13, 14, 5].
Furthermore, natural language research has demonstrated that goals, plans and context are important for
un%erSStanding implied and unexpected information as well as for providing helpful responses
[16,3,1,11,7].

While the importance of contextual, dialog-level knowledge sources has been recognized in the natural
language community, these knowledge sources have never been applied to the actual speech recognition
process. In the past, contextual, dialog level knowledge sources were used in speech to either correct
speech recognition errors [6] or to disambiguate spoken input and perform inferences required for
understanding [10, 15, 17]. In these systems, dialog knowledge was applied only to the output of the
recognizer.

In this paper, we describe the use of contextual, dialog based knowledge sources to reduce the effective
search space for words in a speech signal and report results which illustrate their effect on recognition
accuracy. Our approach uses predictions derived from the contextual knowledge sources to delimit the
possible content of an incoming utterance. These knowledge sources are integrated into a robust speaker-
independent, large-vocabulary speech recognition system. The knowledge sources are used predictively,
and are used in conjunction with traditional syntax and semantics to constrain the recognition process by
eliminating large portions of the search space for the earliest acoustic phonetic analysis. At each point in
a dialog, we predict the concepts which are likely to occur. The concepts are expanded into possible word
sequences which are combined with syntactic networks to produce a semantic grammar. To avoid system
rigidity which could result from unfulfilled predictions, we generate predictions at different levels of
specificity by using our knowledge sources opportunistically. This results in a flexible robust system
which displays graceful recognition degradation. Our approach is demonstrated in a system called
MINDS. MINDS works in a resource management domain, featuring information obtained from a
database of facts about ships in the United States Navy. The basic problem scenario involves determining
what to do about a disabled ship which is performing a specific mission. The user must determine the
impact of the damage on the mission and then determine whether to replace the ship, replace the damaged
equipment, delay the mission, etc. These decisions are made based upon the availability of other ships,
which is determined by querying the database.

The paper begins with a description of the knowledge sources used in the MINDS system and their
representation. Then the use of the knowledge sources by the recognizer is addressed. Finally, results
which show the effect of the knowledge sources on speech recognition accuracy are presented.

KNOWLEDGE SOURCES AND THEIR REPRESENTATION

The MINDS system relies upon four knowledge sources to generate layered predictions about the content
of an incoming utterance. These are dialog structure, general world knowledge, a domain model or model
of task semantics, and models of individual users.

DIALOG STRUCTURE

One of the ideas underlying the MINDS system is that tracking all information communicated (user
questions and database answers) enables a system to infer a set of user goals and possible problem solving
plans for accomplishing these goals. Once goals and plans are identified, progress can be tracked and the
system can generate predictions about what goal or plan steps could be executed next. In the convention
of Newell and Simon (1972) MINDS represents goals and plans as a hierarchically organized AND-OR
tree. This tree represents all possible abstract goals a user may have during a dialog. For example, in the
domain of dealing with disabled ships, a goal would be finding a replacement ship. Each node in the tree
is characterized by the possible subgoals into which it can be decomposed and a set of domain concepts
involved in trying to achieve the goal. The concepts associated with each node can be single or multiple
use as well as optional or mutually exclusive. The rationale for representing the combinations of concepts
which may be involved in trying to achieve a goal or plan step is that speech systems are guided by
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grammars. If one can identify possible concepts, the traditional understanding process can be reversed
and word sequences which express the concepts can be output.

The goal tree not only defines the goals, subgoals and domain concepts, but also the traversal options
available to the user. Additionally, the dialog structure permits constraints derived from previously
communicated information to be propagated to related portions of the tree. These constraints restrict
either the concepts associated with various goals or the expansion of concepts associated with goals.
Thus, by tracking progress through the goal tree, one can identify a list of possible next states and use
them to generate a set of possible concepts which could be spoken in the next utterance.

TASK SEMANTICS

The second important knowledge source is a knowledge base of domain concepts. In this data structure
we represent all domain objects and their attributes. The representation uses standard frame language
which allows inheritance and multiple relations between frames and frame slots. The domain concepts
represent everything that can be expressed by a user as well as all the relations and interrelations and
default assumptions about domain objects. Each utterance can be mapped into a combination of domain
concepts which constitute the meaning of the utterance. The domain theory or task semantics are used to
perform inferencing, as well as to restrict the concepts and concept expansions that are associated with
various nodes in the goal tree. For example, if a helicopter is disabled, it is possible for the user to locate
a replacement helicopter as opposed to locating a replacement ship, while it is not possible to borrow
equipment if a radar device is damaged.

