
PORTABILITY IN THE JANUS NATURAL LANGUAGE INTERFACE 1

Ralph M. Weischedel, Robert J. Bobrow, Damaris Ayuso, Lance Ramshaw
BBN Systems and Technologies Corporation

10 Moulton Street
Cambridge, MA 02138

ABSTRACT

Although natural language technology has achieved a high degree of domain independence through separating
domain-independent modules from domain-dependent knowledge bases, portability, as measured by effort to move
from one application to another, is still a problem. Here we describe a knowledge acquisition tool (KNACQ) that
has sharply decreased our effort in building knowledge bases. The knowledge bases acquired with KNACQ are used
by both the understanding components and the generation components of Janus.

INTRODUCTION: MOTIVATION

Portability is measurable by the person-effort expended to achieve a pre-specified degree of coverage, given an
application program. Factoring an NL system into domain-dependent and domain-independent modules is now part
of the state of the art; therefore, the challenge in portability is reducing the effort needed to create domain-dependent
modules. For us, those are the domain-dependent knowledge bases, e.g., lexical syntax, lexical semantics, domain
models, and transformations specific to the target application system.

Our experience in installing our natural language interface as part of DARPA's Fleet Command Center Battle
Management Program (FCCBMP) iUustrates the kind of portability needed if NL applications (or products) are to
become widespread. We demonstrated broad linguistic coverage across 40 fields of a large Oracle database, the
Integrated Data Base (IDB), in August 1986. A conclusion was that the state of the art in understanding was
adequate. However, the time and cost needed to cover all 400 fields of the IDB in 1986 and the more than 850 fields
today would have been prohibitive without a breakthrough in knowledge acquisition and maintenance tools.

We have developed a suite of tools to greatly increase our productivity in porting BBN's Janus NL understanding and
generation system to new domains. KREME [Abrett, 1987] enables creating, browsing, and maintaining of
taxonomic knowledge bases. IRACQ [Ayuso, 1987] supports learning lexical semantics from examples with only
one unknown word. Both of those tools were used in preparing the FCCBMP demonstratior~ in 1986. What was
missing was a way to rapidly infer the knowledge bases for the overwhelming majority of words used in accessing
fields. Then one could bootstrap using IRACQ to acquire more complex lexical items.

We have developed and used such a tool called KNACQ (for KNowledge ACQuisition). The efficiency we have
experienced results from (1) identifying regularities in expression corresponding to domain model structures and (2)
requiring little information from the user to identi~ expressions corresponding to those regularities.

1 This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by
ONR under Contracts N00014-85-C-0079 and N00014-85-C-0016. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

112

W H A T K N A C Q DOES

KNACQ assumes that a taxonomic model of the domain exists, such as that typical in many expert systems, and
assumes that it is encoded in an axiomatizable subset of KREME [Brachman, 1985]. At this point we have built
translators for transforming KEE taxonomies and PCL hierarchies into KREME structures. 2 The browsing
facilities, graphical views, and consistency checker of KREME are therefore at the disposal of the knowledge base
administrator or knowledge engineer when using KNACQ.

KEE PCL Class KB ADMINISTRATOR or
Taxonomy Hierarchy KNOWLEDGE ENGINEER

KREME L I-- ' ~ KNACQ I

Laxlcal Lax,ca, kC msnt,cs) C Domain Syntax j Model

BBN's ~ Application
END JANUS System 1
USER----I, System

Figure 1: Role of KNACQ

A•yplicatlon stem N

Using KREME, users may select any concept or role for processing. KNACQ presents the user with a few
questions and menus to elicit the English expressions used to refer to that concept or role. From the user's answers,
KNACQ creates simple structures which together with powerful general rules allow understanding of a wide range of
expressions.

To illustrate the kinds of information that must be acquired consider the examples in Figure 2. To handle these one
would have to acquire information on lexical syntax, lexical semantics, and mapping to expert system structure for
all words not in the domain-independent dictionary. For purposes of this exposition, assume that the following
words, vessel, speed, Vinson, CROVL, C3, and deploy are to be defined. A vessel has a speed of 20 knots or a
vessel's speed is 20 knots would be understood from domain-independent semantic rules regarding have and be, once
lexical information for vessel and speed is acquired. In acquiring the definitions of vessel and speed, the system
should infer interpretations for phrases such as the speed of a vessel, the vessel's speed, and the vessel speed.

