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ABSTRACT 

We describe HARC, a system for speech understand- 
ing that integrates speech recognition techniques with 
natural language processing. The integrated system 
uses statistical pattern recognition to build a lattice of 
potential words in the input speech. This word lattice 
is passed to a unification parser to derive all possible 
associated syntactic structures for these words. The 
resulting parse structures are passed to a multi-level 
semantics component for interpretation. 

INTRODUCTION 

HARC, the BBN Spoken Language System (Boisen, 
et al. (1989)) is a system for speech understanding 
that integrates speech recognition techniques with 
natural language processing. As our integration 
methodology, we use lallice parsing. In this architec- 
ture, an acoustic processor produces a lattice of pos- 
sible words that is passed to a parser which produces 
all possible parses for all syntactically permissible 
word sequences present in the lattice. These parse 
trees are then passed to a semantic interpretation 
component, which produces the possible interpreta- 
tions of these parse structures, filtering out anomalous 
readings where possible. 

THE ARCHITECTURE OF HARC 

In this section, we present a more detailed outline of 
the general architecture of HARC: 

1. An acoustic processor, which uses context- 
dependent Hidden Markov Models (HMMs) 
for acoustic modelling, produces a lattice of 
possible words in the input speech. 

2. A chart parser uses a unification grammar to 
parse the word lattice and produces the set 
of all possible parses for all syntactically per- 
missible word sequences in the lattice. The 
resulting parses are ranked by acoustic 
likelihood score. 

3. A multi-level semantics component 
processes the parse trees? This component 

1This architecture and the names of the associated language levels 
are from the PHLIQA1 system (Bronnenberg et al. 1980). 

uses 4 translation steps to derive the mean- 
ing of each parse. 

a. The parse tree is converted to an expres- 
sion of EFL (English-oriented Formal 
Language); at this level, each word has 
one EFL constant; this includes words 
withmultiple senses. 

b. Each EFL expression is translated into 
one or more expressions of WML (World 
Model Language). Where possible, am- 
biguous constants from an EFL expres- 
sion are disambiguated and logically 
equivalent EFL expressions are col- 
lapsed. 

c. Each WML expression is converted to an 
expression in DBL (Data Base 
Language), which contains one constant 
for each file in the data base. 

d. The value of each DBL expression is 
computed by evaluating the expression 
against the database; this value is ex- 
pressed in CVL (Canonical Value 
Language). 

For speech understanding, semantics identifies the 
highest scoring "meaningful" sentence. This sen- 
tence is the recognized spoken utterance and its 
meaning is the sytem's interpretation of the input. 

TRAINING AND TEST SETS 

To measure the coverage of the syntactic and seman- 
tic components and the speech understanding perfor- 
mance of the integrated system, we use the DARPA 
1000-word Resource Management Database corpus. 
This corpus is divided into two sets of sentences: 2 a 

training corpus of 791 sentences and a test corpus of 

2The DARPA database has well.defined training and test sets for 
the speech data. However, for natural language development work, 
there is no such such well-defined division. For the purpose of 
evaluating natural language work, we defined at 8BN a training 
corpus of 791 sentences, based on 791 patterns, and a test corpus of 
200 sentences, based on an independently selected set of 200 
patterns. We feel these two corpora are a reasonable interim solution 
for the language modelling problem in the DARPA Resoume 
Management domain. 
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200 sentences. Syntax and semantics development 
work is done on the basis of the training corpus~ the 
test corpus is kept hidden from the system 
developers, to simulate novel utlerances that users of 
the system might make. Periodically, the test corpus 
is run through the system, again without the 
developers looking at any of the sentences. However, 
statistics are collected on the percentage of sen- 
tences successfully processed; this number can be 
compared to the percentage of the training corpus 
processed, to see how well the system generalizes 
from the training (known) to test (unknown) corpus. 
Subsequent sections of this paper present coverage 
results on both training and test sets for each com- 
ponent of the system. 

THE ACOUSTIC PROCESSOR 

Since the speech understanding search in our system 
is decoupled into two phases--speech acoustic scor- 
ing and language model scoring, to do this overall 
search most efficiently, we need to ensure that suf- 
ficient computing is performed in the first stage and 
enough information is saved so that optimality is 
preserved in the later stages of processing. 