GENERAL WORLD KNOWLEDGE

Our third knowledge source is a collection of domain independent, general world knowledge sources that
are represented as a procedures and rules. In the MINDS system, this knowledge includes determination
of what objects are in "focus” and are relevant, procedures for determining which constraints are
propagated to additional nodes in the goal tree given their relative embedding. MINDS also has
procedures for determining which objects or attributes could be used in an incomplete sentence in the next
utterance, rules for detecting when a plan fails and principles for determining when a clarification dialog
can be pursued as well as its content. Additionally, procedures are included for determining the types of
anaphoric references which can be used as well as the object available for such reference. These
knowledge based procedures are intended to limit the concepts which can be expressed in a next
utterance, to limit the syntactic methods of expressing concepts and to limit concept expansions. Thus the
set of concepts associated with a particular state in the goal tree is dynamically computed using the above
described rules and procedures. The restrictions on concept expansions are computed each time a concept
is predicted to be included in a future utterance.

USER KNOWLEDGE

Knowledge about individual user’s domain knowledge is contained in a user model. Specifically, the user
models contain domain concepts and relations between domain concepts that a user knows. These models
are represented as control structures attached to individual goal nodes in the goal tree. The control
structures further refine goal tree traversal options by specifying mutually exclusive goal states as well as
optional goal states for a particular user. Essentially they specify what information can be inferred from
other information if a user knows certain facts, and what information a user is unlikely to ask when the
concepts are foreign to the individual user.

USING THE KNOWLEDGE

The MINDS system uses the above described knowledge sources to dynamically derive constraints upon
an incoming utterance. The basic processing loop involves analyzing the last utterance and database
response to determine their significance and to track progress in the goal tree. Any constraints which can
be inferred from the input information is stored and later propagated where appropriate. Next, the system
determines the possible next goals the user might pursue given current positions in the goal tree. The list
of possible next moves includes not only reasonable extensions to existing moves, but also clarifications
and returns to previously abandoned goals. Once possible next goal states are determined, the constraints
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upon their associated concepts and their expansions are computed. Finally, the set of layered predictions
are expanded into grammars and used to guide the search for words in an incoming speech signal. In this
section we review the procedures involved in generating conceptual predictions and using the predictions
to guide recognition.

PREDICTION GENERATION

The prediction generation process involves both processing the last utterance to update the record of
which portions of the goal tree have been visited and/or completed and determining what options are
available for the user to pursue next.

To process an input utterance and its database response, we first try to determine which goal states are
targeted by the present interaction. Determination of activated goal states, or inferring a user’s plan is by
no means unambiguous. During one interaction many goals may be completed and many new goal states
may be initiated. Similarly, it is possible that a previously assumed goal state is not being pursued by the
user. To deal with these ambiguities, we use a number of algorithms. Goals that have just been
completed by this interaction and are consistent with previous plan steps are preferred. If no goals have
been completed, we prefer the activated goal states which are most likely to follow, given the active goals
at higher, more abstract levels in the hierarchy. Based on this information we select the next set of plan
steps which are most likely to be executed. This usually constitutes the second most specific set of
predictions. The set of plan steps and actions are further pruned, if possible by applying any user
knowledge represented in the control schemas attached to the goal states. The concepts associated with
this set of information are used to generate the most specific layer of predictions. To generate additional
layers of predictions beyond the two most specific described above, we maintain a list of all incomplete,
active goal states -- regardless of their relative embedding the the hierarchy. These goal states are
assessed to determine possible next moves and then used to generate additional, less restrictive layers of
predictions. This procedure continues until all active goals are incorporated into a prediction set. Thus,
goals are layered by the amount of constraint they provide as well as the reliability of the knowledge
sources used to generate them. Hence, the least restrictive set of goals includes all domain concepts.