The vessel speed of Vinson
The vessels speed is 5 knots
Its speed
Which vessels are deployed C37

The vessels with speed above 20 knots
Vinson has speed less than 20 knots
Which vessels have a CROVL of C37

Figure 2

2 Of course, it is not the case that every piece of knowledge statable in KEE taxonomies and PCL hierarchies has a correlate in the
axiomatizable subset of KREME. We do not guarantee that the NL interface will understand English expressions corresponding to
anything falling outside of the axiomatizable subset

113

Given the current implementation, the required knowledge for the words vessel, speed, and CROVL is most
efficiently acquired using KNACQ; names of instances of classes, such as Vinson and C3 are automatically inferred
from instances in the expert system taxonomy; and knowledge about deploy and its derivatives would be acquired via
IRACQ. That is, we recommend using IRACQ for the diverse, complex patterns of syntax and semantics arising
from verbs by providing examples of the verbs' usage, while using KNACQ for efficient acquisition of the more
regular noun phrase information (excluding verb-based constructions).

KNACQ FUNCTIONALITY

Five cases are currently handled: one associated with concepts (or frames), two associated with binary relations (or
slots), and two for adjectives. In each case, one selects a concept or binary relation (e.g., using the KREME
browser) to provide lexicalizations for that domain entity.

CONCEPTS OR CLASSES

The association of English descriptions with concepts is the simplest case. It is fundamental knowledge about
unmodified head nouns or frozen nominal compounds from which we can build more powerful examples. KNACQ
must acquire one or more phrases for a given class, and their declension, if irregular. For the concept CARRIER of
Figure 3, we provide KNACQ with the phrases carrier and aircr~t carrier, which can be treated as a frozen nominal
compound. Since both are declined regularly, no further information is required. One can provide surface vessel for
SURFACE-VESSEL in Figure 3, but that would not allow compositions, such as Count the surface and subsurface
vessels. Rather, one should define surface and subsurface as non-comparative adjectives (Section 3.4) modifying
phrases corresponding to VESSEL in order to define phrases for the concepts SURFACE-VESSEL and
SUBSURFACE-VESSEL.

Figure 3: Simple Class Hierarchy

A T T R I B U T E S

Attributes are binary relations on classes that can be phrased as the <relation> of a <class>. For instance, suppose
CURRENT-SPEED is a binary relation relating VESSEL to SPEED, a subclass of ONE-D-MEASUREMENT. An
attribute treatment is the most appropriate, for the speed of a vessel makes perfect sense. KNACQ asks the user for
one or more English phrases associated with this functional role; the user response in this case is speed. That

114

answer is sufficient to enable the system to understand the kernel noun-phrases listed in Figure 4. Since ONE-D-
MEASUREMENT is the range of the relation, the software knows that statistical operations such as average and
maximum apply to speed. The lexical information inferred is used compositionally with the syntactic rules, domain
independent semantic rules, and other lexical semantic rules. Therefore, the generative capacity of the lexical
semantic and syntactic information is linguistically very great, as one would require. A small subset of the
examples illustrating this without introducing new domain-specific lexical items appears in Figure 4. It is this
compositionality and the domain independent rules that provide the utility of KNACQ.

the speed of a vessel

KERNEL NOUN PHRASES

the vessel's speed

COMPOSITIONALLY WITH OTHER LEXICAL SEMANTICS,
SYNTACTIC RULES, AND SEMANTIC RULES

the vessel speed

Which vessels have speed above 20 knots
The carriers with speed above 20 knots
The vessels with a speed of 20 knots
Vinson has speed less than 20 knots
Eisenhower has Vinson' s speed

Carriers with speed 20 knots
The vessel's speed is 5 knots
Vinson has speed 20 knots
Which vessels have speeds
The vessel speed of Vinson

Figure 4

Their average speeds
Their greatest speed
Vinson has speed I
Itsspeed

CASEFRAME RULES

Some lexicalizations of roles do not fall within the attribute category. For these, a more general class of regularities
is captured by the notion of caseframe rules. Suppose we have a role UNIT-OF, relating CASUALTY-REPORT
(casrep) and MILITARY-UNIT. Besides asking about the unit of a casrep (the attribute use), a user will want to ask
about the casreps on a unit (the inverse direction)--this is one case where caseframe rules are needed. KNACQ asks
the user which subset of the following six patterns in Figure 5 are appropriate plus the prepositions appropriate.