To this end, our lattice computation algorithm at- 
tempts, in principle, to compute acoustic likelihood 
scores for all words in the vocabulary V for all time 
intervals t I and t 2. The acoustic data is typically a 
sequence of analyzed and vector-quantized (VQ) in- 
put spectra sampled every 10 milliseconds (Chow, et 
al. 1987). We model the input speech at the phonetic 
level using robust context-dependent HMMs of the 
phoneme. The acoustic model for each word in the 
vocabulary is then derived from the concatenation of 
these phonetic HMMs. Using these acoustic models 
of the word, one can compute the acoustic scores for 
all words in the input utterance using a time- 
synchronous dynamic time warping (DTW) procedure 
with beam pruning. 

An integral part of the task of the acoustic processor 
is to produce a word lattice that can be processed 
efficiently by the lattice parser. To do this, we reduce 
the lattice size through various lattice pruning tech- 
niques. We have used three pruning techniques, 
which we describe here briefly. (For full details, see 
Boisen, et al. (1989).) 

Score Thresholding: 
Word hypotheses are pruned on the basis of the 
unit score: the hypothesis' acoustic score normal- 
ized by its duration; the goal is to keep only those 
acoustic theories with a unit score greater than 
some predetermined threshold, and eliminate all 
others. In practice, we found it nearly impossible 
to find a single threshold that works for all words 
and have adopted a strategy that uses dual 

thresholds---one for short, function words and 
another for longer, multi-syllabic words. 

Subsumption Pruning: 
Subsumption pruning is designed to explicitly 
deal with the problem of short, function words, 
which are acoustically unreliable and which are 
often found throughout the speech signal, even 
within longer words.. Since it is almost always 
the case that short words match parts of long 
words, not vice versa, word theories that are 
found completely inside another word theory, with 
unit score below some factor 13 of the parent 
theory, are eliminated from the word lattice. 

Forward-Backward Pruning: 
Forward-backward pruning is based on the 
familiar forward-backward algorithm for estimat- 
ing the parameters of HMMs; it requires that a/I 
acoustic theories must be part of a complete path 
through the lattice, and furthermore, must score 
reasonably well. 

Rather then determining the optimal pruning tech- 
nique and using it alone, the system uses these tech- 
niques in tandem to try to produce the optimal word 
lattice in terms of size and information content, 

THE SYNTACTIC COMPONENT 

THE GRAMMAR FORMALISM 

HARC uses a grammar formalism based on an- 
notated phrase structure rules; this formalism is called 
the BBN ACFG (for Annotated Context Free 
Grammar). While it is in the general tradition of aug- 
mented phrase structure grammars, its immediate in- 
spiration is Definite Clause Grammars (DCGs) 
(Pereira & Warren (1980)). In such grammars, rules 
are made up of elements that are not atomic 
categories but, rather, are complex symbols consist- 
ing of a category label and feature specifications. 
Features (also called arguments) may be either 
constants---indicated by lists in the BBN ACFG--or  
variables---indicated by symbols with a leading colon. 
Identity of variables in the different elements of a rule 
is used to enforce agreement in the feature indicated 
by the variable. An example is (features to be dis- 
cussed are underlined): 

(s (oco~) :MOOD (Wa-) ...) 
(NP :NSUBCATFRAME :AGR :NPTYPE . ..) 
(W :AGR :NPTYPE :MOOD ...) 

(OPTSADJUNCT :AGR ...) 

where the variable :AGR enforces agreement be- 
tween the VP (ultimately, its head V) and the subject 
NP; :NPT'Z'PE, agreement between the syntactic type 
of the subject NP and that selected by the head V of 
the VP; and :MOOD, agreement between the mood of 
the S and that of the VP. 
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In the BBN ACFG, as in DCGs, each grammatical 
category has a fixed number of obligatory, positional 
arguments. The essential difference between our for- 
malism and DCGs is a syntactic typing system, 
whereby each argument position is limited to a fixed 
number of values. We have found that this restriction, 
in conjunction with the obligatory and positional nature 
of arguments, to be of great assistance in developing 
a large grammar (currently over 800 rules). By es- 
chewing more sophisticated mechanisms such as fea- 
ture disjunction, feature negation, metarules, optional 
arguments, and the use of attribute-value pairsmas 
are found in other complex feature based grammars, 
such as GPSG (Gazdar, et al (1985)), LFG (Bresnan 
(1982)), and PATR-II (Shieber, at al. (1983))-- i t  is 
relatively straightforward to have a simple syntactic 
checker that ensures that all grammar rules are well- 
formed. In a grammar as large as the BBN ACFG, 
having the ability to automatically make sure that all 
rules are well-formed is no small advantage. We 
have so far found no need for most of the advanced 
facets of other complex feature based formalisms, 
with the possible exception of disjunction, which will 
probably be added in a restricted form. 