Once the prediction layers have been determined, restrictions on the concepts associated with each of the
possible goal states are computed from the task semantics and procedures for applying prior context such
as given their placement in the goal tree, and the general world knowledge procedures for propagating
constraints and determining focus. Next, focus is used to determine objects and attributes available for
references and use of pronominal references. Finally, objects and attributes available for inclusion in a
partial, elliptical utterance are determined. This information is then used to generate the grammars and
lexicons used by the speech recognizer, as described below.

PREDICTION EXPANSION AND USE

The idea behind the MINDS system is to use dialog knowledge to reduce the amount of search performed
- by a speech recognizer and thereby reduce the number of recognition errors caused by ambiguity and
word confusion. Thus, once the layered predictions have been generated, they must be expanded into a
form which can be used to guide the speech recognition module. Since the prediction layers are
composed of sets of abstract concepts, we need to expand or translate these into sentence fragments or
word sequences that signify the appropriate conceptual meaning. Additionally, since speech recognizers
can be guided by a semantic grammar, we actually expand each layer of the predictions into a
dynamically generated semantic grammar composed of different, precompiled rewrite rules. Because
concepts themselves are also restricted by prior context, it is also necessary to supplement each grammar
with a lexicon. For example, a rewrite rule may allow any shipname but context may restrict the
shipnames to include only a few, such as Whipple and Fox. In this case, the lexicon would only include
the shipnames Whipple and Fox.

Once the predictions have been expanded into a semantic grammar, we use the grammar to guide the
speech recognition system, which in this case is a modified version of the SPHNIX system [9]. During
recognition, the speech module performs a time synchronous beam search. We trace through the active
nodes in each part of the finite state semantic grammar to control the word transitions. As the search exits
a word, it forms a set of words to transit to given the successor states in the finite state network. The
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recognizer uses the grammars in order of most specific first. If no string of words is found that exceeds a
predetermined goodness score, the signal is reprocessed with a less constraining grammar. This process
continues until an acceptable sequence of words is found.

EVALUATION

To test the ability of our layered predictions to both reduce search space and to improve speech
recognition performance, we used an independent test set. This means that the utterances processed by
the system were never before seen by the system or its developers. Additionally, the test set did not
include any clarification dialogs. We used ten speakers (8 male, 2 female) who had not been used to train
the recognizer. Each speaker read 20 sentences from adapted (to be consistent with the CMU database)
versions of three test scenarios provided by the Navy. Each of these utterances was recorded. The speech
recordings were then run through the SPHINX recognition system in two conditions:

e using the system grammar (all legal sentences)
e using the grammar from the successful prediction layer merged with all unsuccessful layers
The results can be seen in Table 1. As can be seen, the system performed significantly better with the

Recognition Performance
Constraints Used: | Grammar | Predictions
Test Set Perplexity | 2424 18.3
Word Accuracy 82.1 96.5
Semantic Accuracy| 85% 100%
Insertions 0.0% 0.5%
Deletions 8.5% 1.6%
Substitutions 9.4% 1.4%

predictions. Error rate decreased by a factor of five. Perhaps more important, however, is the nature of
the errors. In the "layered predictions” condition, 89 percent of the insertions and deletions were the word
"the". Additionally, 67 percent of the substitutions were "his" for "its". Furthermore, none of the errors
in the "layered predictions" condition resulted in an incorrect database query. Because both our database
and the Navy’s database shared the same fields and were implemented using Informix™, we could
directly assess the accuracy of the SQL database queries to Informix. Hence, semantic accuracy, defined
as a correct database query, was 100% in the "layered prediction” condition. Finally, we assessed the
percentage of false alarms, where the recognizer output a sequence of words deemed acceptable from a
prediction layer which did not contain a correct parse of the speech input. For the 30 utterances which
could not be parsed at the most specific prediction layer, there were no false alarms.

SUMMARY

The MINDS system was built to demonstrate the feasibility of using contextual, dialog-level knowledge
sources to constrain the exponential growth of a search space and hence increase speech recognition
accuracy. The results of our studies using the system indicate that such knowledge sources are effective
for dynamically reducing the number of word candidates a speech recognition system must consider when
analyzing a speech signal. As we move towards robust, interactive problem solving environments where
speech is a primary input medium, use of these knowledge sources could prove important for enhancing
system performance.
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