1. <CASUALTY-REPORT> is <PREP> <MILITARY-UNIT>
2. <CASUALTY-REPORT> <PREP> <MILITARY-UNIT>
3. <MILITARY-UNIT> <CASUALTY-REPORT>
4. <MILITARY-UNIT> is <PREP> <CASUALTY-REPORT>
5. <MILITARY-UNIT> <PREP> <CASUALTY-REPORT>
6. <CASUALTY-REPORT> <MIIJTARY-UNIT>

Figure 5: Patterns for the Caseframe Rules

For this example, the user would select patterns (1), (2), and (3) and select for, on, and of as prepositions.
Normally, if pattern (1) is valid, pattern (2) will be as well and vice versa. Similarly, if pattern (4) is valid, pattern
(5) will normally be also. As a result, the menu items are coupled by default (selecting (1) automatically selects (2)
and vice versa), but this default may be simply overridden by selecting either and then deselecting the other. The
most frequent examples where one does not have ~e coupling of those patterns is the preposition of.

GR ADAB LE A D J E C T I V E S

Certain auribute roles have ranges that may be compared, e.g., numbers or measurements. Adjectives can be given
for these roles; assume fast is given by the user for the CURRENT-SPEED role or VESSEL discussed earlier.
KNACQ can correctly predict the comparative and superlative forms of fast. Suppose x and y are instances of

115

VESSEL. The next information needed is whether x is faster than y means x% speed is greater than y's speed or x%
speed is less than y's speed. Optionally, a threshold t can be given such that x's speed is greater than t means x is
fast (for a vessel). Additionally, one can specify antonyms for fast, such as slow. The information above would
enable understanding the expressions in Figure 6.

Is Frederick fast~ than every carrier?
How fast are the carriers?
Is Vinson fast ?
How fast is the fastest carrier?

Which vessels are slower than 20 knots?
Show the fastest vessel.
Is Vinson as fast as Frederick?

Figure 6: Examples after defining fast

NON-GRADABLE ADJECTIVES

Of the remaining types of adjectives, some correspond to refining a concept to another named concept in the
hierarchy. For instance, surface and subsurface have that property given the network in Figure 3.. In such a case,
one must indicate at the general concept, the adjective, any synonyms, and the refined concept.

Others correspond to an arbitrary restriction on a concept having no explicit refined concept in the domain model.
Though one could add such a refined concept to the hierarchy, we allow the user to state a logical form to define the
adjective as a predicate of one argument.

A case not yet covered in KNACQ is non-gradable adjectives that are predicates of more than one argument. An
example in the FCCBMP domain is mission readiness ratings, M1, M2, M3, M4, and M5. An example is
Enterprise is M2 on anti-air warfare, where both the vessel and the type of mission are arguments.

EXPERIENCE THUS FAR

There are several things we have learned even in the early stages of KNACQ's development based on porting Janus to
CASES, an expert system in DARPA's Fleet Command Center Battle Management Program (FCCBMP). In this
use of KNACQ, the original domain model pertinent to the portion requiring a natural language interface consisted
of 189 concepts and 398 roles.

First, no restructuring of that domain model was necessary, nor was any deletion required. Second, we found it
useful to define some additional concepts and roles. Certain subclasses not critical to the expert system were
nevertheless lexically significant. In total, only 123 concepts were added: 53 for classes that were treated as strings
in the expert system and 70 domain-independent concepts pertaining to time, space, events, commands, etc.
Similarly, 28 roles were added." 24 domain-independent roles and 4 domain-specific roles. In addition, some roles
were added to represent role chains that are lexically significant directly. For instance, the DISPLACEMENT of the
VESSEL-CLASS of a VESSEL is lexicalizable as the vessel's displacement. Starting from a given concept, a
procedure exists to run through a subhierarchy checking for role chains of length two to ask the user if any of those
are significant enough to have lexical forms. For the example network we needed to add only 5 roles for this
purpose. Third, 1093 proper nouns (e.g., ship and port names) were inferred automatically from instances.