An additional difference between our work and stan- 
dard DCGs is a depth-boundedness restriction, which 
is discussed in the next section. 

THE PARSING ALGORITHM 

The BBN Spoken Language System uses a parsing 
algorithm which is essentially that of Graham, Har- 
rison, and Ruzzo (1980), henceforth, GHR. This algo- 
rithm, in turn, is based on the familiar Cocke-Kasami- 
Younger (CKY) algorithm for context-free grammars. 
The CKY algorithm is quite simple and powerful: it 
starts with the terminal elements in a sentence and 
builds successively larger constituents that contain 
those already found and constructs all possible 
parses of the input. However, while the CKY algo- 
rithm requires that each rule introducing non-terminal 
symbolsmessentially the parts of speech, as op- 
posed to the terminal symbols (lexical items and 
grammatical formatives)--be in Chomsky Normal 
Form (i.e. of the form ~ ~ B C, with exactly two 
non-terminal symbols on the right hand side), the 
GHR algorithm uses several mechanisms, including 
tables and "dotted rules", to get around this restric- 
tion. Since the GHR algorithm, like the CKY algo- 
rithm, deals with context-free grammars, rather than 
context-free grammars annotated with features, the 
use of the required feature substitution 
mechanism--unification--is an extension to the 
GHR algorithm; see Haas (1987) for full details. 

One useful result of our work on extending the GHR 
algorithm to handle annotated context free grammars 
(ACFGs) is the discovery that there is a class of 

ACFGs, depth-bounded ACFGs, for which the parsing 
algorithm is guaranteed to find all parses and halt 
(Haas (1989)). Depth-bounded ACFGs are charac- 
terized by the property that the depth of a parse tree 
cannot grow unboundedly large unless the length of 
the string also increases. In effect, such grammars do 
not permit rules in which a category derives only itself 
and no other children; such rules do not seem to be 
needed for the analysis of natural languages, so com- 
putational tractability is maintained without sacrificing 
linguistic coverage. The fact that the parsing algo- 
rithm for this class of ACFGs halts is a useful result, 
since parsers for complex feature based grammars 
cannot be guaranteed to halt, in the general case. By 
restricting our grammars to those that satisy depth- 
boundedness, we can be sure that we can parse input 
utterances bottom-up and find all parses without the 
parser going into an infinite loop. 

CONSTRAINING SYNTACTIC AIVIBIGUITY 

Since the BBN ACFG parser finds all the parses for a 
given input, there is a potential problem regarding the 
number of parses that are found for each input ut- 
terance. Our experience has been that while the 
average number of parses per sentence is usually 
quite reasonable (about 2), in cases of conjunction or 
ellipsis the number of parses can grow wildly. In or- 
der to obtain broad coverage without explosive am- 
biguity, we have experimented with a version of the 
parser in which rules are sorted into different levels of 
grammaticality. In this version of the parser, parses 
are ranked according to the rules utilized. Initial ef- 
forts, in which ranks were assigned to rules by hand, 
are encouraging. A version of the grammar which 
included rules such as determiner ellipsis that in- 
creased ambiguity, had an average of 18 parses per 
sentence and a mode of 2 parses. However, when 
only first order parses were considered the average 
was 2.86 parses and the mode was 1. The parser 
without the extra rules and without ranking has an 
average of 3.95 parses and a mode of 1. 

We have also experimented with utilizing statistical 
methods of assigning probabilities to rules, based on 
the frequency of occurrence of the rules of the gram- 
mar in the training corpus. Testing the results of this 
automatic assignment against a corpus of 48 sen- 
tences (from the training corpus) that were manually 
parsed, the parse assigned the top score by the 
probabilistic parser was correct 77% of the time. 
Looking only at the top 6 parses, the correct parse 
was present 96% of the time. Since the success rate 
is 96% considering only the top 6 parses, while 50% 
of the sentences have 6 or more parses, this suggests 
that this probabalistic approach is on the right track. 
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SYNTACTIC COVERAGE 

The current ACFG grammar contains 866 rules: of 
these, 424 introduce grammatical formatives (such as 
the articles "a", "the", prepositions, etc). The remain- 
ing rules handle the general syntactic constructions of 
English. Coverage on the training corpus is currently 
g1% and coverage of the test corpus is 81% with this 
grammar. The version of the grammar used by the 
parser that utilizes ranked rules contains 873 rules. 
Coverage with this version of the grammar is 94% on 
training and 88% on test. 

THE SEMANTIC COMPONENT 

As a previous section noted, the semantic processing 
of an input query takes place in several stages. First, 
the output of the parser, the parse tree, is passed to 
the structural semantic module. This produces an 
expression of the logical language EFL, which may be 
ambiguous. The second stage of processing accepts 
as input an expression of EFL and returns as output 
zero or more expressions of the logical language 
WML. The EFL translation is concerned with struc- 
tural semantics--in other words, just the effect of 
syntactic structure on meaning. The WML translation 
is concerned with lexical semantics--the meaning (in 
a given domain) of particular words. 

The third steps converts the WML expression to an 
expression of DBL. This translation step maps be- 
tween the logical structure most natural in describing 
an application domain and the actual structure of 
database files. Finally, the answer to a database 
query in DBL is expressed in a formula of CVL. 

THE LOGICAL LANGUAGES 

Each of the logical languages just mentioned---EFL, 
WML, DBL and CVL---is derived from a common logi- 
cal language from which each differs only in the par- 
ticular constant symbols which are allowed and not in 
the operators (the only .exception is CVL, whose 
operators are a subset of the operators of this com- 
mon language). 

This logical language has three main properties. 
First, it is higher-order, which means that it can quan- 
tify not only over individuals, but over sets, tuples and 
functions as well. Second, it is intensional, which 
means that the denotations of its expressions are as- 
signed relative to external indices of world and time, 
and it incorporates an "intension" operator which 
denotes the "sense" (with respect to these indices) of 
an expression. Third, the languge has a rich system 
of types which are used to represent semantic selec. 
tional restrictions and so serve to delimit the set of 
meaningful expressions in the language. 

STRUCTURAL SEMANTICS 

The structural semantic component uses a set of 
structural semantic rules, paired one for one with the 
syntactic rules of the grammar. An example of these 
rules is given below: 3 

S --~ NP VP OPTSADJUNCT 
(lambda (np vp oa) 

(oa (intension ( (q np) vp) ) ) ) 

This is the top-level declarative clause rule given ear- 
lier, with its corresponding semantic rule. Note that 
there are three variables bound in the lambcla--np, 
vp oa--corresponding to the three terms on the right- 
hand side of the syntactic rule---NP, VP, and 
OPTSADJUNCT. During semantic interpretation, the 
semantic translations of these right-hand terms are 
substituted in for the variables np, vp and oa to make 
the interpretation of the whole clause. 

The effect of this rule is to construct a proposition 
corresponding to the application of the predicate of 
the clause--the VP- - to  the subject of the 
clause---the NP. This proposition is modified by the 
optional sentential adjunct, whose semantic trans- 
lation is applied to it. Examples of sentential adjuncts 
are phrases such as "during April", and "in Africa", as 
well as adverbs and more complicated modifiers. 

LEXlCAL SEMANTICS 

The lexical semantic component is concerned with the 
specific meanings of a word in a subject domain, as 
opposed to the manner in which these meanings are 
combined. These specific meanings are represented 
by expressions of WML which are associated by rules 
with the constant symbols of EFL. 

A recursive-descent translation algorithm returns for 
each node of an EFL expression a set of WML trans- 
lations. The translations for a constant expression are 
just those dictated by its WML translation rule. The 
translations for a complex expression are derived by 
combining, in a cartesian product fashion, the trans- 
lations of the parts of the expression. At each level, 
the set of possible translations is filtered to remove 
anomalous translations---those which involve com- 
binations of WML expressions with incompatible 
semantic types. 

Sentences which are semantically ambiguous (such 
as "They went to the bank") will simply return multiple 
WML translations. Sentences which have no non- 
anomalous WML translation (and are therefore con- 
sidered meaningless by the system) will return the 
empty set as the result of WML translation. 

3Feature specifications are omitted here for conciseness. 
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SEMANTIC COVERAGE 

Currently, the semantics is able to map 75% of the 
training sentences and 52% of the test sentences to a 
WML expression. The corresponding figures for CVL 
are 44% for training and 32% for test. 