As a result, the time required to supply lexical syntax and semantics was much less than we had experienced before
developing KNACQ. In two days we were able to provide 563 lexical entries (root forms not counting
morphological variants) for 103 concepts and 353 roles. Together with the automatically inferred proper nouns, this
was approximately 91% of the domain-dependent vocabulary used for the demonstration. That is about 5-10 dmes
more productivity than we had experienced before with manual means.

116

RELATED WORK

TEAM [Grosz, 1987] is most directly related, having many similar goals, though focussed on data bases rather than
expert systems or knowledge bases. The novel aspects of KNACQ by contrast with TEAM are (1) accepting an
expert system domain model as input (KNACQ) contrasted with the mathematically precise semantics of a relational
data base (TEAM), and (2) how little information is required of the KNACQ user.

A complementary facility is provided in TELI [Ballard, 1986] and in LIFER [Hendrix, 1978]. KNACQ is meant to
be used by the (expert system's) knowledge engineer, who understands the expert system domain model, to define a
large portion of the vocabulary, that portion corresponding to simple noun phrase constructions for each concept and
role; one uses KNACQ to bootstrap the initially empty domain-dependent lexicon. TELI and LIFER, on the other
hand, are meant to let the end user define additional vocabulary in terms of previously defined vocabulary, e.g., A
ship is a vessel; therefore, those systems assume an extensive vocabulary provided by the system builder.
Obviously, providing both kinds of capabilities is highly desirable.

CONCLUSIONS

KNACQ is based on the goal of allowing very rapid, inexpensive deFmition of a large percentage of the vocabulary
necessary in a natural language interface to an expert system. It provides the knowledge engineer with the facilities
to browse his/her taxonomic knowledge base, and to state head nouns, nominal compounds, and their non-clausal
modifiers for referring to the concepts and roles in the knowledge base. Given that, KNACQ infers the necessary
lexical syntactic and lexical semantic knowledge. Furthermore, if appropriate instances in the expert system
knowledge base already have names, KNACQ will add proper nouns for those instances to the lexicon.

KNACQ does not cover the inference of complex constructions typical of verbs and their nominalizations. IRACQ
[Ayuso, 1987] allows a user to enter examples of usage for acquiring lexical syntax and semantics for complex
constructions.

Our experience thds far is that KNACQ has achieved our goals of dramatically reducing the time it takes to define the
vocabulary for an expert system interface. It appears to have increased our own productivity several fold. (However,
KNACQ has not yet been provided to a knowledge engineer with no knowledge of computational linguistics.)

We believe that the problem of linguistic knowledge acquisition is critical not just as a practical issue regarding
widespread availability of natural language interfaces. As our science, technology, and systems become more and
more mature, the ante to show progress could involve more and more effort in filling domain-specific knowledge
bases. The less effort spent on such knowledge bases, the more effort can be devoted to unsolved problems.

References
Abrett, G. and Burstein, M. The KREME knowledge editing environment. Int. J. Man-Machine Studies 27:103-

126, 1987.
Ayuso, D.M., Shaked, V., and Weischedel, R.M. An Environment for Acquiring Semantic Information. In

Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics, pages 32--40.
ACL, 1987.

Ballard, B. and Stumberger, D. Semantic Acquisition in TELI: A Transportable, User-Customized Natural
Language Processor. In Proceedings of the 24th Annual Meeting of the Association for Computational
Linguistics, pages 20-29. ACL, June, 1986.

Brachman, R.J. and Schmolze, J.G. An Overview of the KL-ONE Knowledge Representation System. Cognitive
Science 9(2), April, 1985.

Grosz, B., Appelt, D.E., Martin, P., and Pereira, F. TEAM." An Experiment in the Design of Transportable
Natural-Language Interfaces. Artificial Intelligence, Vol. 32, No. 2, May 1987.

Hendrix, G., et. al. Developing a Natural Language Interface to Complex Data. ACM Transactions on Database
Systems 3(2): 105-147, 1978.

117