THE LATTICE PARSER 

The basic approach we have taken for speech under- 
standing is to extend the text parser to deal with 
spoken input. So instead of operating on typed input, 
where a single word appears unambiguously at each 
position, the parser must now deal with speech input, 
which is highly ambiguous: a set of words is possible 
at every position with varying acoustic likelihood 
scores. While the data structure which is the input to 
the text parser is relatively simple---a list of 
words---the input to the lattice parser is a lattice of all 
the possible words which have been found. As- 
sociated with each word in the lattice (and therefore 
each grammatical constituent) is a set of acoustic 
match scores, with each score corresponding to par- 
ticular starting and ending times. 

Parsing now consists of building larger grammatical 
constituents from smaller ones and also keeping track 
of the resulting acoustic scores as the new con- 
stituents span longer intervals. The parser builds 
these larger constituents word synchronously in a way 
similar to the text parser. Two parsing algorithms 
have been implemented for the lattice parser: the first 
is a relatively straightforward modification of the text 
parser's algorithm to deal with the input word lattice. 
The second is similar, but supplements the text 
parser's algorithm with a top-down predictive filtering 
component. This significantly reduces the computa- 
tional complexity of the lattice parsing algorithm; see 
Chow & Roukos (1989) for full details. 

Currently, in the integrated speech understanding sys- 
tem, just as in the text processing system, the seman- 
tics component is applied after all parsing is done and 
is not interleaved with the parsing. While there are 
possible disadvantages to this approachmmore com- 
putation may be done since semantic knowledge is 
not applied until late in processingmwe have chosen 
this method of integration as our first attempt since 
the integration is simple and clean. 

INTEGRATED SYSTEM PERFORMANCE 

In this section, we present results for HARC on the 
standard DARPA 1000-Word Resource Management 
speech database (Price, et al. (1988)), with 600 sen- 
tences (about 30 minutes) of training speech to train 
the acoustic models for each speaker. For these ex- 
periments, speech was sampled at 20 kHz, and 14 
MeI-Frequency cepstral coeffients (MFCC), their 

derivatives (DMFCC), plus power (R0) and derivative 
of power (DR0) were computed for each 10 ms, using 
a 20 ms analysis window. Three separate 8-bit 
codebooks were created for each of the three sets of 
parameters using K-means vector quantization (VQ). 
The experiments were conducted using the multi- 
codebook paradigm in the HMM models, where the 
output of vector quantizer, which consists of a vector 
of 3 VQ codewords per 10 ms frame, is used as the 
input observation sequence to the HMM. 

For the purpose of making computation tractable, we 
applied the lattice pruning techniques described 
above to a full word lattice to reduce the average 
lattice size from over 2000 word theories to about 604 . 
At this lattice size, the probability of having the correct 
word sequence in the lattice is about 98%, which 
places an upperbound on subsequent system perfor- 
mance using the language models. 

Grammar Perplexity 

None 1000 

Word Pair 60 

Syntax 700 

+Semantics NA 

%Word % Sentence 
Error Error 

15.45 71.3 

3.9 26.0 

7.5 38.0 

6.9 36.4 

Figure 1: Recognition Performance of HARC 

Figure 1 shows the results averaged across 7 
speakers, using a total of 109 utterances, under 4 
grammar conditions. As shown, the grammars tested 
include: 1) no grammmar: all word sequences are 
possible; 2) the word pair grammar, containing all 
pairs of words occuring in the set of sentences that 
was used to define the database; 3) the syntactic 
grammar alone; and 4) semantic interpretation for a 
posteriori filtering on the output of lattice parsing. 

Note that the performance using the syntactic lan- 
guage model is 7.5% error. At a perplexity of 700, its 
performance should be closer to the no grammar 
case, which has a perplexity of 1000 and an error rate 
of about 15%. We hypothesize that perplexity alone 
is not adequate to predict the quality of a language 
model. In order to be more precise, one needs to look 
at acoustic perplexity: a measure of how well a lan- 
guage model can selectively and appropriately limit 
acoustic confusability. A linguistically motivated lan- 
guage model seems to do just that--at  least in this 
limited experiment. Also, surprisingly, using seman- 
tics gave insignificant improvement in the overall per- 
formance. One possible explanation for this is that 

460 word theories corresponds to about 4000 acoustic scores. 
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semantics gets to filter only a small number of the 
sentences accepted by syntax. Out of the sentences 
which receive semantic interpretations, syntax alone 
determined the correct sentence better than 60 per- 
cent of the time, leaving only about 20 sentences in 
which the semantics has a chance to correct the error. 
Unfortunately, of these errorful answers, most were 
semantically meaningful, although there were some 
exceptions. Pragmatic information may be a higher 
level knowledge source to constrain the possible word 
sequences, and therefore improve performance. 
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